Discrete Dynamics Lab
return to: DDLab home - update summary - multi-Value - dd-life 3d glider-guns

The beehive rule
Further details and results relating to the paper:
Wuensche,A.,"Glider dynamics in 3-value hexagonal cellular automata: the beehive rule",
Int. Journ. of Unconventional Computing, Vol.1, No.4, 2005, 375-398.
Preprint available HERE

Beehive rule in 3d
3d CA v=3 k=6 n=40x40x10 kcode= 0022000220022001122200021210 (v3k6x1.vco in DDLab)
panel 1. panel 2. panel 3. panel 4. panel 5. panel 6.
panels 1,2 and 3 started as random initial states - panels 3,4 5,6 are consecutive time-steps

The beehive rule-table (kcode)
showing all 56 possible mutations, and neighborhoods controling the basic glider
0022000220022001122200021210 (rule v3k6x1.vco in DDLab)
\begin{verbatim}
      kcode = 0022000220022001122200021210
                    kcode index
                   /  totals: 2s+1s+0s=k=6 
                  /  /         kcode
   basic         /  /         / 
   glider       /  /         /  mutations    
   ---------   / 2_1_0      /   2___1___0
background->  0: 0 0 6  -> 0    o   c   - 
     head+->  1: 0 1 5  -> 1    0   -   0
              2: 0 2 4  -> 2    -   Sg  cg
              3: 0 3 3  -> 1 -+ G   -   G
  out4        4: 0 4 2  -> 2 -+ -   G   G
   out3       5: 0 5 1  -> 0 -+ G   G   -
    out1      6: 0 6 0  -> 0 -+ G   G   -
     side2->  7: 1 0 5  -> 0    c   c   -
     side1->  8: 1 1 4  -> 2    -   c   c
    side1+    9: 1 2 3  -> 2    -   cg  G
             10: 1 3 2  -> 2 -+ -   G   G
    out2     11: 1 4 1  -> 1 -+ G   -   G
     tail    12: 1 5 0  -> 1 -+ G   -   G
      head-> 13: 2 0 4  -> 0    c   c   -
             14: 2 1 3  -> 0    Gs  c   -
             15: 2 2 2  -> 2    -   gc  gc 
             16: 2 3 1  -> 2 -+ -   G   G
             17: 2 4 0  -> 0 -+ G   G   -
             18: 3 0 3  -> 0    g   c   -
             19: 3 1 2  -> 2    -   c   cg 
             20: 3 2 1  -> 2    -   cg  Gd
             21: 3 3 0  -> 0 -+ G   G   -
             22: 4 0 2  -> 0    G   c   -
    center-> 23: 4 1 1  -> 0    g   cg  -
             24: 4 2 0  -> 2    -   cg  G
             25: 5 0 1  -> 2    -   cg  G
             26: 5 1 0  -> 0    g   gc  -
             27: 6 0 0  -> 0    G   Gd  -
key to mutations: 
quasi-neutral G=25/56, wildcards -+ 10/28
G/g=gliders, G=same/similar dynamics, 
g=weak/different, S=spirals, d=dense,
s=sparse, c=chaos, o=order, 0=all 0s
 

>

21 types of glider collisions collision diagrams

                  no   type   no before after 
 head-on odd:     4    2->0   3     6     0
                       2->2   1     2     2
 head-on odd:     4    2->0   3     6     0
                       2->2   1     2     2
 oblige head-on:  8    2->0   3     6     0
                       2->1   2     4     2
                       2->4   1     2     4
                       2->5   1     2     5
                       2->6   1     2     6
 oblique tail-on: 5    2->0   1     2     0
                       2->1   2     4     2
                       2->2   1     2     2
                       2->6   1     2     6
        -----------------------------------
        totals:  21           21   42    31


                               gliders
                    type  no before after
 self-destruction:  2->0  10   20    0
 one-survivor:....  2->1   4    8    4
 conservation:....  2->2   3    6    6
 self-reproduction: 2->4   1    2    4
                    2->5   1    2    5
                    2->6   2    4   12
                          ------------
                  totals  21   42   31


oblique 60 degree head-on collisions - 8 types
oblique 120 degree tail-on collisions - 5 types
180 degree 0dd head-on collisions - 4 types
180 even head-on collisions - 4 types

8 60degree (head-on oblique) collisions
1a
2->5
2a
2->1
3a
2->1
4a
2->4
5a
2->6


6a
2->0
7a
2->0
8a
2->0

5 120degree (oblique tail-on) collisions
1b tail
2->1
2b tail
2->1
3b tail
2->2
note bounce
4b
2->6
continues as 5a
5b
2->0

4 180degree (head-on) collisions, odd
1h-odd
2->2
2h-odd
2->0
3h-odd
2->0
4h-odd
2->0

4 180 (head-on) collisions, even
1h-even
2->2
2h-even
2->0
3h-even
2->0
4h-even
2->0

Exploding red cell makes 6 new gliders
single
red->6

polymer-like gliders made up from sub-units
p=1
..
p=2
.. .. ..
p=2
..
p=4
..
p=4
p=4

glider-guns (puffer-trains) with various periods
shooting 1 to 4 glider streams
1a
streams=1
period=4
1b
streams=1
period=4
1c
streams=1
period=4
2a
streams=2
period=4
2b
streams=2
period=4
2c
streams=2
period=4
2d
streams=2
period=4
3a
streams=3
period=4
3b
streams=3
period=4
3c
streams=3
period=4
3d
streams=3
period=4
3e
streams=3
period=4
4a
streams=4
period=8

Static glider-gun: period=13, multiple streams
in 6 directions (found behind puffer-train)
Puffer-train: moving west, absorbing boundary conditions, 222x122
click to enlarge

2 interesting mutations

index 23: 4 1 1 -> 0 changed to 2

index 2: 0 2 4 -> 2 changed to 1
56 single mutations to the beehive rule
28/56 are quasi-neutral, click to enlarge
index
0-6
0

1

2

3

4

5

6

index
7-13
7

8

9

10

11

12

13

index
14-20
14

15

16

17

18

19

20

index
21-27
21

22

23

24

25

26

27

Classifying rule-space to find v=3 k=6 complex rules

Examples of other complex-rules

kcode=2200021000222201110201212210
0=10 2=11 1=7

kcode=0222200220000200100201102110
0=14 2=9 1=5

kcode=0220002120022202120200112110
0=11 2=11 1=6

kcode= 0200001120100200002200120110
0=15 2=6 1=6

kcode= 0200202022222200012100002100
0=14 2=9 1=3

kcode=0122120102200122010000102000
0=14 2=8 1=6


back to the DDLab home page
April 2006  Last modified: June 2006