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Abstract—This work investigates a robust energy-efficient so-
lution for multiple-input-multiple-output (MIMO) transmissions
in cognitive vehicular networks. Our goal is to design an optimal
MIMO beamforming for secondary users (SUs) considering im-
perfect interference channel state information (CSI). Specifically,
we optimize the energy efficiency (EE) of SUs, given that the
transmission power constraint, the robust interference power
constraint and the minimum transmission rate are satisfied.
To solve the optimization problem, we first characterize the
uncertainty of CSI by bounding it in a Frobenius-norm-based
region and then equivalently convert the robust interference
constraint to a linear matrix inequality. Furthermore, a feasible
ascent direction approach is proposed to reduce the optimization
problem into a sequential linearly constrained semi-definite
program, which leads to a distributed iterative optimization
algorithm for deriving the robust and optimal beamforming.
The feasibility and convergence of the proposed algorithm is
theoretically validated, and the final experimental results are also
supplemented to show the strength of the proposed algorithm
over some conventional schemes in terms of the achieved EE
performance and robustness.

Index Terms—Vehicular communications, cognitive radio, MI-
MO transmissions, energy efficiency

I. INTRODUCTION

Advanced vehicular communication and networking tech-
nology plays an important role in the design of wireless
connected vehicles and shows great potential to accelerate full
deployment of Intelligent Transportation Systems (ITS) [1]–
[3]. However, the dramatically increasing demand of vehicular
telematics applications and infotainment services (e.g., HD
movies and music online, data transfer, web browsing, and
etc.), which highly relies on wireless communications, makes
radio spectrum a very scarce and precious resource [4]–
[6]. To make the best use of such resource, the so called
cognitive vehicular networks, which combines the cognitive
radio technology (CR) with vehicular communications, can
share radio spectrum in an efficient and flexible way. In cog-
nitive vehicular networks, licensed roadside communication
infrastructure (e.g., cellular base station and wireless access
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points) or licensed vehicles can be regarded as primary users
(PUs), while other unlicensed vehicular terminals are typically
treated as secondary users (SUs) [7]. Meanwhile, the network
consisting of terminals equipped with multiple antennas is re-
ferred to as a multiple-input multiple-output (MIMO) system,
which is considered to be an emerging technology that can
exploit spatial diversity [8], [9].

It sees that the green radio technologies have become an
inevitable and critical trend in wireless communication net-
works [10]. Particularly, energy-efficient performance is a key
concern in optimal designs of vehicular techniques deployed in
V2I scenarios (e.g., downlink traffic scheduling [11], spectrum
access [12], cooperative scheme [13], etc.). As argued by
[10], financial consideration relevant to energy costs of base
stations, roadside wireless nodes or some electronic vehicles,
and environmental concerns resulting from power consumption
are major factors to motivate green radio communications.
The objective of green communications is to improve energy
efficiency of radio systems, which include traditional cellular
networks and vehicular networks. In addition, vehicle electri-
fication has been recognized as an emerging trend induced by
the forthcoming smart grid [14]. With the penetration of purely
electric-powered or hybrid electric vehicles, energy saving is
expected to be a much more essential issue in connected
vehicle technologies in near future. Therefore, in this work,
we focus on energy efficiency (EE) performance, which is
characterized by the maximum amount of mutual information
delivered by consuming per unit joule [15]

Generally, since the co-existing nature, the total interfer-
ences from SUs to a PU should be always restricted and
required to be below a tolerable level [16]. There are some
other challenges to obtain an optimal MIMO transmission
design with the aforementioned considerations for a CR-
enabled vehicular network: i) the MIMO beamforming design
for a CR-enabled vehicular network is indeed a typical non-
convex optimization problem; and ii) many real-life factors
such as feed-back channel noises, time latencies or frequency
offsets in SU-to-PU channels, will result in imperfect channel
state information (CSI) obtained by SUs. More importantly,
some characteristics of vehicular scenarios play a significant
and unique role in design of vehicular MIMO transmission e-
quipped with CR technology, which differentiate a CR-enabled
network from conventional stationary/mobile CR networks.
For example, the impact of vehicular mobility as well as
the pattern of traffic flows on roads is recognized as the
main factor characterizing a CR-enabled vehicular network.
The vehicular mobility can lead to the dynamically changing
spectrum availability perceived by CR-enabled vehicles, which
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in turn makes it more challenging to obtain accurate sensing
information on the cognitive-to-primary propagation channels.
The vehicular motion may also cause the time-variation of the
propagation channels, impacting on the correctness of the es-
timation of the secondary vehicle-to-primary vehicle channels.
Besides, absence or impracticality of centralized computation
indeed increases the complexity of MIMO transmission de-
sign in vehicular scenarios. Therefore, an appropriate MIMO
beamforming design solution needs to capture inaccuracies in
the information of SU-to-PU vehicular channels, to be robust
and suitable for on-line distributed implementation so that it
can allow to some extent accommodation of dynamic nature
of propagation channels in vehicular scenarios.

Up to now, there have been many studies focusing on EE
transmission of MIMO systems such as [17]–[21]. The authors
in [17] aimed to achieve a high energy efficiency and proposed
a EE strategy for V2I and I2I (infrastructure-to-infrastructure)
communications based on cooperative relay and cooperative
MIMO transmissions. Although their method was proven to
be more effective than traditional SISO transmission strategy,
it did not consider some real-life requirements such as the
maximum power budget and the required data rate. In [18], the
researchers considered to obtain an optimal trade-off between
the sum of data rates and the power cost for MIMO broadcast
channels. But, the effect of interference power on the EE
optimization was not involved in their study.

In our model, we adopt a specific mathematical formulation
of the performance metric on EE, i.e., the ratio of the data rate
over the power consumed to perform MIMO transmissions,
which is similar to the models proposed in [19]–[21]. In these
models, only the conditions on maximum power budget and
tolerable interference power were considered, and they are
under the assumption of perfect CSI. But, CSI is usually
imperfect to SUs in reality, and PUs may not be aware of
the existence of some secondary transmission links, such that
the secondary transmitters should be in charge of restricting
their interference power to the primary receivers. There are
also some researches focusing on the robust optimization for
MIMO transmissions in CR networks [22]–[26]. The work of
[22] presented an iterative robust beamforming algorithm to
maximize the received signal-to-interference-plus-noise ratios
(SINRs) in the worst situation. This approach belongs to a
type of conservative decision making and does not aim at EE
optimization. In [23], the authors formulated the uncertainty
of imperfect CSI as a kind of added Gaussian noise, which
was a probabilistic model. These models mainly focus on
maximizing the service probability of SUs rather than the
energy efficiency. In [24], the payoff function of every player
(i.e., every SU) was modeled as its maximum Shannon mutual
information, which was subject to the power constraint. Sim-
ilarly, the payoff function of [25] was also represented as the
maximum achievable rate on an individual SU link. In [26], a
robust beamforming optimization was proposed to minimize
the overall mean-square error in MIMO transmissions, which
was based on a cyclic block coordinate ascent algorithm. The
transmission power consumption and the interference power
constraints set up in [26] are similar to those in our work.
The difference is that we consider to satisfy the minimum

transmission rate required by SUs. Additionally, it is worth
pointing out that the studies presented in [22], [25], [26]
have shown the strength of the S-Procedure theorem [27] to
convert the robust interference constraint to a linear matrix
inequality. This idea behind the S-Procedure also motivates
us to perform the constraint transformation so as to make the
EE optimization tractable. The essential difference between
our work and those aforementioned lies in the optimization
objective and the constraint sets it is subject to and in the idea
behind the optimal beamforming design.

We aim at optimizing EE MIMO transmission for CR-
enabled vehicular networks by modeling EE performance met-
ric as the optimization objective function. For the optimization
model, we present a robust and distributed solution which
takes into account the uncertainty of the interference channel
state. The proposed algorithm is suitable to be implemented
in a distributed and online manner, which allows for dynamic
nature of propagation channels in vehicular scenarios. The
following summarize our main contributions of the paper:

i) We jointly consider three types of constraints in our
EE MIMO transmission optimization model simultaneously,
including the maximum energy budget constraint, the minimum
data rate constraint, and the robust interference constraint,
such that we can derive an appropriate joint power allocation
and beamforming pattern for each SU pair.

ii) Considering the imperfect CSI, we mathematically for-
mulate the robust interference constraint to make the model
tractable, such that we can provide a robust design. Specifi-
cally, an elliptical uncertainty region represented by Frobenius
norm is adopted to characterize the inaccuracy of SU-to-PU
channel state. Then, by exploiting the well-known S-Procedure
[27], we perform an equivalent transformation on the robust
interference constraint and re-express it as a linear matrix
inequality (LMI), which is more convenient to be solved by
using linear semi-definite programming (SDP) techniques.

iii) We propose a feasible ascent direction method based on
sequential linear programming. We obtain a feasible ascent
direction by solving the modified objective subject to the
linearizion of the minimum data rate constraint and to the
power consumption constraint combined with the LMI. The
sequential linearly constrained programming sub-problem can
be achieved effectively since its objective and constraint func-
tions are all linearized, which belongs to a typical linear semi-
definite program. Based on the feasible direction obtained
previously, we transform the original EE optimization to a
linear searching sub-problem which can be effectively solved
to derive an optimal iteration step to generate a new iterator.
Hence, we yield a robust iterative optimization solution for
EE MIMO transmissions. Furthermore, we also theoretically
provide the feasibility and convergence of sequential iterators
generated at each SU and show the strength of our proposed
algorithm through experiments.

