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ABSTRACT
Due to the emerging advances in connected and autonomous vehicles, today’s in-vehicle networks,
unlike traditional networks, are not only internally connected but externally as well, exposing the
vehicle to the outside world and making it more vulnerable to cyber-security threats. Monitoring
the in-vehicle network, thus, becomes one of the essential and crucial tasks to be implemented in
vehicles. However, the closed-in nature of the vehicle’s components hinders the global monitoring of
the in-vehicle network, leading to incomplete measurements, which may result in undetected failures.
One solution to this is to use network tomography. Nevertheless, applying network tomography
in in-vehicle networks is not a trivial task. Mainly because it requires that the in-vehicle network
topology should be identifiable. To this end, we propose in this work an identifiable in-vehicle
network topology that enables overall monitoring of the network using network tomography. The new
topology is proposed based on extensive analysis to ensure full identifiability under the constraint that
only edge nodes can monitor the network, which is the case for in-vehicle networks where internal
nodes are not directly accessible. We propose two main algorithms to transform existing in-vehicle
network topologies. The first algorithm applies to an existing topology which can be transformed
into full identifiability by adding extra nodes/links. Evaluation results show the effectiveness of
the proposed transformation algorithms with a maximum added weight of only 3% of the original
weight. Furthermore, a new optimization algorithm is also proposed to minimize the topology weight
whilst maintaining the full identifiability by redesigning a new topology. With this algorithm, the
results show that the total weight can be reduced by 6%. In addition, compared with the existing
approaches, monitoring the in-vehicle networks with the proposed approach can achieve better
monitoring overhead and a 100% identifiability ratio.

1. Introduction
Vehicles nowadays are the main constituent of Con-

nected and Autonomous Vehicle (CAV) systems, and they
are considered critical Cyber-Physical Systems (CPSs) that
need to be monitored to detect issues related to both per-
formance failures and cyber-security threats. One essential
component to monitor is the in-vehicle network. However,
monitoring the internal part of the network is not always
possible. This is because the internal elements of in-vehicle
networks are difficult to access due to proprietary closed-
in devices provided by Original Equipment Manufacturers
(OEMs). In addition, monitoring every single part of the net-
work can overburden it and may perturb the existing traffic
where such disturbance can result in serious consequences
especially for safety- and latency-critical applications. For
these reasons, alternative monitoring solutions that do not
require contribution from internal elements should be in-
vestigated. One such solution is network tomography [1, 2].
Network tomography is a monitoring mechanism that can be
used to infer the unmeasured network performance by only
monitoring a subset of the network.

The motivations for using network tomography to mon-
itor the in-vehicle network are multifold. First, network
tomography can provide an efficient and lightweight solution

∗Corresponding author
A.Ibraheem@sussex.ac.uk; Amalii@kku.edu.sa (A. Ibraheem)

ORCID(s): 0000-0001-8621-8745 (A. Ibraheem)

to infer the internal network performance without requiring
access or contribution from internal elements. This is suit-
able for in-vehicle networks where direct access to internal
nodes (e.g., CAN bus and Ethernet switches) is difficult,
whichmakes it hard for such nodes to be used in the monitor-
ing process as it is not possible to modify them. In addition,
such internal nodes are incapable of complex monitoring
tasks due to their limited memory and computational re-
sources. Second, unlike the existing machine learning-based
solutions, network tomography does not require any training.
Thus, the collection and preprocessing of large datasets are
avoided altogether when relying on network tomography.

Typically, to use network tomography, the topology has
to be identifiable [3, 4]. In general, the topology is said to be
identifiable if all link-level metrics can be uniquely identified
using the available measurements. This is an important
feature in network tomography, because if the topology is
unidentifiable, then the performance of the overall network
cannot be inferred. It has been shown in [5] that not all in-
vehicle network architectures are identifiable. Therefore, in
this work, we formalise the topological requirements for in-
vehicle networks so that the design of new networks, or the
modification of existing ones, can satisfy the identifiability
conditions, hence, allowing for overall network monitoring
using network tomography.

