mvgc_cdfi
Sample MVGC thoretical asymptotic inverse cumulative distribution function
Syntax
x = mvgc_cdfi(P,X,p,m,N,nx,ny,nz,tstat)
Arguments
See also Common variable names and data structures.
input
P vector of MVGC cumulative distribution probabilities X vector of actual MVGC values p VAR model order m number of observations per trial N number of trials nx number of target ("to") variables ny number of source ("from") variables nz number of conditioning variables (default: 0) tstat statistic: 'F' or 'chi2' (default: 'F' if nx == 1, else 'chi2')
output
x vector of MVGC values
Description
Return theoretical sample MVGC asymptotic inverse cumulative distribution function for actual MVGCs in vector X, evaluated at probabilities in vector P. To calculate the critical MVGC value for a significance level alpha, assume null hypothesis H0: X = 0 and set P = 1-alpha (see mvgc_cval). For confidence intervals at level alpha, set X to the estimated MVGC and set P = alpha for lower bound and P = 1-alpha for upper bound (see mvgc_confint).
The theoretical distribution is specified by the tstat parameter, which may be 'F' for Granger's F-test (default if nx == 1) or 'chi2' for Geweke's χ2 test (default if nx > 1). For a multivariate predictee (i.e. nx > 1) only the χ2 test is suitable [1].
For more details see mvgc_cdf.
References
[1] L. Barnett and A. K. Seth, The MVGC Multivariate Granger Causality Toolbox: A New Approach to Granger-causal Inference, J. Neurosci. Methods 223, 2014 [ preprint ].