mvgc_cval
Critical values for sample MVGC based on theoretical asymptotic null distribution
Syntax
x = mvgc_cval(alpha,p,m,N,nx,ny,nz,tstat)
Arguments
See also Common variable names and data structures.
input
alpha vector of significance levels p VAR model order m number of observations per trial N number of trials nx number of target ("to") variables ny number of source ("from") variables nz number of conditioning variables (default: 0) tstat statistic: 'F' or 'chi2' (default: 'F' if nx == 1, else 'chi2')
output
x vector of critical MVGC values
Description
Returns critical MVGC values x at significance levels in alpha for sample MVGC, based on theoretical (asymptotic) null distribution. See mvgc_cdfi for details of other parameters.
References
[1] L. Barnett and A. K. Seth, The MVGC Multivariate Granger Causality Toolbox: A New Approach to Granger-causal Inference, J. Neurosci. Methods 223, 2014 [ preprint ].
See also
mvgc_cdf | mvgc_cdfi | mvgc_pval | mvgc_confint | mvgc_demo_confint | mvgc_demo_nonstationary