Based on our theoretical analysis, two main algorithms
are proposed to transform any existing in-vehicle network
topologies into identifiable and optimal ones. In particular,
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the first algorithm is used to transform an unidentifiable
topology into an identifiable one. This transformation often
requires adding more nodes and links to the original topol-
ogy. For this reason, the second algorithm is proposed to
transform the resulting topology into an optimal one with
a minimum number of links. Such algorithms can further
assist in the modification of existing in-vehicle networks’
topologies, so that they satisfy the identifiability conditions,
rather than building the network from scratch, thus, saving
time and resources that otherwise will be costly [6]. In ad-
dition, the new Electrical and Electronic (E/E) architectures
[7, 8] can greatly benefit from the optimisation algorithm
that can be used to minimise the number of links and nodes
in the vehicle network. This is the goal of the new E/E archi-
tectures such as the domain- and zonal-based architectures
where the main objective of these architectures is to utilise
Software-Defined Networking (SDN) functionality [9] to
replace hardware-based functions with software ones and
hence replace a large number of ECUs with fewer number of
more powerful devices, e.g., High-Performance Computing
(HPC) platforms [6, 10]. In domain-based architectures, the
nodes (i.e., ECUs) are grouped based on their functionalities
so that two ECUs that are responsible for similar functions
can be consolidated into one more powerful node. Zonal-
based architecture on the other hand groups ECUs based
on their physical locations within the vehicle. Thus, further
reducing the number of nodes. Although the focus of the
current paper is on in-vehicle network topologies, the ap-
proach can be applied to other networks that share the same
constraint (only edge nodes are accessible).

Overall, this paper proposes two main algorithms. First,
is to transform a given in-vehicle network topology that is
unidentifiable into identifiable one. The reason for this is to
allow for the overall monitoring of the in-vehicle network
including the internal part of it, from the edge nodes, with-
out the need to access the internal elements. This is what
network tomography can be used to achieve. With network
tomography, the monitoring overhead can significantly be
reduced as we only need to monitor a subset of the network
instead of every part of it. The second algorithm is to
transform any identifiable topology into an optimised one.
By optimal topology, we mean a topology that has a mini-
mum number of links while still satisfying the identifiability
condition. This is important to ensure that the vehicle weight
is kept to a minimum as the identifiability transformation
usually requires adding more nodes/links. Therefore with
these algorithms, we can achieve both identifiable as well
as optimal in-vehicle network topologies.

Fundamentally, the proposed approach aims to offer in-
depth system insights into the in-vehicle network. If the
topology is fully identifiable, the monitoring of the overall
in-vehicle network can be performed by only a subset of the
network and with limited resources. Having such detailed
measurements for all components in the in-vehicle network
contributes to many benefits that can be seen by applying
network tomography in different application areas. These ar-
eas include: detecting and locating anomalies in the network,

analysing fine-grained network performance, for instance,
with fully identifiable topology, different network metrics
can be measured for each and every link in the network,
load-balancing can be easily implemented since all link-level
measurements are available, and in addition, with network
tomography network management and diagnostics can be
easily implemented, this especially crucial for critical sys-
tems such as the in-vehicle network. It is worth mentioning
that if one or more of the network elements cannot be mea-
sured, because the network topology is unidentifiable, some
or all of the above applications cannot be efficiently em-
ployed due to the lack of complete measurements. Therefore,
it is of paramount importance that the monitoring approach
can provide detailed measurements regarding all network
components, including the internal ones. If measurements
were not available for the internal networking elements, then
any faulty elements could go undetected, which may yield
a negative impact on the network performance, possibly
endangering human lives. Also reacting to any network inci-
dent cannot be possible if the compromised component can-
not be located. Locating compromised components usually
requires measuring such components, including the internal
components.

It is worth noting that the most common communication
protocol used in in-vehicle networks is the Controller Area
Network (CAN). CAN uses a serial communication bus.
However, other protocols are being used nowadays such
as automotive Ethernet. Authors in [5] studied network
identifiability for such protocols in more detail. The cur-
rent work focuses on achieving fully identifiable in-vehicle
networks regardless of which communication protocols are
being used.

The main contributions of this paper can be summarized
as follows:

• We study the topological structure of in-vehicle net-
works and derive the essential necessary and sufficient
mathematical conditions for the network topology to
be identifiable.

• Based on the result of our theoretical analysis, we
propose algorithms to check for identifiability and
transform an existing unidentifiable in-vehicle net-
work topology into an identifiable one. Through ex-
tensive simulations on random topologies as well as
on different in-vehicle network topologies, the eval-
uation results show an average of maximum added
weight of only 3% for real in-vehicle network topolo-
gies.

• To further improve the identifiable topology, we pro-
pose an optimisation algorithm that ensures the topol-
ogy is identifiable with the minimum number of links.
The results show that the optimisation algorithm re-
duces the original topology weight by up to 2% on
average when tested on random topologies and up to
6%when tested on real in-vehicle network topologies.
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• In addition, we compare the proposed monitoring
approach using network tomography with partial net-
work tomography and with two of the state-of-the-art
monitoring solutions. The results show that the pro-
posed approach achieves better monitoring overhead
with full network identifiability.