The remainder of this paper is organized as follows. We
introduce preliminaries of the basic optimization model as well
as its modified form with consideration of imperfect channel
state information in Section II. Section III elaborates on our
robust distributed iterative optimization solution. In Section
IV we theoretically analyze the feasibility and convergence of
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TABLE I
SUMMARY OF BASIC MATHEMATICAL SYMBOLS AND OPERATIONS

Symbols&Operations Meaning

R space of real numbers

C space of complex numbers

M+ space of Hermitian positive semi-definite matrices

ℜ(X) real part of a complex matrix X

ℑ(X) complex part of a complex matrix X

XT transpose operation on X

X† conjugate transpose operation on X

X−1 inverse operation on X

X∗ component-wise complex conjugation of X

vec(X) stacking vectorization of X

Tr(X) trace of X

det(X) determinant of X

⊗ Kronecker product operation

E(·) expectation of a variable

X ≻ 0 (X ≽ 0) X is positive definite (semidefinite)

In the n× n identity matrix

0n the n× n zero matrix

iterators generated by solving sequential linearly constrained
semi-definite programming sub-problems. Section V presents
the experiment results, and Section VI concludes this work.
In addition, we summarize basic mathematical symbols and
operations as well as their meaning in Table I. Unless other-
wise specified, the vectors mentioned in this work are column
vectors and denoted by boldface lowercase letters. Throughout
this paper the boldface uppercase letters are used to denote the
matrices.

II. PRELIMINARIES

A. Basic Optimization Model

Without loss of generality, we consider a MIMO CR-
enabled vehicular network shown in Fig.1, which consists of
a group of unlicensed vehicles and a licensed vehicle. These
vehicular communication terminals are equipped with multiple
antennas. As illustrated in Fig.1, the V2I communication
constructs a primary network, in which an infrastructure node
(e.g., a base station) treated as a primary transmitter (named
Primary Tx) serves this licensed vehicle who is a primary
receiver (named Primary Rx). Other unlicensed vehicles shar-
ing the same frequency channel with the primary receiver are
regarded as some secondary users with V2V communications,
whose links form a secondary network. In particular, there
exist interference links between the secondary transmitters
(named Secondary Tx) and the primary receiver and their
undesired secondary receivers (named Secondary Rx).

In general, a group of vehicles in a steady traffic flow
move with the same steady speed (i.e., the average speed
of this traffic flow), such that the relative geographic dis-
tances within the vehicular group, i.e., the vehicular topology
structure, are steady in a certain duration as well. Hence,
for the steady traffic flow scenario, it is suitable to assume
that the propagation channels within the vehicular group in
a CR-enabled network are stable (at least, during a certain
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Fig. 1. The system model for MIMO CR-enabled vehicular networks.

period of time). At this point, we can model the vehicular
propagation channels with time-invariant channel matrices. Let
the number of secondary links in the CR-enabled vehicular
network considered under Gaussian-interference channel be J .
Each secondary link is associated with a transmitter-receiver
pair (Txj , Rxj) ∈ {(Txj , Rxj) |j ∈J }. J denotes the
set of those transmitter-receiver links whose cardinality is J ,
i.e., J := {1, 2, . . . , J}, J = |J |. The transmitter Txj

at the j-th link is equipped with mj antennas, while the
corresponding receiver Rxj has nj antennas and mj ≤ nj .
The transmitter Txj transmits a complex signal vector sj of
dimension mj , i.e., sj ∈ Cmj×1 such that a complex baseband
signal vector of dimension nj , rj ∈ Cnj×1, can be received at
the receiver Rxj . Let zj ∈ Cnj×1 denote the noise floor plus
interference from primary users on the same channel which
can be modeled as a zero-mean circularly symmetric complex
Gaussian noise vector with a nonsingular covariance matrix
Rj ∈ Cnj×nj , i.e., zj ∼ N(0,Rj), E(zjzj†) = Rj . Thus,
with Hj,i ∈ Cnj×mi representing the complex channel matrix
between the transmitter Txi and the receiver Rxj , we can
formulate the received signal at the receiver Rxj , rj , as

rj =
∑
i∈J

Hj,isi + zj = Hj,jsj +
∑

i∈J−j

Hj,isi + zj (1)

where J−j := {i|i ∈J , i ̸= j} and for all j ∈ J the
channel matrix Hj,j can be considered to be nonzero.

Furthermore, we also consider that the number of the
original independent data substreams transmitted in the j-th
link is lj (lj ≤ mj). These original substreams, denoted by
xj of dimension lj , i.e., xj ∈ Clj×1, are mapped to sj through
being multiplied by an precoding matrix Mj ∈ Cmj×lj .
Here this matrix Mj in fact represents a certain precoding or
transmit-beamforming strategy for alleviating self-interference
of the transmitter Txj . That is, the signal vector sj in the j-th
link can be rewritten as

sj = Mjxj (2)

At the associated receiver Rxj of the j-th link, the received
signal vector rj can be mapped to lj independent data sub-
streams by a decoding operation. That is, Rxj transforms rj
to another complex signal vector of dimension lj , yj ∈ Clj×1,
by using a deconding matrix Dj ∈ Clj×nj as following

yj = Djrj (3)
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Substituting Equations (2) and (3) into (1), we can get

yj = DjHj,jMjxj +
∑

i∈J−j

DjHj,iMixi +Djzj (4)

Note that the matrix Mj characterizes the associated trans-
mitted signal vector sj in terms of transmission power con-
sumption. Following some typical work such as [19], [19],
[21], [25], [26], we represent the total transmission power
consumption of the j-th link in the MIMO CR network as
pj = βTr(Qj) + pj,c where Qj denotes the covariance
matrix corresponding to Mj , i.e., Qj := E

(
MjMj

†
)

, and

is Hermitian positive semidefinite, i.e., Qj ∈ Mmj×mj

+ . The
parameter pj,c is used to denote the total circuit-related power
consumption at both Txj and Rxj . β is a positive coefficient
(β ∈ (0, 1)), whose reciprocal indicates efficiency of the
power amplifier. Since a SU’s transmission power is limited,
introducing an individual power threshold pmax

j ∈ R we can
formulate an inequality constraint with respect to Qj

pj = βTr(Qj) + pj,c ≤ pmax
j (5)

for ∀j ∈J .
To proceed the model, we introduce a complex matrix,

Uj ∈ Cu×mj , to represent the channel gain between a primary
receiver equipped with u antennas and the j-th secondary user
in the MIMO CR network. Thus, we consider to restrict the
instantaneous interference resulting from the j-th secondary
user to this primary receiver in the CR network where primary
and secondary links coexist. At this point, we have the
following inequality constraint on the channel interference∑

j∈J

γj :=
∑
j∈J

Tr
(
UjQjUj

†
)
≤ γmax (6)

where γmax ∈ R denotes a predefined maximum interference
allowed at the primary user. It should be noted that the
information on Ui for ∀i ∈J has to be fed back to the indi-
vidual j-th receiver Rxj when adopting (6) in an optimization
scheme. However, as suggested by many existing literature
[24], [26], [28], it is appropriate to pre-partition the total power
interference that a primary user can tolerate in per-secondary
link portions, which can be helpful to realize a distributed
implementation with low-complexity and to guarantee possible
quality-of-service requirements, while some other study cases
[20], [21], [29] have provided their beamforming solutions
where the upper bound of a total aggregate interference is
not divided. For example, in [30], the aggregate interference
constraint directly is combined with the power constraint
via introducing auxiliary variables. Nevertheless, certain com-
plexity may be increased when considering performing these
solutions in distributed scenarios, since additional efforts (e.g.,
decomposition techniques) are needed to dynamically allocate
the total power-interference to CR-enabled secondary links.
Based on the considerations above, we adopt the formation
of the per-cognitive radio link constraint in our model, which
is more stringent than the total-power interference constraint.
That is, to make the computation more practical, we can
pre-divide such a total instantaneous interference γmax that
the primary user can tolerate into a series of interference

thresholds associated with each individual secondary link, i.e.,{
γmax
j |γmax

j > 0, γmax =
∑

j∈J γmax
j

}
, such that

γj = Tr
(
UjQjUj

†
)
≤ γmax

j (7)

for ∀j ∈J . It is worth pointing out that each individual inter-
ference threshold, γmax

j ∈ R, can be pre-specified, which may
depend on some certain QoS demands of the corresponding
individual transmitter-receiver pair (Txj , Rxj). Hence we can
use the inequality constraint (7) in our following optimization
formulation instead of the aggregative form (6).

Based on (4), the j-th link’s theoretical maximum informa-
tion rate rj can be defined as

rj = log2 det
(
Φ(Dj ,Q−j) +DjHj,jQjH

†
j,jD

†
j

)
− log2 det (Φ(Dj ,Q−j))

(8)

where Q−j denotes the collection of the covariance matrices
of the secondary transmitter-receiver pairs except for the j-
th one Qj , i.e., Q−j := {Qi|∀i ∈J−j}. Φ(Dj ,Q−j) is
defined as the multiple-user interference plus noise observed
at the j-th secondary user

Φ(Dj ,Q−j) :=
∑

i∈J−j

DjHj,iQiH
†
j,iDj

† + R̃j (9)

where R̃j is a positive semidefinite covariance matrix of lj×lj
dimension whose radius is the same as that of Rj , i.e., R̃j ∈
Clj×lj and ρ

(
R̃j

)
= ρ (Rj).

