tsdata_to_autocov_debias (EXPERIMENTAL)

Calculate sample autocovariance sequence from time series data with debias

Syntax

   G = tsdata_to_autocov_debias(X,q)

Arguments

See also Common variable names and data structures.

input

   X          multi-trial time series data
   q          number of lags

output

   G          sample autocovariance sequence

Description

Returns q-lag sample autocovariance sequence G defined as for the (presumed stationary) multivariate process X. X may contain single- or multi-trial time series data. See tsdata_to_autocov for more details.

This (experimental) algorithm [2] attempts to reduce bias due to mean estimation for small samples.

References

[1] L. Barnett and A. K. Seth, The MVGC Multivariate Granger Causality Toolbox: A New Approach to Granger-causal Inference, J. Neurosci. Methods 223, 2014 [ preprint ].

[2] Y. Shkolnisky, F. J. Sigworth and A. Singer, A note on estimating autocovariance from short-time observations, 2008.

See also

demean | tsdata_to_var | var_to_autocov | tsdata_to_autocov