The rest of this paper is organized as follows: the next
section discusses work related to in-vehicle network archi-
tectures and existing monitoring solutions, Section 3 de-
scribes the system model and states the problem this work
is tackling, Section 4 and Section 5 extensively study and
derive the topological conditions needed to acquire iden-
tifiable and optimal topology, respectively, in addition to
the proposed transformation algorithms presented in each
section, Section 7 shows the performance evaluation and
results, while Section 8 concludes the paper and discusses
some future directions.

2. Related Work
Generally, current in-vehicle networks do not support

security measures [11]. However, there have been many
proposed approaches by the research community. One of the
state-of-the-art monitoring solutions for in-vehicle networks
was proposed by Lee in [12] and is called Offset Ratio and
Time Interval based Intrusion Detection System (OTIDS).
The idea of OTIDS is that it plugs a monitoring ECU for
the sole purpose of monitoring the CAN bus using remote
frames. It periodically requests messages provided by all
CAN nodes and measures their offset ratio and time inter-
vals. They evaluated their approach to detecting three types
of attacks: Denial of Service (DoS), fuzzy, and imperson-
ation attacks. For each attack type, they measured a different
metric. For example, to detect DoS attacks, they measured
the ratio of instant replies of remote frames, to detect fuzzy
attacks, they used a correlation coefficient between offsets
and time intervals, while average response time was used to
detect impersonation attacks. A limitation of this approach is
that if the number of unique CAN IDs is high, then it incurs
extra burden on the network and consumes a large amount of
bus bandwidth by frequently communicating request/reply
frames for all CAN IDs.

Another approach is Clock Offset Based Intrusion De-
tection System (COIDS) [13]. As the name suggests, this ap-
proach is based on monitoring the clock offset of each ECU.
It follows three main steps: first, a baseline of each ECU’s
normal clock profile is constructed using active learning
such as in [14], second, to detect anomalies, the cumulative
sum of deviations from the normal behaviour is derived
using cumulative summethod [15], last, the exact time of the
attack is specified using sequential change-point detection.
As with OTIDS, they evaluated their proposed approach to
detect DoS, fuzzy, and impersonation attacks. COIDS also
requires plugging a monitoring ECU into the CAN bus to
monitor the network.

Additionally, the recent approaches benefit from the
advances in computational power and thus they often rely

on Machine and Deep Learning (ML and DL) solutions.
For example, in [16], a Deep-SVDD (Support Vector Data
Description) [17] has been proposed to obtain voltage fin-
gerprints for each CAN ID which is then used to detect ma-
licious frames and determine their source. In addition, Deep
Convolutional Neural Networks (CNNs) have been used to
monitor in-vehicle networks such as CAN [18] and Ethernet
[19]. The approach in [18], however, could not detect new
types of attacks. To solve this issue, another model was
proposed in [20] which, as claimed, could detect attacks that
the model was not trained on. On the other hand, authors
in [19] focused on detecting injection attacks for Audio-
Video Transport Protocol (AVTP) streams. Moreover, trans-
fer learning was used in [21] where a convolutional Long
Short Term Memory (LSTM) network was employed.

These solutions focus on one type of communication
protocol i.e., either CAN or Ethernet. Hence, they monitor a
single subsystem and ignore other subsystems which form
the overall in-vehicle network. Therefore, these solutions
cannot be used to monitor next-generation in-vehicle net-
works. Instead, there should be new monitoring solutions
that can monitor the overall network performance. Our goal
in this work is to propose one of these solutions based on
network tomography. Another limitation with the existing
monitoring solutions is that relying on ML- or DL-based
solutions is not effective due to several reasons [22]. One is
that they require massive datasets to process and train which
is both time- and resource-consuming. Another reason is that
false positives and false negatives cannot be avoided when
employing ML or DL solutions, and for mission-critical
applications, such as the ones in vehicles, having a false
positive or false negative alarm is intolerable as this may lead
to serious consequences.