Generally, rj should not be too low so as to guarantee
a QoS transmission required at the j-th secondary user’s
link. Namely, when rj could not satisfy a required minimum
transmission rate, the corresponding secondary transmission
link should be closed. Otherwise, it would lead to unnecessary
interference or energy consumption. Therefore, we introduce
a transmission rate constraint

rj ≥ rmin
j (10)

for ∀j ∈ J where rmin
j ∈ R denotes a pre-specified

transmission rate threshold.
By combining the inequality constraints (5), (7) and (10),

a basic model formulating the energy-efficient transmission
optimization problem of the overall MIMO CR network can
be expressed as

maximize
{(Qj ,Dj)|∀j∈J }

:
∑
j∈J

fj (Qj ,Dj |Hj ,Q−j) :=
∑
j∈J

rj
pj

(11a)
s.t. pj ≤ pmax

j (11b)

γj ≤ γmax
j (11c)

rj ≥ rmin
j (11d)

Qj ∈Mmj×mj

+ (11e)

Dj ∈ Clj×nj , j ∈J (11f)

where the set Hj (for ∀j ∈ J ) is defined as the col-
lection of all the channel matrix related to the j-th re-
ceiver Rxj , i.e., Hj := {Hj,i|Hj,i ∈ Cnj×mi , ∀i ∈J }.
fj (Qj ,Dj |Hj ,Q−j) is used to denote rj/pj , i.e.,
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fj (Qj ,Dj |Hj ,Q−j) := rj/pj . According to the opti-
mization objective function (11a) given in the basic mod-
el (11), we point out that as a energy efficiency metric
fj (Qj ,Dj |Hj ,Q−j) actually indicates the quantity of in-
formation successfully transmitted at the secondary link per
unit of energy consumed.

B. Optimization Formulation with SU-to-PU Channel Uncer-
tainty

In an actual MIMO CR communication scenario, the chan-
nel information between the secondary and the primary users is
usually imperfect. Thus, a robust formulation should take into
consideration of a certain error (uncertainty), ∆Uj , existing in
the SU-to-PU channel matrix Uj . Representing the estimated
channel matrix as Ũj , we can re-formulate the observed
channel matrix as Uj = Ũj + ∆Uj . Following the works
[22], [25], [26], we assume that the error matrix ∆Uj (for
∀j ∈J ) is bounded. That is, it should be limited to a finite
set

Uj(σj) :=
{
∆Uj |∆Uj ∈ Cu×mj ,Tr

(
∆Uj∆U†

j

)
≤ σ2

j

}
(12)

where the parameter σj ∈ R (σj > 0) implies the radius of
∆Uj , which can quantify the error level of the channel or the
degree of the channel uncertainty. Consequently, accounting
for ∆Uj we get the following robust optimization formulation

maximize
{(Qj ,Dj)|∀j∈J }

:
∑
j∈J

fj (Qj ,Dj |Hj ,Q−j) :=
∑
j∈J

rj
pj

(13a)
s.t. pj ≤ pmax

j (13b)

γj ≤ γmax
j , ∀∆Uj ∈ Uj(σj) (13c)

rj ≥ rmin
j (13d)

Qj ∈Mmj×mj

+ (13e)

Dj ∈ Clj×nj , j ∈J (13f)

III. ROBUST DISTRIBUTED OPTIMIZATION ALGORITHM

In fact, it is impractical to deal with the optimization
problem represented by Equations (13a)∼(13e) since it re-
quires the global knowledge of the MIMO CR network
and a centralized control or infrastructure to solve all the
individual secondary users’ decisions {(Qj ,Dj) |∀j ∈J }.
To induce a robust distributed optimization algorithm, we
can fix other secondary users’ decision variables except for
the j-th one’s, {(Qi,Di) |∀i ∈J−j}, for the j-th secondary
user. Namely, in an energy-efficient optimization program-
ming associated with the j-th secondary transmission pair
(Txj , Rxj) (Qj ,Dj) are treated as the decision variables
while others {(Qi,Di) |∀i ∈J−j} are kept as parameters.
Thus, such an optimization programming can be locally solved
at the individual secondary user (Txj , Rxj). Accordingly, the
individual energy-efficient transmission optimization problem

of the j-th secondary user can be expressed as

maximize
{(Qj ,Dj)}

: gj (Qj ,Dj |Hj ,Q−j) (14a)

s.t. pj ≤ pmax
j (14b)

γj ≤ γmax
j , ∀∆Uj ∈ Uj(σj) (14c)

rj ≥ rmin
j , j ∈J (14d)

Qj ∈Mmj×mj

+ ,Dj ∈ Clj×nj (14e)

where we define

gj (Qj ,Dj |Hj ,Q−j) :=fj (Qj ,Dj |Hj ,Q−j)

+ Fj (Qj |Hj ,Q−j) .
(15)

The function Fj (Qj |Hj ,Q−j) is the sum of the en-
ergy efficiency metrics, {fi (Qi,Di |Hi,Q−i) |∀i ∈J−j},
except for the j-th one, i.e., Fj (Qj |Hj ,Q−j) =∑

i∈J−j
fi (Qi,Di |Hi,Q−i). Now, we first transform the

robust channel interference constraint in (14c) to another form,
which is more useful for solving the energy-efficient transmis-
sion optimization problem. Specifically, given the bound set
of Uj with the positive parameter σj , Uj (σj) (see (12)), we
have the following corollary:

Corollary 1. Consider Uj = Ũj + ∆Uj and the bound
set Uj (σj) in (12) so that ∆Uj ∈ Uj (σj). The inequality
constraint (14c) is equivalent to(

vec
(
∆U†

j

))†
(−Iu ⊗Qj) vec

(
∆U†

j

)
+ 2ℜ

(
−vec

(
Q†

jŨ
†
j

)†
vec
(
∆U†

j

))
+ γmax

j − Tr
(
ŨjQjŨ

†
j

)
≥ 0,

∥∥∥vec(∆U†
j

)∥∥∥
2
≤ σj

(16)

for ∀j ∈ J where ∥ · ∥2 denotes the Euclidean norm (i.e.,
2-norm operator). (16) can be further transformed to a linear
matrix inequality constraint:

λjImju − (Iu ⊗Qj) −vec
(
Q†

jŨ
†
j

)
−
(
vec
(
Q†

jŨ
†
j

))† γmax
j − Tr

(
ŨjQjŨ

†
j

)
− λjσ

2
j

 ≽ 0

(17)
where λj ≥ 0 is a non-negative real number.

Proof: See the Appendix A-C.
Based on Corollary 1, we then equivalently reshape the

optimization model using the linear matrix inequality (17)
instead of (14b). Namely, we have

maximize
{(Qj ,Dj ,λj)}

: gj (Qj ,Dj |Hj ,Q−j) (18a)

s.t. (Qj ,Dj , λj) ∈ Sj (18b)

where the set Sj collects the constraints on (Qj ,Dj , λj),
denoted by

Sj := {(Qj ,Dj , λj) | (14b), (14d), (14e) and (17)} . (19)

Note that the objective function indicating the energy effi-
ciency as given in (18a) is not concave or convex in (Qj ,Dj).
It is difficult to directly solve a global optimum point of this
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Fig. 2. The key steps of the proposed iterative approach.

problem as shown in (18a)∼(18b). Alternatively, we would
like to build a iterative algorithm to approach an optimum(
Q̂j , D̂j

)
.

Our proposed approach is illustrated in Fig. 2, which
involves four key operation steps: (i) a Lagrangian function
as well as the associated KTT conditions are established,
whose solution can lead to a useful iterative formulation to
approach the optimal D̂j ; then, (ii) a linear semi-definite
programming model is further developed to derive an feasible
iterative direction; (iii) on the basis of such a direction, a
one-dimension searching optimization is solved to determine
an optimal iteration step-size; finally, (iv) a new iterator
approaching to Q̂j can be yielded through computing a simple
incremental equation that lumps the current point and the
searching direction and the optimal searching step-size. The
mathematical presentations corresponding to each operation
step in the proposed iteration framework shown in Figure 2
are detailed in the following subsections, respectively.

A. Karush-Kuhn-Tucker (KKT) conditions

According to (18), we establish the Lagrangian function
with respect to (Qj ,Dj) and λj as

Lj (Qj ,Dj , λj ,Pj) :=− gj (Qj ,Dj |Hj ,Q−j)

+ αj,1

(
pj − pmax

j

)
+ αj,2

(
γj − γmax

j

)
+
∑
i∈J

αj,i,3

(
rmin
i − ri

) (20)

where Pj is the set of non-negative Lagrangian multipliers,
i.e., Pj :=

{
αj,1 ≥ 0, αj,2 ≥ 0, {αj,i,3 ≥ 0}∀i∈J

}
.

