Discrete Dynamics Lab |
The beehive rule
Further details and results relating to the paper:
Wuensche,A.,"Glider dynamics in 3-value hexagonal cellular automata: the beehive rule",
Int. Journ. of Unconventional Computing, Vol.1, No.4, 2005, 375-398.
Preprint available
HERE
the neighborhood, mutatinons and basic glider
The beehive rule-table (kcode) showing all 56 possible mutations, and neighborhoods controling the basic glider 0022000220022001122200021210 (rule v3k6x1.vco in DDLab) | |
\begin{verbatim} kcode = 0022000220022001122200021210 kcode index / totals: 2s+1s+0s=k=6 / / kcode basic / / / glider / / / mutations --------- / 2_1_0 / 2___1___0 background-> 0: 0 0 6 -> 0 o c - head+-> 1: 0 1 5 -> 1 0 - 0 2: 0 2 4 -> 2 - Sg cg 3: 0 3 3 -> 1 -+ G - G out4 4: 0 4 2 -> 2 -+ - G G out3 5: 0 5 1 -> 0 -+ G G - out1 6: 0 6 0 -> 0 -+ G G - side2-> 7: 1 0 5 -> 0 c c - side1-> 8: 1 1 4 -> 2 - c c side1+ 9: 1 2 3 -> 2 - cg G 10: 1 3 2 -> 2 -+ - G G out2 11: 1 4 1 -> 1 -+ G - G tail 12: 1 5 0 -> 1 -+ G - G head-> 13: 2 0 4 -> 0 c c - 14: 2 1 3 -> 0 Gs c - 15: 2 2 2 -> 2 - gc gc 16: 2 3 1 -> 2 -+ - G G 17: 2 4 0 -> 0 -+ G G - 18: 3 0 3 -> 0 g c - 19: 3 1 2 -> 2 - c cg 20: 3 2 1 -> 2 - cg Gd 21: 3 3 0 -> 0 -+ G G - 22: 4 0 2 -> 0 G c - center-> 23: 4 1 1 -> 0 g cg - 24: 4 2 0 -> 2 - cg G 25: 5 0 1 -> 2 - cg G 26: 5 1 0 -> 0 g gc - 27: 6 0 0 -> 0 G Gd - key to mutations: quasi-neutral G=25/56, wildcards -+ 10/28 G/g=gliders, G=same/similar dynamics, g=weak/different, S=spirals, d=dense, s=sparse, c=chaos, o=order, 0=all 0s | |
| |
> |
21 types of glider collisions | collision diagrams | |||
no type no before after head-on odd: 4 2->0 3 6 0 2->2 1 2 2 head-on odd: 4 2->0 3 6 0 2->2 1 2 2 oblige head-on: 8 2->0 3 6 0 2->1 2 4 2 2->4 1 2 4 2->5 1 2 5 2->6 1 2 6 oblique tail-on: 5 2->0 1 2 0 2->1 2 4 2 2->2 1 2 2 2->6 1 2 6 ----------------------------------- totals: 21 21 42 31 gliders type no before after self-destruction: 2->0 10 20 0 one-survivor:.... 2->1 4 8 4 conservation:.... 2->2 3 6 6 self-reproduction: 2->4 1 2 4 2->5 1 2 5 2->6 2 4 12 ------------ totals 21 42 31
oblique 60 degree head-on collisions - 8 types |
oblique 120 degree tail-on collisions - 5 types |
180 degree 0dd head-on collisions - 4 types |
180 even head-on collisions - 4 types | |
8 60degree (head-on oblique) collisions | |
1a 2->5 | |
2a 2->1 | |
3a 2->1 | |
4a 2->4 | |
5a 2->6 |
|
6a 2->0 | |
7a 2->0 | |
8a 2->0 |
5 120degree (oblique tail-on) collisions | |
1b tail 2->1 | |
2b tail 2->1 | |
3b tail 2->2 | note bounce |
4b 2->6 | continues as 5a |
5b 2->0 |
4 180degree (head-on) collisions, odd | |
1h-odd 2->2 | |
2h-odd 2->0 | |
3h-odd 2->0 | |
4h-odd 2->0 |
4 180 (head-on) collisions, even | |
1h-even 2->2 | |
2h-even 2->0 | |
3h-even 2->0 | |
4h-even 2->0 |
Exploding red cell makes 6 new gliders | |
single red->6 |
polymer-like gliders made up from sub-units | |
p=1 | .. |
p=2 | .. .. .. |
p=2 | .. |
p=4 | .. |
p=4 | |
p=4 |
glider-guns (puffer-trains) with various periods shooting 1 to 4 glider streams | |
1a streams=1 period=4 | |
1b streams=1 period=4 | |
1c streams=1 period=4 | |
2a streams=2 period=4 | |
2b streams=2 period=4 | |
2c streams=2 period=4 | |
2d streams=2 period=4 | |
3a streams=3 period=4 | |
3b streams=3 period=4 | |
3c streams=3 period=4 | |
3d streams=3 period=4 | |
3e streams=3 period=4 | |
4a streams=4 period=8 |
Static glider-gun: period=13, multiple streams in 6 directions (found behind puffer-train) |
Puffer-train: moving west, absorbing boundary conditions, 222x122 click to enlarge |
2 interesting mutations | |
index 23: 4 1 1 -> 0 changed to 2 |
index 2: 0 2 4 -> 2 changed to 1 |
Classifying rule-space to find v=3 k=6 complex rules | |
Examples of other complex-rules | ||
kcode=2200021000222201110201212210 0=10 2=11 1=7 |
kcode=0222200220000200100201102110 0=14 2=9 1=5 |
kcode=0220002120022202120200112110 0=11 2=11 1=6 |
kcode= 0200001120100200002200120110 0=15 2=6 1=6 |
kcode= 0200202022222200012100002100 0=14 2=9 1=3 |
kcode=0122120102200122010000102000 0=14 2=8 1=6 |