Network tomography is one of the network monitoring
approaches that is based on mathematical modelling of the
network and its performance metrics. It was first studied by
Vardi [23] to estimate the origin-destination traffic matrix.
Depending on the problem at hand, network tomography
can be divided into three categories: (i) link-level param-
eter estimation [3], (ii) origin-destination traffic matrix es-
timation [23] and (iii) topology inference [24]. This paper
focuses on the first category where the end-to-end (path-
level) measurements are used to infer the metric of link-level
performance. Further, the measurements used in network
tomography can either be active or passive. Active measure-
ments use specialised probes sent between monitoring nodes
to monitor the network. This type of measurement requires
certain conditions for the minimum number of monitors and
their placement to identify all link-level metrics. Passive
measurements, on the other hand, exploit the existing traffic
(e.g., by sampling from it) to measure the network perfor-
mance [25]. In passive measurements, the existing traffic is
not guaranteed to form a full-rank matrix that is needed to
uniquely identify all link-level metrics. Hence, in this work,
we focus on using active measurements.

An important aspect of network tomography is network
identifiability. Network tomography can, uniquely, infer the
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Figure 1: Three main in-vehicle network topologies studied in [5].

performance for all link-level metrics of an in-vehicle net-
work if the topology is identifiable under the given monitor
placement. If the network is not identifiable, authors in [26]
proposed to use partial network tomography with a deep
neural network. Further, in [27], they evaluated this approach
with full algebraic tomography (where the topology is fully
identifiable) and found that the algebraic tomography ap-
proaches yield better results in detecting and locating the
anomalous link. In addition, the same authors in [5] studied
network identifiability for three main automotive network
architectures shown in Figure 1. The first architecture is
the bus-based architecture which uses fieldbus communi-
cations, the second architecture is the central-gateway ar-
chitecture that has a gateway connecting different system
domains/communication protocols, while the third archi-
tecture is the Ethernet-based architecture that may include
domain-based architecture, zonal-based architecture, or a
combination of both. These architectures are based on the
E/E architectures where the most recent one is the Ethernet-
based architecture. They found that the topology for a single
CAN network is always identifiable using only twomonitors.
They also found that the central gateway architecture is iden-
tifiable as long as there are at least three CANs connected to
the gateway. On the other hand, Ethernet-based architecture
can be unidentifiable. This means that network tomography
cannot uniquely infer the individual link-level metrics. To
this end, in this work, we formalise the requirements needed
to achieve a fully identifiable topology. In addition, based
on the theoretical analysis, we devise a transformation al-
gorithm to transform any unidentifiable topology into an
identifiable one. Additionally, to further minimise the ve-
hicle weight, an optimisation algorithm is proposed. This
ensures that the topology is identifiable and at the same time
optimal with a minimum number of links. These algorithms
can also be used to enhance the new E/E architectures such
as domain-based and zonal-based architectures by making
them identifiable as well as optimal.

3. System Model and Problem Statement
3.1. System Model

Table 1 shows a summary of notations used throughout
this paper and their descriptions. We assume that in-vehicle
network topology is known, and we follow graph theory
conventions, defined in [28], to represent the network and
its characteristics.

The in-vehicle network is modelled as an undirected
graph1 G = (V (G), E(G)) where V (G) is a set of vertices
(or nodes) and E(G) is a set of edges (or links). Each link
ei ∈ E(G), with ei = uv, i ∈ {1, 2,… , 
}, connects two
adjacent nodes u, v ∈ V (G). We represent the end-points
of link ei as vℎ(ei) (head) and vt(ei) (tail). Based on node
degree d(u), which is defined as the number of links node u
is incident to, we define the following two sets.
Definition 1. Given an in-vehicle network G, sets of edge
nodes  ∈ V (G) and internal nodes  ∈ V (G) are defined
as2

•  = {u ∈ V (G) ∶ d(u) = 1}, and

•  = {u ∈ V (G) ∶ d(u) ≥ 2}

where  ∪ = V (G) and  ∩ = ∅.

Let p(u, v) = {e ∶ e ∈ E(G)} be a path between any
node pair u, v ∈  , and it consists of a set of links in which
such path traverses. Let  be the set of all possible paths and
m ⊆  be the set of measured paths. Note that elements in
 are simple paths (do not include repeating nodes).

As the internal nodes are not directly accessible, we
assume that only nodes in  are accessible, hence they can
be used as monitors. The network tomography problem is
expressed by the following linear system

y = A⊗ x (1)
where y = [y1, y2,… , y�]T is a vector in ℝ� of path-

level measurements, A is a � × 
 (refer to Table 1) mea-
surement matrix and x = [x1, x2,… , x
 ]T is a vector in ℝ


of link-level metrics. Although there can be multiple paths
between any two edge nodes in  , routing during normal
operation of the in-vehicle network is deterministic where
there is only one single path in use between any two edge
nodes u, v ∈  . Thus, the measurement matrix A is a binary
matrix with entries aji ∈ {0, 1}. If path pj traverses link ei,we say aji = 1, otherwise aji = 0. The operation⊗ depends
on the problem type. If the problem is additive (e.g., delay
or packet success/loss rate tomography) then⊗ is for matrix
multiplication. For boolean problems, ⊗ is boolean matrix
multiplication, i.e., yj = ∨j(aji ∧ xi).