Note that the decision variable, Dj , only explicitly involved
in the terms fj (Qj ,Dj |Hj ,Q−j) and rj , is not coupled with
the uncertain channel interference Uj . We turn to focus on the
Karush-Kuhn-Tucker (KKT) condition of (18) with respect to
Dj , which can be expressed as

▽DjLj

(
Q̂j , D̂j , λ̂j ,Pj

)
= 0 (21)

where ▽x represents the gradient operator with respec-
t to the variable x. Since Dj is a complex matrix,

▽DjLj

(
Q̂j , D̂j , λ̂j ,Pj

)
is actually the complex-valued par-

tial derivative of Lj (Qj ,Dj , λj ,Pj). The formula for com-
puting the complex-valued gradient of a scalar function can be
found in [31], [32]. Accordingly, the complex-valued gradient
of the Lagrangian function with respect to Dj is yielded as

▽DjLj (Qj ,Dj , λj ,Pj) = −
(

1

pj
+ αj,j,3

)
▽Dj rj (22)

Hence, (21) is equivalent to ▽Djrj
∣∣
(Q̂j ,D̂j) = 0 since(

1
pj

+ αj,j,3

)
̸= 0. Given

(
Q̂j , D̂j

)
is a KKT point (i.e.,

a stationary point), solving this equation results in

D̂j =
(
R̃j + D̂jÂjD̂

†
j

)(
R̃j + D̂jÂ−jD̂

†
j

)−1

D̂jÂ−jÂ
−1
j

(23)
where Âj is defined as Âj :=

∑
i∈J Hj,iQ̂iH

†
j,i ∈Mnj×nj

+

while Â−j :=
∑

i∈J−j
Hj,iQ̂iH

†
j,i ∈ Mnj×nj

+ . For simplic-
ity, we also define Aj :=

∑
i∈J Hj,iQiH

†
j,i ∈ Mnj×nj

+ and
A−j :=

∑
i∈J−j

Hj,iQiH
†
j,i ∈Mnj×nj

+ .
When considering that the MIMO interference channel with

the precoding matrix, Mj , and the power consumption (i.e.,
Qj), are given and fixed, maximizing the energy-efficiency,
gj (Qj ,Dj |Hj ,Q−j), can be achieved through designing
an appropriate decoding matrix, Dj , based on Equation (23)
above. Although it is not easy or even impractical to solve
(23) to obtain an optimum D̂j , (23) leads to the following
iterative equation which can be used to approach D̂j

Dj(t
′ + 1) = W1(t

′)W2(t
′)W3(t

′) (24)

where each of the terms at the right side of (24) is defined as
W1(t

′) =
(
R̃j +Dj(t

′)Aj(t
′)D†

j(t
′)
)

W2(t
′) =

(
R̃j +Dj(t

′)A−j(t
′)D†

j(t
′)
)−1

W3(t
′) = Dj(t

′)A−j(t
′)Aj(t

′)
−1

(25)

t′ ≥ 0 denotes the t′-th iteration, and Aj(t
′) :=∑

i∈J Hj,iQi(t
′)H†

j,i, A−j(t
′) :=

∑
i∈J−j

Hj,iQi(t
′)H†

j,i.
According to the iterative equation (24), a new iterator Dj(t

′+
1) can be yielded once the covariance matrix of transmission
power at the previous iteration t′, Qj(t

′), is provided, and
the previous Dj(t

′) is recorded. Thus, a series of iterators,
{Dj(t

′)|t′ ≥ 0}, can be achieved by an iterative algorithm,
which will converge to an optimum Q̂j .

B. Linear Semi-definite Programming Model

Once a new iterator of Dj is obtained from (24), we can
keep this decision variable at this iteration, i.e., treating it
as a given or fixed parameter, so as to maximize the energy
efficiency by a local optimum of Qj obtained by solving the
model (18a)∼(18b). Clearly, this model is essentially differ-
ent from the conventional fractional programming since the
objective function, gj (Qj ,Dj |Hj ,Q−j) in (18a), includes
the collection of metrics of other secondary links’ energy
efficiency. Hence, the conventional fractional programming
algorithm based on Dinkelbach’s method in [21], [33] would
fail to deal with the model. In addition, it can be seen that
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(14d) is a nonlinear inequality constraint, which increases the
complexity of of this model. Therefore, we do not directly
solve the model with respect to Qj . Instead, we approach
to the optimum of the original model through constructing
as well as solving a sequence of first-order semi-definite
programming sub-problems. The approach proposed in this
work is similar to some extent to the well-known sequential
linear programming (SLP) that is usually adopted for solving
large-scale nonlinear optimizations [34], since the first-order
linearized approximations of constraints are adopted in both
methods. But, the conventional SLP uses a nonlinear objective
function in its successive subproblems, so that these sub-
problems are not fully linear programming, whose solution
may require the support of some other well-specified complex
nonlinear algorithms. Differently, in our work, the objective
function as well as the involved nonlinear constraints are
linearized by the first-order Taylor’s approximation.

Let hi denote hi = ri− rmin
i , such that the constraint (14d)

is equivalent to hi ≥ 0 for ∀i ∈ J . In order to distinguish
the iteration index t′, we introduce a local time indicator,
t ≥ 0, which is used to denote the t-th iteration when an
individual secondary user locally approaches the optimal Qj .
When a new iterator, Dj(t

′ + 1), is derived from (24) at the
end of the t′ iteration, we fix Dj(t) = Dj(t

′ + 1) for ∀t ≥ 0
and initialize the decision variable Qj(t) as Qj(0) = Qj(t

′).
Accordingly, we can further approximate this condition by the
first-order Taylor expansion. We assume that (Qj(t),Dj(t))
is the feasible solution for the model in (18a)∼(18b) obtained
at the t-th iteration. The corresponding linear approximation
of hi with respect to Qj at the iterator (Qj(t),Dj(t)) is

h̃i (Qj) ≈
(
ri (Qj(t),Dj(t))− rmin

i

)
+ vecT

(
∂ri(Qj(t),Dj(t))

∂Q∗
j

)
∆Qj(t)

(26)

for ∀iJ where ri (Qj(t),Dj(t)) denotes the transmission
rate ri evaluated at the given point (Qj(t),Dj(t)), and
∆Qj(t) denotes ∆Qj(t) = vec(Qj) − vec(Qj(t)). In par-
ticular, we have the following different expressions for the
complex gradient of ri with respect to Qj

∂ri
∂Q∗

j

=


1

ln 2

{
H†

i,jD
†
iΓ(i, j)DiHi,j

}
, i ̸= j (27a)

1

ln 2

{
H†

j,jD
†
jZ(j)

−1DjHj,j

}
, i = j (27b)

where we define

Γ(i, j) =
(
Bi,−j +DiHi,jQjH

†
i,jD

†
i

)−1

−
(
B−i,−j +DiHi,jQjH

†
i,jD

†
i

)−1
(28)

Z(j) = Φ (Dj ,Q−j) +DjHj,jQjH
†
j,jD

†
j . (29)

Bi,−j and B−i,−j are defined as follows, respectively,

Bi,−j := R̃i +
∑

k∈J−j

DiHi,kQkH
†
i,kD

†
i (30)

B−i,−j := R̃i +
∑

k∈J−i∩J−j

DiHi,kQkH
†
i,kD

†
i (31)

Noting that ∂Tr(X)
∂X∗ = 0 is held for any complex square

matrix X ∈ C, we find ∂pj

∂Q∗
j

= 0mj×mj . Thus, using the
chain rule we can further yield ▽Qjfj (Qj ,Dj |Hj ,Q−j) =
1
pj
▽Qjrj , which leads to

▽Qjgj(Qj ,Dj |Hj ,Q−j) =
∑
i∈J

1

pi

∂ri
∂Q∗

j

. (32)

Following (27a), (27b) and (32) above we can approximate the
objective function (18a) with the first-order Taylor’s expansion
at the iterator point (Qj(t),Dj(t)), which can be expressed
as following

g̃j(Qj ,Dj(t) |Hj ,Q−j(t)) ≈gj(Qj(t),Dj(t) |Hj ,Q−j(t))

+Gj (Qj(t),Dj(t))∆Qj(t)
(33)

where Gj (Qj(t),Dj(t)) is used to denote the transposed
vectorized complex-valued gradient of gj(Qj ,Dj |Hj ,Q−j)
evaluated at the point (Qj(t),Dj(t)). That is, we represent
Gj (Qj(t),Dj(t)) as

Gj (Qj(t),Dj(t)) = vecT
(
▽Qjgj(Qj(t),Dj(t) |Hj ,Q−j)

)
.

(34)
According to the linear approximations of the objective

function, gj(Qj ,Dj |Hj ,Q−j), and the difference between
the transmission rate rj and the minimum rmin

i , hi, we
can arrive at a linear programming subproblem for the j-th
secondary link at the t-th iteration as follows

maximize
{(Qj ,λj)}

: g̃j (Qj ,Dj(t) |Hj ,Q−j(t)) (35a)

s.t. Qj ∈ Rj (Qj , λj) (35b)

where Rj (Qj , λj) denotes the linearized constraint set corre-
sponding to Qj , defined by

Rj (Qj , λj) :=

(Qj , λj)

∣∣∣∣∣∣∣∣∣∣
(14b)

(17)

h̃i(Qj) ≥ 0 for ∀i ∈J

Qj ∈Mmj×mj

+


(36)

This sub-optimization problem (35) is a type of linear ap-
proximation of the original model (18). In (35), the main
decision variables are Qj and λj , while the other secondary
users’ complex-valued coding matrices are fixed at the t-
th iteration, i.e., Qi ∈ Q−j(t) := {Qi(t), i ∈J−j}. The
complex-valued decoding matrices are also kept at the same
iteration, i.e., {Di = Di(t), i ∈J }. Furthermore, we have to
remark that since the first-order Taylor’s expansion is adopted
to approximate the nonlinear constraint condition, h̃j(Qj),
as shown in (26), an optimum point derived by solving the
linear programming problem (35) above may be an infeasible
solution for the original model (18). Indeed, there could exist
a slight gap between the first-order approximation at the point
(Qj(t),Dj(t)), h̃i(Qj), and its original form hi, such that a
point, Qj , even though guaranteeing h̃i(Qj) ≥ 0, may not
satisfy hi ≥ 0. Therefore, we do not directly solve the model
(35). Instead, to obtain a descent feasible iteration direction,
we first rewrite the maximum power consumption constraint
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(14b) using the transformation formula for connecting the
Tr(·) and vec(·) operators, Tr(ATB) = vecT (A)vec(B)
(where A ∈ Cn×m and B ∈ Cn×m), as

pmax
j − pj,c − βvecT (Imj )vec(Qj) ≥ 0 (37)

where Imj denotes an mj × mj identity matrix. Hence, we
represent the left term of the inequality (37) by wj(Qj) :=
pmax
j − pj,c − βvecT (Imj )vec(Qj), and let cj := pmax

j −
pj,c − βvecT (Imj )vec(Qj(t)) and dj(t) := Qj − Qj(t).
We can further re-express wj(Qj) as the function of dj(t),
i.e., wj(dj(t)) = wj(Qj) = cj − βvecT (Imj )vec(dj(t)).
Similarly, the first-order approximation, h̃i(Qj), can be eas-
ily rewritten as h̃i(dj(t)) = h̃i(Qj) = hi (Qj(t)) +
▽Qjhi(Qj(t))vec(dj(t)) for ∀i ∈ J where hi (Qj(t)) =
ri (Qj(t),Dj(t))− rmin

i and

▽Qjhi(Qj(t)) = vecT

(
∂ri (Qj(t),Dj(t))