1The terms graph, network and topology are used interchangeably in
this work.

2Sometimes we drop the graph nameG and simply say V ,E,  ,, etc.,
for which we mean V (G), E(G), (G),(G). Same for 
G and �G , whichwe sometimes say 
 and �.
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Table 1
Notations and their descriptions.

Notation Description

G + {uv} (G − {uv}) network G when link between two
vertices u, v ∈ V (G) is added
(deleted)

|| cardinality of set 
 , ⊂ V (G) set of edge and internal nodes in G

(see Definition 1)
,  ⊂ E(G) set of internal and external links in G
 (u) set of neighbours for node u ∈ V (G)
(u) ⊆ (u) set of internal nodes that are neigh-

bours to u
(G) set of components in graph G
3+ ,3− ⊆  set of internal nodes having node

degree larger and less than 3, respec-
tively

 set of all possible paths between edge
nodes in G

m ⊆  set of measured paths
u(ei) node u ∈ V (G) incident to link ei ∈

E(G)

 ∶= |E(G)| total number of links in network G
� ∶= |V (G)| total number of nodes in network G
� ∶= |m| number of measured paths
l number of uniquely identifiable links
p(u, v) path between u ∈  and v ∈ 
d(u) degree of node u ∈ V (G)
� ∶= |3− | total number of internal nodes having

node degree less than 3
� ∶= || total number of internal nodes in G
'u

∑ 
i=1(d(u) − 3) ∶ u ∈ 3+

d(u, v) distance between two nodes u, v ∈
V (G)

 ∶= |3+ | total number of internal nodes having
node degree larger than 3

� ∶= || number of internal nodes in 3+ that
are neighbours to more than one node
in 3+

�u ∶= |(u)| total number of internal nodes that
are neighbours to u3+

Sd(G) ∈ {true, false} status of network G as either uniden-
tifiable, false, or identifiable, true

So(G) ∈ {true, false} status of network G as either optimal,
true, or not, false

3.2. Problem Statement and Assumptions
Given an in-vehicle networkG, we aim to decidewhether

it is identifiable or not (i.e., Sd(G) ∈ {true, false}). If
Sd(G) = false, the goal is to transform G into an identi-
fiable topology Gi (i.e., G ⟶ Gi) where Sd(Gi) = true.
The ultimate goal is to achieve a minimum number of links

Gi in the transformed topology Gi. Therefore, the resultingtopology is checked for optimality. If So(Gi) = false, then
the aim is to transform the topology into an optimal one
with a minimum number of links while keeping the topology
identifiable.

In this work, we adopt the following assumptions:

1. Only edge nodes in  can be used as monitors since
internal nodes are inaccessible.

2. The focus in this work is on networks forming only
acyclic graphs. Cyclic graphs are not allowed.

3. Links in G are symmetric.
4. The in-vehicle network is connected. The same prin-

ciple, however, can be applied on individual discon-
nected components.

4. Topology Identifiability
The following defines network identifiability.

Definition 2. Network G is identifiable if all links in E(G)
are identifiable. A link ei ∈ E(G) is identifiable, if its
associated metric xei can be uniquely determined from the
path-level measurements in y by solving (1).

The identifiability of any network topology can be one
of the following:

1. Full identifiable topology: if metrics of each link
ei ∈ E(G) is uniquely determined by solving (1). It
can also be called 
-identifiable network.

2. l-identifiable topology: if the maximum number of
links that can be identified is l where l < 
 .

3. Unidentifiable topology: if no link metrics for any
link in E(G) can be uniquely determined by solving
(1). In this case l = 0.

4.1. Topological Conditions
In this work, since the goal is to measure all networking

elements including the internal network, we focus on achiev-
ing a topology that is fully identifiable.3 In the following,
we study the topological conditions needed to transform any
unidentifiable topology into an identifiable one, under the
constraint that only nodes in  can monitor the network.