∂Q∗
j

)
. (38)

To simplify the expression we also introduce the matrix
notation, LMj (dj(t), λj)

LMj (dj(t), λj) =

[
LMj,11 LMj,12

LMj,21 LMj,22

]
(39)

whose components are defined by

LMj,11 = λjImju − (Iu ⊗Qj(t))− (Iu ⊗ dj(t))

LMj,12 = −vec
(
dj(t)

†Ũ†
j

)
− vec

(
Qj(t)

†Ũ†
j

)
LMj,21 = −

(
vec
(
dj(t)

†Ũ†
j

)
+ vec

(
Qj(t)

†Ũ†
j

))†
LMj,22 = uj(t)− vecT (dj(t))

[
Imj ⊗ ŨT

j

]
vec
(
Ũ∗

j

)
(40)

and uj(t) := γmax
j − λjσ

2
j − Tr

(
ŨjQj(t)Ũ

†
j

)
. We remark

that the linear matrix LMj (dj(t), λj) is indeed equivalent to
the left term of (17).

Since the original problem is formulated as a maximum
optimization model as given in (18), a series of iterators
should be generated in such a direction that makes the ob-
jective function increasing. At this point, we just call this
direction an ‘ascent direction’. According to the form of the
linear programming model (36), we can refer to the method
of feasible directions of Topkis-Veinott to obtain an ascent
feasible direction at the t-th iteration. Using the notations
introduced above, Gj (Qj(t),Dj(t)), h̃i(dj(t)), wj(dj(t))
and LMj (dj(t), λj), we derive another linear programming
subproblem associated with (35) as

minimize
{(dj(t),λj ,ω)}

: ω (41a)

s.t. Gj (Qj(t),Dj(t)) vec(dj(t)) + ω ≥ 0 (41b)

h̃i (dj(t)) + ω ≥ 0, i ∈J (41c)
wj (dj(t)) ≥ 0 (41d)
LMj (dj(t), λj) ≽ 0(mju+1) (41e)∣∣∣[dj(t)]l1,l2

∣∣∣ ≤ 1, l1, l2 = 1, 2, . . . ,mj (41f)

λj ≥ 0 (41g)

where ω is a auxiliary variable and [dj(t)]l1,l2 represents the
(l1, l2)-th entity in the matrix dj(t). The linear constraint (41f)
added in the model above can ensure that the searching space
with respect to the decision variable dj(t) is limited, such
that this model can guarantee the existence of a finite optimal
solution.

C. Calculation of Optimal Searching Step-size

Based on the model (41), we further formulate a one-
dimension searching problem to determine the optimal step
size in the direction dj(t) obtained by solving (41) at the t-th
iteration. We denote the step size by Λj(t) ∈ R+. With this
notation, we propose the following model to determine the
optimal Λj(t):

maximize
{Λj(t)}

: gj (Qj(t) + Λj(t)dj(t),Dj(t) |Hj ,Q−j(t))

(42a)
s.t. 0 ≤ Λj(t) ≤ Λmax

j (t) (42b)

where the upper bound of Λj(t) can be constructed as

Λmax
j (t) := sup

Λj(t)

∣∣∣∣∣∣
wj (Qj(t) + Λj(t)dj(t)) ≥ 0
hi (Qj(t) + Λj(t)dj(t)) ≥ 0,∀i
LMj (Λj(t)dj(t), λj) ≽ 0


(43)

Once the optimal Λj(t) is derived by solving the sub-problem
(42) above, a new iterator approaching the optimal Qj at the
next step can be constructed by the increment equation

Qj(t+ 1) = Qj(t) + Λj(t)dj(t) (44)

We have to point out that the models (41) and (42) are locally
solved by the individual secondary user of the cognitive radio
network, which can be implemented in an on-linear manner.
Recalling the definitions of the iteration indicators t′ and t,
we can set a new iterator of the decision variable Qj at the
end of the (t′ + 1)-th time slot as

Qj(t
′ + 1) = Qj(t

∗) (45)

where t∗ is used to indicate the iteration at which
{Qj(t), t ≥ 0} converges. Let ϵ > 0 be a sufficiently small
real number that is a pre-defined threshold. Then, we present
a simple convergence condition for terminating the local
iterations as |ω(t∗)| ≤ ϵ where ω(t∗) denotes the optimal value
of the objective function of the model (41) constructed at the
t∗-th iteration.

D. Robust Distributed Algorithm

Generally, an energy-efficient transmission optimization
scheme implemented in a distributed manner is appealing
for the realization of a high-scalable robust cognitive radio
network. Recalling the formulas given in (24) and (45), Qj(t

′)
and Dj(t

′) can be updated in turn at each t′-th iteration in a
on-line way, and the proposed iterative approach can induce
a distributed optimization procedure. Specifically, as shown
in (24), each secondary transmitter of the CR network Txj

(j ∈ J ) can perform the iterative procedure for updating
Dj locally based on its own noise covariance matrix R̃j and
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interference channel matrix Hj,j , the recorded iterator Dj(t
′)

and the covariance matrix Qj(t
′) derived at the previous itera-

tion t′, and this node can also exploit the other information of
its neighboring links, including the links’ covariance matrices
recorded at t′, Q−j(t

′), and the interference channel matrices,
Hj , to calculate the parameters Aj(t

′) and A−j(t
′).

We remark that the local message passing is needed to
realize the distributed algorithm. The information can be
obtained from message broadcasting via feedback channel.
Moreover, it should be pointed out that when some secondary
links whose locations are far away from the j-th users’,
the existing path loss effect can lead to quite small channel
interference arising from such remote links. Thus, the product
terms corresponding to those links involved in Aj(t

′) and
A−j(t

′) can be properly neglected. This implies that the
information needed to computing Aj(t

′) and A−j(t
′) can be

limited to the local neighbors of the j-th secondary user, such
that only local

{
Hj,i, i ∈J local

−j

}
and

{
Qi(t

′), i ∈J local
−j

}
should be exchanged (J local

−j is used to denote the set of
neighboring links associated with the j-th secondary user).
Once a new decoding matrix Dj(t

′ + 1) is obtained by Txj ,
a new iterator of Qj , Qj(t

′ + 1), can also be yielded by
sequentially solving the linear programming sub-models (41)
and (42) based on the new iterator of Dj , Dj(t

′ + 1) and
neighboring secondary links’ covariance matrix and interfer-
ence channel matrix information at t′. Then, the next iterator
can also be derived based on the pair (Qj(t

′ + 1),Dj(t
′ + 1)).

The iterative procedure should be repeated until a certain pre-
specified stopping criterion is satisfied, such as∣∣∣∣∣ gj

(
Qj(t̃

′),Dj(t̃
′) |Hj ,Q−j(t̃

′)
)

− gj
(
Qj(t̃

′ − 1),Dj(t̃
′ − 1) |Hj ,Q−j(t̃

′ − 1)
)∣∣∣∣∣ ≤ ε

(46)
where t̃′ ≥ t′ denotes a certain time instant when a series
of the pairs {(Qj(t

′),Dj(t
′))} converge, and ε is a well pre-

defined positive real number that should be sufficiently small.
The distributed algorithm is summarized in Algorithm 1.

It should be noted that the cross-channel matrix information
may be dynamically changing in an actual implementation
scenario. In Algorithm 1, slow changes of the cross-channel
matrices can be taken into consideration. That is, when any
change in the cross-channel matrices is sensed, new cross-
channel matrices should be recorded and re-broadcasted to the
corresponding users.

IV. THEORETICAL ANALYSIS

The feasibility and the convergence of a optimization al-
gorithm is of paramount significance in terms of theoretical
analysis on its performance. Thus, we first establish a lemma
associated the proposed model (See the Lemma 1 in Appendix
A-A). Based on the Lemma 1, we can show the feasibility
of a series of iteration directions obtained by solving the
subproblem (41):

Theorem 1. Suppose that T is a finite set of discrete iterator
indexes. Any subsequence of {dj(t), t ∈ T } generated by
solving the corresponding linear programming sub-problem
(41) are feasible improving iteration directions.

Algorithm 1 Robust distributed EE transmission optimization
1: Initialize (Qi(0),Di(0)) for ∀i and let t′ ← 0
2: repeat for t′ = 0, 1, 2, . . .
3: for all j ∈J do
4: Txj broadcasts (Qj(t

′),Dj(t
′))

5: Txj collects
{
(Qi(t

′),Di(t
′)) , i ∈J local

−j

}
6: Txj re-broadcasts

{
(Qi(t

′),Di(t
′)) , i ∈J local

−j

}
7: Txj obtains

{
Hj,i, i ∈J local

−j ∪ {j}
}

8: Compute Aj(t
′) and A−j(t

′)
9: Compute Dj(t

′ + 1) based on (24)
10: Update Dj(t

′) by Dj(t
′)← Dj(t

′ + 1)
11: Locally initialize t← 0, Qj(0)← Qj(t

′)
12: Keep Dj(t) = Dj(t

′ + 1) for ∀t ≤ 0
13: repeat for t = 0, 1, 2, . . .
14: Solve an optimal (dj(t), λj , ω) from (41)
15: Solve an optimal Λj(t) from (42)
16: Update Qj(t) by Qj(t)← Qj(t)+Λj(t)dj(t)
17: until |ω| ≤ ϵ for Txj

18: Txj sets Qj(t
′ + 1)← Qj(t)

19: Txj updates Qj(t
′) by Qj(t

′)← Qj(t
′ + 1)

20: Txj feedbacks (Qj(t
′),Dj(t

′)) to Rxj

21: end for
22: until Stopping criterion (46) is satisfied for j ∈J

Proof: According to the lemma 1, constructing a feasible
iteration direction is equivalent to solving a group of the
inequalities (56), (57), (58) and (59). Furthermore, taking into
account the inactive constraints at the point Qj(t),

{hi(Qj(t)) > 0, i /∈ Aj(Qj(t))} (47)

and the active constraints at the same point,

{hi(Qj(t)) = 0, i ∈ A(Qj(t))} (48)

we can modify the condition (57) as
(
hi(Qj(t))

+▽Qjhi (Qj(t))vec(dj(t))

)
> 0, i ∈ A(Qj(t)) (49)

hi(Qj(t)) > 0, i /∈ A(Qj(t)) (50)

Note that the left side of the inequality (49) is equal to
h̃i(dj(t)) (i ∈ A(Qj(t))), and (50) can immediately lead
to h̃i(dj(t)) > 0 (i /∈ A(Qj(t))). We can re-express the
conditions (49) and (50) by a unified form

h̃i(dj(t)) > 0, ∀i ∈J (51)

Substituting the condition (57) with (51), we can find that
solving a group of linear inequalities (56), (51), (58) and (59)
is equivalent to solving the corresponding linear programming
problem as given in (41). Hence, we prove this theorem.

Next, in order to establish the convergence of any sequence
of iterators generated by our proposed algorithm to a Fritz John
point, we provide a corollary that outlines basic properties of
any iterator sequence. For simplicity, let Ξ denote the feasible
solution space of the covariance matrix Qj , which is a non-
empty closed set in Mmj×mj

+ , i.e., Ξ ⊂ Mmj×mj

+ . Then,
without loss of generality, let Qj ∈ Ξ be a feasible decision
variable of the original model (18) and dj an improving
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feasible direction of the objective function gj at Qj . Supposing
that Λj is an optimal solution of the one-dimension searching
problem (42) where Qj + Λjdj ∈ Ξ, we get a corollary
associated with the model (41) as follows:

Corollary 2. Consider that {dj(t)} is any sequence of iter-
ation directions derived by the model (41) and {Qj(t)} the
corresponding sequence of decision points. None of potential
subsequences {(Qj(t),dj(t)) , t ∈ T } generated from (41)
and (44) can satisfy all the following four conditions where T
denotes a finite discrete time set: (i) dj(t) → dj for t ∈ T ;
(ii) Qj(t) → Qj for t ∈ T ; (iii) Qj(t) + Λjdj(t) ∈ Ξ for
∀Λj ∈

[
0,Λ′

j

]
and for t ∈ T where Λ′

j represents a certain
bound of Λj and Λ′

j > 0; (iv) Gj (Qj ,Dj(t)) vec (dj) > 0
where Gj (Qj ,Dj(t)) is given in (34).

Proof: See Appendix A-D.
Based on the model (41), the sufficient condition of an iter-

ator Qj(t) that is a Fritz John point can be established, which
is given in the Lemma 2 (See Appendix A-B). Combining the
result in the Corollary 2 and the Lemma 2, we are ready to
establish the convergence of the proposed approach to a Fritz
John point in the Theorem 2.

Theorem 2. Consider that {Qj(t)} is any sequence of it-
erators derived by sequentially solving the model (41) and
{Qj(t)}. A limit point of {Qj(t)} is a Fritz John point.

Proof: Let T be a finite discrete time set and
{Qj(t), t ∈ T } a subsequence of {Qj(t)} converging to a
limit point Qj , i.e., Qj(t)→ Qj for t ∈ T . By contradiction
we assume that Qj does not belong to a Fritz John point. Then,
according to the lemma 2, the corresponding optimal value
of the objective function in the model (41) obtained at Qj ,
denoted by ω, is not equal to zero. At this point, there exists
a small positive real number τ > 0 such that ω = −τ . Let
(ω(t),dj(t)) be an optimal solution of the model (41). Since
T is finite, any {dj(t), t ∈ T } is bounded. Thus, there will
be at least a subsequence, {dj(t), t ∈ T ∗} where T ∗ ⊂ T ,
that have a limit point dj , i.e., dj(t) → dj for t ∈ T ∗. In
addition, according to the continuous differentiability of gj
and hi for all i ∈J , and Qj(t) → Qj for t ∈ T ∗, we can
also see that for t ∈ T ∗ ω(t) → ω. Thus, when t ∈ T ∗ is
sufficiently large, we can get ω(t) < ω

N = −τ
N < 0 where

assuming N > 1. According to the model (41), we also have
Gj (Qj(t),Dj(t)) vec(dj(t)) ≥ −ω(t) >

τ

N
(52)

h̃i (Qj(t)) = hi (Qj(t)) +▽Qjhi (Qj(t)) vec(dj(t))

≥ −ω(t) > τ

N
,∀i ∈J

(53)

for t ∈ T ∗ sufficiently large. Since the result of (52), it follows
Gj (Qj ,Dj(t)) vec(dj) > 0.

Let M be a real number and larger than 1, i.e., M > 1. The
continuous differentiability of hi and the result of (53) imply
that there must be a positive real number denoted by Λ′

j > 0
such that

hi (Qj(t)) +▽Qjhi (Qj(t) + Λjdj(t)) vec(dj(t)) >
τ

NM
(54)

is held for any Λj ∈ [0,Λ′
j ], for t ∈ T ∗ sufficiently large and

for all i ∈ T ∗.
Subsequently, let Λj be bounded on [0,Λ′

j ]. Applying the
mean value theorem can arrive at hi(Qj(t) + Λjdj(t)) =
hi(Qj(t)) + Λj ▽Qj hi (Qj(t) + ξΛjdj(t))vec (dj(t)) for
t ∈ T ∗ and all i ∈ J where ξ ∈ (0, 1). Recalling
hi(Qj(t)) ≥ 0 for t ∈ T ∗ and all i ∈ J where ξ ∈ (0, 1),
ξΛj ∈ [0,Λ′

j ], and since (53) and (54), we can get

hi(Qj(t) + Λjdj(t)) ≥ (1− Λj)hi(Qj(t)) + Λj
τ

NM
≥ 0

(55)

This inequality (55) shows that Qj(t) + Λjdj(t) for any
Λj ∈ [0,Λ′

j ] can also be a feasible solution when t ∈ T ∗

is sufficiently large.
To sum up, this subsequence {(Qj(t),dj(t)) , t ∈ T ∗} is

showed to satisfy all of the four properties given in the
corollary 2. But, as discussed in the corollary 2, such a
subsequence does not exist. Thus, the contradiction occurs,
which indicates that the limit point Qj should be a Fritz John
point.

In actual numerical computation, most of the computational
effort is indeed taken up in solving a sequence of linear semi-
definite programming sub-problems. The MATLAB-based
toolbox YALMIP [35] along with a semi-definite and second-
order cone optimization solver SeDuMi [36] is used here
for solving the proposed linear semi-definite programming
model (41). Accordingly, SeDuMi adopts the Mehrotra-type
technique of adaptive predictor-corrector algorithm with an
theoretically proven O (

√
n| log ϵ|) worst-case iteration bound

(here n denotes the number of the decision variables and ϵ is
a pre-specified tolerance in numerical computation), proved to
be among the most efficient primal-dual interior methods in
practice. At this point, it can provide a low (polynomial-time)
iteration complexity for solving (41), which is expected to
have an O

(√
mj ×mj + 2| log ϵ|

)
worst-case iteration bound

(noting that the model (41) includes mj × mj + 2 decision
variables).