Links in any in-vehicle network can be classified into two
categories: internal and external.
Definition 3. Given an in-vehicle network G = (V ,E), sets
of internal and external links ( ∈ E(G) and  ∈ E(G))
are defined as:

•  = {ei ∈ E(G) ∶ vℎ(ei) ∈ , vt(ei) ∈ }

•  = {ei ∈ E(G) ∶ vℎ(ei) ∈  , vt(ei) ∈ }

where ∪ = E(G) and ∩ = ∅. (u) is a set of internal
links node u is incident to.

The following lemma states the condition required to
have an acyclic-connected graph G, which is needed for the
subsequent theorem.
Lemma 1. Any connected graph G is acyclic if and only if
it has � − 1 links, where � ∶= |V (G)|.

3In the remaining of this paper, we simply use the term identifiable
topology to refer to a full identifiable topology. For unidentifiable or l-
identifiable topology we simply say unidentifiable topology.
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Proof. See proof of Corollary 1.5.3 in [28].
From the assumption that an in-vehicle network is a

connected graph, we derive the following theorem that is
necessary for designing the transformation algorithm.
Theorem 1. Any acyclic-connected graph G with � ≥ 2
implies that (u) ≠ ∅,∀u ∈ , where � ∶= ||.

Proof. For a connected graph G, let assume that (u) =
∅,∃u ∈ . By constructing a graph with � = 2 corre-
sponding to v1 ∈  and v2 ∈ , with (v1) = ∅ then
also (v2) = ∅, hence 
 < � − 1. Then d(v1, v2) = ∞
and by Lemma 1, the graph is disconnected, which is a
contradiction.

The above theorem indicates that all internal nodes, in
any connected acyclic graph with � ≥ 2, should be con-
nected to at least one internal link. In addition, the condition
in the following theorem is the necessary and sufficient
condition for G to be identifiable.
Theorem 2. To identify all links’ metrics of acyclic in-
vehicle network G, where only nodes in  can be monitors,
the necessary and sufficient topological condition is that
d(u) ≥ 3,∀u ∈ .

Proof. See proof of Theorem 1 in [5].
The Ethernet-based topology shown in Figure 2 is

unidentifiable. This is due to the violation in the topological
condition stated in Theorem 2. According to Theorem 2, to
make the topology identifiable, the node degree for all u ∈ 
should be increased by at least 1 (current degree of internal
nodes, i.e., gateways g1, g2,… , g4, is 2).Based on the above theoretical analysis, a procedure is
derived (i,e., Procedure 1) to check for the topological identi-
fiability condition for any in-vehicle networkG. Procedure 1
takes a network G and decides whether it is identifiable, i.e.,
Sd(G) = true, or unidentifiable, i.e., Sd(G) = false.

Procedure 1: isIdentif iable(G)
Output : Sd(G)
Initialize:
Sd(G)← true
 ← {u ∶ d(u) ≥ 2}

1 foreach u ∈  do
2 if d(u) < 3 then
3 Sd(G)← false
4 break
5 return Sd(G)

4.2. Transformation into Identifiable Topology
To bring an unidentifiable topology G to identifiable

topology Gi, only the number of internal nodes can be
preserved, i.e., �G = �Gi . Preserving the number of edge
nodes is not guaranteed as in some cases we need to add

more links, which in turn requires adding more edge nodes
in case the topology is acyclic, this results in �G ≤ �Gi .Any unidentifiable topologyG can be classified as either
one of the following two cases

• Case 1: There is at least one internal node u ∈ with
d(u) < 3, while d(v) = 3, ∀v ∈ ∖u, where u ≠ v.

• Case 2: There is at least one internal node u ∈ with
d(u) < 3, while d(v) ≥ 3, ∀v ∈ ∖u with at least one
node w ∈ ∖u having d(w) > 3, where u ≠ v ≠ w.

The Ethernet-based topology shown in Figure 1 is an
example of a case 2 scenario (the Ethernet switch has degree
> 3). In contrast, if the Ethernet switch has degree ≤ 3, then
this is a case 1 scenario.

In the following, we describe how to transform the
unidentifiable topology G into identifiable topology Gi con-sidering each one of these cases.
4.2.1. Transforming Case 1 topologies

Let � ∶= |3− | be the number of internal nodes with
degree < 3, then to transform the topology to identifiable
one, for the first case mentioned above, � links and edge
nodes will be added and connected to the internal nodes with
degree < 3 so that the condition in Theorem 2 is met. In this
case, the total number of links in the identifiable topology
Gi will be


Gi = 
G + � (2)
where 
Gi and 
G are the total number of links in Gi and G,respectively.

Procedure 2 is used to transform the topology of this case
into identifiable topology.

Procedure 2: Case1(G,3− )
Output: Gi

1 foreach u ∈ 3− do
2  ←  ∪ {v}
3 G ← G + {uv}
4 Gi ← G
5 return Gi

4.2.2. Transforming Case 2 topologies
Unlike Case 1, transforming a topology of Case 2 is not

straightforward. In this case, to keep the number of links to
a minimum, instead of adding more links, existing links can
be restructured. This is because, for topologies of Case 2
type, there is at least one internal node u with d(u) > 3. So
we can disconnect some links incident to u and connect them
to other nodes in 3− while maintaining node degree of at
least three for all internal nodes, hence satisfying Theorem 2.
And, if needed, extra links will be added (as described next).
There are, however, certain assertions that need to be taken
care of when restructuring the topology to ensure that the
resulting topology is connected and acyclic.
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Figure 2: An unidentifiable Ethernet-based topology.

Remark 1. Let G′ be a resulting topology after restructur-
ing any link in unidentifiable topology G, then G′ should
satisfy the following conditions:

1. it is a connected graph
2. it has no self-loops;
3. it is not multigraph; and
4. it has no cycles.

To restructure the unidentifiable topology, two types of
links can be used: partially restructurable links (PRLs) and
fully restructurable links (PRLs). Figures 3(a) – 3(d) show
examples of the difference between the two. In the following,
we describe each one of these links and show how they can
be used to transform the topology towards an identifiable
one.
Transformation using PRLs Figure 3(a) and Figure 3(b)
show examples of PRLs and how to restructure them. In
addition, the following definition formally defines PRL.
Definition 4. For node u ∈ 3+ , a partially restructurable
link (PRL) ei ∈  is a link incident to u such that it can be
disconnected from it while keeping d(u) ≥ 3.

Because PRL ei is an internal link, then according to
Definition 3, its both end-points are internal nodes. Hence,
the number of PRL incident to u can be computed by
counting the number of internal nodes that are neighbours to
u, let �u ∶= |(u)| be this number and let 'u ∶= d(u) − 3.For identifiable topologies,'u ≥ 0,∀u ∈ , otherwise if the
topology is unidentifiable, then 'u < 0,∃u ∈ . Further,
let  ∶= |R3+ |, then the following theorem quantifies the
maximum number of links that can be restructured in G.
Theorem 3. For unidentifiable topology G of Case 2, if
 ≥ 1, then the maximum number of PRLs 
PRL, such that
d(u) ≥ 3,∀u ∈ , is


PRL =
 
∑

i=1

PRL(u) (3)

where


PRL(u) =

{

'u, if �u > 'u
�u − 1, otherwise

(4)

Proof. Based on Theorem 2, at least 3 links should be
incident to u, ∀u ∈ . Hence, for  = 1, no more than 'u

links can be resturcutred inG. This means that disconnecting
'u links from u would leave d(u) = 3

d(u) − 'u = d(u) − (d(u) − 3) = 3

However, disconnecting 'u links can only guarantee
d(u) = 3 but cannot ensure that disconnecting any of 'ulinks would keep the topology connected. For this, Theo-
rem 1 requires that for each internal node u ∈ , it should
be incident to at least one link in . Therefore, such a link
cannot be used as PRL.

As we know it is necessary for each u ∈  to be
connected to at least one link in , then only if �u > 'u,all 'u links can be restructured. Otherwise, if �u ≤ 'u,restructuring all 'u links will result in |(u)| < 1 which
violates the condition in Theorem 1. Therefore, to ensure
satisfiability of Theorem 1 in this case, only up to �u − 1can be restructured which proves (4). For  > 1, the same
argument applies for individual nodes in 3+ for which (3)
is proven.

To use PRLs, it is important to consider the conditions
in Remark 1. Let  ∶= {u ∈ 3+ ∶ �u > 1} be a
set of internal nodes having node degree larger than three
and are neighbours to more than one internal node, and let
� ∶= ||, then the following proposition ensures that G′ is
not multigraph and does not have self-loops.
Proposition 1. To ensure thatG′ is a simple graph, restruc-
turing PRL link ei = uv, in unidentifiable topology G, into
e′i = vw, where u ∈  , v ∈  (u) and w ∈ 3− , is the
mapping between ei and e

′

i i.e., ei ∈ E(G) → e′i ∈ E(G′ )
such that the following conditions are met

1. v ≠ w; and
2. w ∉ (v) (or v ∉ (w)).