V. PERFORMANCE EVALUATION

In this section, we perform computer simulation experi-
ments to evaluate the performance of the algorithm proposed
in the work. For simplicity, we set the covariance matrix of
the noise signal as R̃j = ρ2jI and ρj = 0.01 for all j where
I is the identity matrix whose size is the same with that
of R̃j . We remark that there exists considerable debate in
the current research work on narrowband small-scale fading
statistics in V2V communication channels [37]. [37] also
stated that many studies for V2V channels do not distinguish
between LOS and NLOS situations. As argued in [38], it is not
easy to distinguish small-scale fading from large-scale fading
in V2V communications. The issue of accurately modeling
realistic channels for V2V and V2I communications and some
aspects relevant to channel measurement and mathematical
characterization are interesting but challenging, which are
really out of scope of this study. As one of the earliest
references on modeling V2V channels, [39] adopted Rayleigh
fading statistics so as to derive new envelope autocorrelation
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functions and Doppler spectra in V2V communications. Addi-
tionally, Rayleigh fading channel has been adopted to model
mobile-to-mobile communications [40], [41]. Accordingly, for
the sake of example, we also adopt Rayleigh fading channels
following with zero-mean complex Gaussian distribution in
our simulation experiments, and assume that the path loss
effect is proportional to dist(j, i)−p according to [26], where
dist(j, i) denotes the geometric distance between the trans-
mitter Txj and the receiver Rxi, and the constant p is set to
2.5. Then we assume any entry of the channel matrix Hj,i

for all j, i ∈J is independently identically distributed, such
that Hj,i can be formulated as the zero-mean unit-variance
circularly symmetric complex Gaussian matrix. Similarly, we
also represent any Ũj as a zero-mean unit-variance circularly
symmetric complex Gaussian matrix. For comparison, we
consider two cases (named C.1 and C.2 respectively) in our
experiments. In the first case, we consider 5 pairs of secondary
links with V2V communications which co-exist with one
primary user. The antenna number of those secondary users
is equally set to 2, i.e., mj = nj = 2 for ∀j ∈ J , while
that of the primary receiver’s is also 2, i.e., u = 2. The
relative distance between any transmitter Txj and its desired
receiver Rxj in the group, dist(j, j), is stable at 40m, while
the relative distance between any secondary transmitter and the
primary receiver, or between any undesired secondary pair,
dist(j, i) for any j ̸= i, are uniformly randomly generated
over [40,160](m). In the second case, we consider another
MIMO CR-enabled vehicular network consisting of 10 pairs
of secondary users all equipped with 3 antennas and one
primary receiver whose antenna number is also 3. The relative
distance parameter dist(j, j) is kept at 50m for ∀j ∈ J ,
while the distance of interfering links, dist(j, i) for j ̸= i, as
well as the distance between any transmitter and the primary
receiver is uniformly randomly distributed over [50,200](m).
We set the bound parameter of uncertain channel matrix as
σ2
j = 0.5∥Ũj∥2F for ∀j ∈ J . The minimum transmission

rate corresponding to each secondary link, ,rmin
j , is set to

be 2bps/Hz. The maximum interfering power generated by
any secondary link, γmax

j , is set to be 0.1W. The maximum
transmission power pmax

j is set to guarantee a certain signal-
noise-ratio (SNR) level. For simplicity we assume that a given
SNR level can be represented by LSNR =

pmax
j −pj,c

β·ρ2
j ·dist(j,j)p

.
Then in the experiments let the constant parameters pj,c and
β be 1 for ∀j ∈ J . Thus, we can set pmax

j so as to hold
a certain SNR level pre-specified for each secondary links.
An advanced MATLAB-based toolbox for convex and non-
convex optimization [35], YALMIP, is utilized in our work
to solve the sub-optimization model (41) which is indeed a
typical semidefinite programming problem.

First, we vary LSNR as LSNR ∈ {10, 20, 30}(dB) in
the two simulation cases and compare our proposed robust
distributed energy-efficiency optimization algorithm (RDEE)
with a distributed beamforming algorithm (DBA) proposed
in [21] and a decentralized EE (DEE) optimization proposed
in [19]. In [21], DBA is developed through transforming
the original problem of the complex nonlinear non-convex
energy-efficiency optimization into a series of fractional pro-
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Fig. 3. The EE performance per secondary link for different SNR settings
under the compared algorithms in the two cases.

gramming sub-problems, and it approaches to an optimal
solution maximizing the energy-efficiency objective function
via solving the fractional programming constructed at each
iteration in a distributed fashion. To maximize the energy-
efficiency objective function, DEE proposed in [19] essen-
tially employs an iterative zero-gradient-based mechanism to
approach the optimum of the energy-efficient transmission
optimization model with consideration of MIMO interference
channels. We run each algorithms with 100 replications over
different LSNR. In each run of an algorithm, we independently
and randomly set up channel matrices following a zero-
mean unit-variance circularly symmetric complex Gaussian
distribution. The energy-efficiency of each secondary link at a
final convergence state in two cases are obtained by averaging
the results of 100 runs, and illustrated in Fig.3a and Fig.3b,
respectively. Compared with the DBA and the DEE algorithms,
our beamforming approach additionally takes into account the
minimum transmission rate constraint in the EE optimization
model, such that we can maintain the EE of each secondary
link at a relatively high level even when SNR requirement
increases. From Fig.3, it can be found that our proposed
algorithm achieves the highest performance among the three
compared algorithms in terms of the average energy efficiency
under different SNR settings in both cases.

Furthermore, we keep the SNR level at 20dB and obtain
different energy-efficient beamforming designs for the two
cases of MIMO CR-enabled vehicular networks by applying
the three algorithms. To show the robustness of our proposed
solution we perform 5000 Monte Carlo simulations each of
which randomly and independently realizes secondary user-to-
primary channel matrices. And then we can confirm the effect
of the robust interference power constraint by analyzing the
frequency distribution of the total interference power received
at the primary receiver. The histograms obtained in the two
cases are shown in Fig.4a and Fig.4b, respectively.

Note that the tolerable interference power generated by
each secondary link is set to γmax

j = 0.1W in both cases.
Thus, the upper bound of the total interference power at the
primary user should be 0.1× 5 = 0.5W in the first cases and
0.1× 10 = 1W in the second case. As illustrated in Fig.4, the
interference power constraint is forced to be strictly satisfied
by our proposed robust solution, while the total interference
power obtained by the other two algorithms, DBA and DEE,
exceeds the tolerable bound (marked by a dark vertical line in
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Fig. 4. The frequency distribution of sum interference power under the
compared algorithms in the two cases.
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Fig. 5. The convergence of energy efficiency per secondary link and the
CDF of total interference power obtained under different γmax

j and χ in C.1.

these two figures) in most runs under both cases. Specifically,
the figures show that the time of the DBA algorithm violating
the interference bound is more than 60% in the first case and
more than 80% in the second case. In particular, in most
simulation instances of the DEE algorithm, the interference
constraint cannot be satisfied (more than 90% of time in
the first case and more than 99% in the second case). The
reason is that the DEE algorithm solves the EE optimal design
without consideration of the interference constraint, such that
it cannot protect the primary receiver’s transmission. In fact,
the DBA and the DEE algorithms are not robust approach so
that they frequently violates the interference power constraint.
By contrast, our approach can achieve a high robustness in
both experiment cases.

In order to show the influence of the uncertainty factor
characterized by the parameter σj on the EE performance,
we represent σ2

j = χ∥Ũj∥2F and then vary the value of χ.
In addition, we also vary the interference power bound of
each secondary transmitter, γmax

j , to demonstrate its influence.
Specifically, let χ ∈ {0.05, 0.5} and γmax

j ∈ {0.01, 0.5}. Now,
we can compare the EE performance and convergence of our
proposed algorithm with the DBA with different settings on
χ and γmax

j (We remark that since the DBA approach rather
than the DEE considers the interference power constraint for
EE optimization which is similar to that in our model, we
mainly compare our approach with the DBA in the following
experiments.). The results obtained in the first case are shown
in Fig.5.

Fig.5a illustrates the convergence of EE performance metric
of two algorithms. From this subfigure, we can see that
although our approach converges slightly slower than the
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Fig. 6. The convergence of energy efficiency per secondary link and the
CDF of total interference power obtained under different γmax

j and χ in C.2.

DBA, the energy efficiency per secondary link obtained by our
approach with both groups of parameter settings overweighs
that of the DBA. Furthermore, Fig.5b plots the cumulative dis-
tribution function (CDF) of the total interference power at the
primary in order to show the robustness of both approaches.
The CDF plots are also derived by running 5000 Monte Carlo
simulations, in each of which we independently and randomly
generate interference channel realizations. From Fig.5(5b), it
can be found that the red solid and the blue dotted CDF curves
of our algorithm arrives at 100% before their total interference
power exceeding 5 × 0.01 = 0.05W and 5 × 0.5 = 2.5W,
respectively. The magenta dashed CDF curve of the DBA
shows that it seriously violates the interference power limit
at 0.05W, while this algorithm can satisfy the interference
constraint with a larger tolerable interference power (2.5W).
In comparison, our approach has a better robustness than
the DBA whenever the tolerable interference power is small
or large. The similar conclusions can also be drawn from
Fig.6. The convergence of the proposed RDEE and the DBA
with variable γmax

j and χ in the second experiment case is
demonstrated in Fig.6a while their corresponding CDF curves
obtained in the same case are given in Fig.6b. From Fig.6a,
it can be found that our proposed algorithm can converge
to a higher energy-efficiency level under the two groups of
settings on γmax

j and χ because our model always forces SUs
to satisfy a minimum data rate. As expected, Fig.6b confirms
the better robustness of our proposed approach as well. By
contrast, most of the time in C.2, both the CDF curves of the
non-robust DBA exceed the total interference power limits,
10×0.01 = 0.1W and 10×0.5 = 5W, respectively. In terms of
both the energy-efficiency performance and the robustness, our
proposed approach can provide a better beamforming design
for CR-enabled vehicular MIMO transmissions.

VI. CONCLUSION

In this work, we have studied the robust and optimal
energy-efficient beamforming design for MIMO transmissions
in CR-enabled vehicular networks. We take into consideration
the robust interference constraint of secondary links with
imperfect CSI and the restrictions on the power budget and
data rate. We have shown that even without the accurate
CSI, the energy-efficiency of a secondary network can still
be optimized by solving sequential linearly constrained semi-
definite programming sub-problems in a robust and distributed
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way. Specifically, we proposed a robust iterative optimization
algorithm, the feasibility and convergence of which has been
theoretically analyzed. Finally, by conducting simulations, we
confirmed the strength of our method in terms of energy-
efficiency performance and robustness.

APPENDIX A

A. Lemma 1

Lemma 1. Suppose that Qj(t) is one feasible solution
of the original model (18) and A(Qj(t)) is a set of in-
dexes of active constraints at Qj(t) where A(Qj(t)) :=
{i |hi (Qj(t)) = 0, i ∈J }. If dj(t) satisfies the following
conditions:

Gj (Qj(t),Dj(t)) vec(dj(t)) > 0 (56)
▽Qj hi (Qj(t))vec (dj(t)) > 0, i ∈ A(Qj(t)) (57)
wj (dj(t)) ≥ 0 (58)
LMj (dj(t), λj) ≽ 0(mju+1) (59)

then dj(t) is a feasible iteration direction at the point Qj(t)
that can improve the value of the objective function of the
original model (18).

Proof: Recalling the definitions of wj (dj(t)) and
LMj (dj(t), λj), it is obvious that satisfying the conditions
(58) and (59) is equivalent to guarantee the constraints (14b)
and (17) in the original model (18). Thus, it reduces the proof
to mainly focus on analyzing the conditions (56) and (57).
Suppose the conditions (56) through (57) are held for dj(t).
Since Qj(t) is a feasible point, it makes hi(Qj(t)) > 0 held
if i /∈ A(Qj(t)). Note that hi(Qj(t)) (i /∈ A(Qj(t))) is
continuously differentiable at Qj(t). Therefore, there exists
a real positive number Λj > 0 that makes

hi(Qj(t) + Λjdj(t)) ≥ 0, i /∈ A(Qj(t)) (60)

when it is sufficiently small.
If i ∈ A(Qj(t)), we can derive the following equation

according to the differentiability of hi(Qj(t)) at Qj(t)

hi(Qj(t) + Λjdj(t)) =hi(Qj(t))

+ Λj ▽Qj hi(Qj(t))vec(dj(t))

+ Λj∥vec(dj(t))∥δ (Qj(t),Λjdj(t))
(61)

where the small term δ (Qj(t),Λjdj(t)) satisfies that when
Λj → 0, δ (Qj(t),Λjdj(t)) → 0, and ∥ · ∥ represents the
Euclidean norm. Furthermore, (61) can directly lead to

hi(Qj(t) + Λjdj(t))− hi(Qj(t))

Λj

= ▽Qjhi(Qj(t))vec(dj(t))

+ ∥vec(dj(t))∥δ (Qj(t),Λjdj(t))

(62)

Since (57) is held, and the small term δ (Qj(t),Λjdj(t)) > 0
when Λj is sufficiently small, the right side of the equation
(62) is larger than 0. Noting hi(Qj(t)) = 0 for i ∈ A(Qj(t))
we can see the left side of the equation (62) is also larger than
0, i.e., hi(Qj(t) + Λjdj(t)) > 0.

To sum up, hi(Qj(t) + Λjdj(t)) ≥ 0 can be held for all i
when a certain Λj is sufficiently small. This implies that once
the step size Λj is well bounded, a new iterator generated by
the iteration direction dj(t) satisfying the conditions above,
Qj(t) + Λjdj(t), is alway feasible for (18). Additionally,
recalling the definition of Gj (Qj(t),Dj(t)), the condition
(56) confirms that the value of the objective function in (18)
can be improved at the iteration direction dj(t). At this point,
this lemma is proven.

B. Lemma 2
Lemma 2. Suppose that Qj(t) is a feasible point at the t-th
iteration and an optimal value of the objective function of (41)
obtained at this iterator Qj(t) is ω. If and only if ω satisfies
ω = 0, then Qj(t) is a Fritz John point.

Proof: Recalling (41), only the constraints (41b) and
(41c) involve the parameter ω. Indeed, ω can be regarded as a
type of slack variable in these constraints. Obviously, ω = 0
indicates that the system Gj (Qj(t),Dj(t)) vec(dj(t)) > 0
and ▽Qjhi (Qj(t)) vec(dj(t)) > 0 for i ∈ A(Qj(t)) :=
{i | hi(Qj(t)) = 0, i ∈J } has no solutions. Otherwise, if
this system had a solution, there would exist a negative
real number which is near zero, denoted by ω̄ < ω =
0, such that Gj (Qj(t),Dj(t)) vec(dj(t)) + ω̄ ≥ 0 and
▽Qj

hi (Qj(t)) vec(dj(t)) + ω̄ ≥ 0 for i ∈ A(Qj(t)). In this
case, ω = 0 would violate its optimality (namely, ω is not
an optimal function value, which is contradictory to the given
condition). Furthermore, according to the Gordan theorem, a
necessary and sufficient condition of the inequality system
having no solutions is given as follows:

There exist some certain coefficients,
{v0 ≥ 0, vi ≥ 0, i ∈ A(Qj(t))}, that are not all to be
zero and that can make the following equation always held

v0Gj (Qj(t),Dj(t)) +
∑

i∈A(Qj(t))

vi ▽Qj hi (Qj(t)) = 0

(63)
In fact, according to the definition of a Fritz John point

of an optimization problem, this argument mentioned above
indicates that Qj(t) is a Fritz John point. Hence, this proof is
complete.

C. The proof of Corollary 1
Firstly, we expand γj as

γj = Tr
(
ŨjQjŨ

†
j

)
+Tr

(
ŨjQj∆U†

j

)
+Tr

(
∆UjQjŨ

†
j

)
+Tr

(
∆UjQj∆U†

j

)
.

(64)

Since Qj ∈Mmj×mj

+ , Qj = Q†
j always holds. We rearrange

Tr
(
ŨjQj∆U†

j

)
+Tr

(
∆UjQjŨ

†
j

)
= 2vec

(
Q†

jŨ
†
j

)†
vec
(
∆U†

j

)
.

(65)

Similarly, we can directly transform Tr
(
∆UjQj∆U†

j

)
to

Tr
(
∆UjQj∆U†

j

)
=
(
vec
(
∆U†

j

))†
(Iu ⊗Qj) vec

(
∆U†

j

)
(66)
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Moreover, combining (64), (65) and (66), and substituting the
expansion of γj into the inequality γmax

j −γj ≥ 0 immediately
yields the equivalent inequality (16) in this Corollary. In
addition, it is obvious that the constraint associated with
∆Uj , i.e., Tr

(
∆Uj∆U†

j

)
≤ σ2

j , can be reformulated as
∥∆Uj∥2 ≤ σj . Additionally, according to the S-procedure in
[27], the inequality (16) can be easily re-expressed by a linear
matrix inequality (17). At this point, Corollary 1 is proven.

D. The proof of Corollary 2

By contradiction, we assume that a certain subsequence
{(Qj(t),dj(t)) , t ∈ T } satisfying these four conditions ex-
ists. Note that the objective function gj is continuously dif-
ferentiable. Since dj(t) → dj and Qj(t) → Qj for t ∈ T ,
and the condition (iv), there must exist a positive real number
a1 > 0 such that Gj (Qj(t),Dj(t)) vec (dj(t)) = a1 > 0 for
t ∈ T sufficiently large.

Additionally, there also exists a a2 > 0 such that
Gj

(
Qj(t) + Λ′

jdj(t),Dj(t)
)
vec (dj(t)) = a2 > 0 for t ∈

T sufficiently large. According to the intermediate value the-
orem, for any Λ̃j ∈

(
0,Λ′

j

)
there must exist such a correspond-

ing positive real number ã ∈ (min{a1, a2},max{a1, a2}) that
satisfies

Gj

(
Qj(t) + Λ̃jdj(t),Dj(t)

)
vec (dj(t)) = ã > 0 (67)

for t ∈ T sufficiently large.
By (iii) and by the definition of Qj(t+ 1), we have

gj (Qj(t+ 1),Dj(t) |Hj ,Q−j(t) )

≥ gj

(
Qj(t) + Λ̃′

jdj(t),Dj(t) |Hj ,Q−j(t)
) (68)

where 0 < Λ̃′
j ≤ Λ′

j .
Using the mean value theorem, we can expand the right

term of the inequality above as follows

gj

(
Qj(t) + Λ̃′

jdj(t),Dj(t) |Hj ,Q−j(t)
)

= gj (Qj(t),Dj(t) |Hj ,Q−j(t) )

+ Λ̃′
jGj

(
Q̃j(t),Dj(t)

)
vec (dj(t))

(69)

where Q̃j(t) = Qj(t) + ξΛ̃′
jdj(t) and ξ ∈ (0, 1).

Then, by setting Λ̃j = ξΛ̃′
j and applying (67) we can yield

Gj

(
Q̃j(t),Dj(t)

)
vec (dj(t)) = ã. Furthermore, combining

this result with (68) and (69) immediately arrives at

gj (Qj(t+ 1),Dj(t) |Hj ,Q−j(t) )

≥ gj (Qj(t),Dj(t) |Hj ,Q−j(t) ) + Λ̃′
j ã

(70)

for t ∈ T sufficiently large.
Note that iterators {Qj(t)} generated by the corresponding

feasible direction sequence {dj(t)} sequentially improves
value of the objective function. Using (ii) we can get

lim
t→+∞

gj (Qj(t+ 1),Dj(t) |Hj ,Q−j(t) )

= lim
t→+∞

gj (Qj(t),Dj(t) |Hj ,Q−j(t) )

= gj (Qj ,Dj(t) |Hj ,Q−j(t) )

(71)

This implies that when t ∈ T approaches the positive infinity
(70) will result in

gj (Qj ,Dj(t) |Hj ,Q−j(t) )

≥ gj (Qj ,Dj(t) |Hj ,Q−j(t) ) + Λ̃′
j ã

> gj (Qj ,Dj(t) |Hj ,Q−j(t) )

(72)

Thus, the contradiction occurs, and the Corollary 2 is proven.
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