Proof. LetG′ be a resulting topology that has to be a simple
graph.
Condition 1: assume that v = w in G′ , then connecting
v and w, which form link e′i, will result in self-loop with
vℎ(e

′

i) = vt(e
′

i) which contradicts that G′ is acyclic.
Condition 2: now assume that w ∈  (v) (or v ∈  (w)),
then connecting w and v will result in multigraph where
w and v share two links. Again, this contradicts that G′ is
acyclic.

The conditions defined in Proposition 1 are the necessary
conditions to obtain a simple graph. These conditions, how-
ever, do not ensure that the resulting graph is connected. To
ensure connectivity, Theorem 1 states that (u) ≠ ∅,∀u ∈
. Therefore, �u ≥ 1,∀u ∈ . To restructure any PRL, it is
important to ensure that this is satisfied for all internal nodes
in the resulting graph G′ .

Assuming that  ≠ ∅, and � ≥ 1, then the following
is the sufficient condition to have acyclic and connected
topology satisfying all conditions in Remark 1.
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Figure 3: (a) e5,… , e8 are PRLs, (b) topology after restructuring PRL e5, (c) e5 is FRL, (d) topology after restructuring FRL e5.

Proposition 2. Any PRL ei = uv in G can be disconnected
from its end-point u ∈  and connected to w ∈ 3−
such that the resulting graph G′ = G∗ + vw is acyclic and
connected iff v ∈ c1 and w ∈ c2 (or v ∈ c2 and w ∈ c1) in
G∗, where G∗ = G − uv and e1, e2 ∈ (G∗).

Proof. → Provided that vw ∉ E(G), we assume G′ =
G∗+vw, whereG∗ = G−uv, is acyclic and connected graph,
and prove that v ∈ c1 andw ∈ c2 (or v ∈ c2 andw ∈ c1).We
prove this by contradiction, assuming that G′ is not acyclic
and not connected. We know that the original graph G is
acyclic and connected with number of links 
G = �G − 1then for G∗ = G − uv the number of links decreases by one,
hence, 
G∗ < �G∗ −1 then if v ∈ c1 andw ∈ c2 (or if v ∈ c2
and w ∈ c1), the resulting graph G′ = G∗ + vw would have

G′ = �G′ − 1 and according to Lemma 1, G′ is acyclic and
connected graph, which contradicts the assumption.
← We assume for G∗ that v ∈ c1 and w ∈ c2 (or v ∈ c2and w ∈ c1) and prove that the resulting graph G′ =
G∗ + vw is acyclic connected graph. For this, we prove
the contrapositive that if both v,w ∈ c1 (or v,w ∈ c2),then G∗ + vw is not acyclic and not connected graph. Since
G is maximally acyclic, then c1, c2 ∈ (G∗) must also be
maximally acyclic. Thus, c1+vw (c2+vw) results in havinga cycle in c1 (c2) while the graph is still disconnected.

Procedure 3 shows how PRLs are used to transform an
unidentifiable topology towards an identifiable one. While
both � and � are larger than 0, the procedure starts by looping
through elements of  and checking their neighbours. If
a neighbour v ∈  (u) is not an internal node, it will be
skipped (lines 1-6). Otherwise, the link between u ∈ 
and v ∈  (u) will be disconnected and the resulting two

Procedure 3: PRL(G,3− ,)
Output : GPRL
Initialize:
GPRL ← G
� ← |3− |
� ← ||

 ← {u ∈ V (G) ∶ d(u) ≥ 2}
 ← ∅

1 while � > 0 and � > 0 do
2 for i = 1 ∶ � do
3 u =[i]
4 for each v ∈ (u) do
5 if v ∉  then
6 continue
7 else
8 G ← G − {uv}
9  ←  ∪ {c1, c2}

10 for k = 1 ∶ � do
11 w = 3− [k]
12 if (v ∈ c1 and w ∈ c2) or

(v ∈ c2 and w ∈ c1) then
13 G ← G + {vw}
14 update � and �
15 else
16 continue

17 GPRL ← G
18 return GPRL
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components c1, c2 will be added to  (lines 7-9). If a node
w ∈ 3− is in a different component than v, a link between
these nodes will be added (lines 10-14).
Transformation using FRLs In some cases, a link can
be completely disconnected from its both end-points and
connected to other end-points. We call such link fully re-
structurable link (FRL).
Definition 5. fully restructurable link (FRL) is a link ei ∈
 with ei = uv such that both u ∈ 3+ and v ∈ 3+ , and
the number of internal links they are incident to is larger
than 1, i.e., |(u)| > 1 and |(v)| > 1. Therefore, fully
restructurable links can only exist in scenarios where � > 1.

An example of FRL and how it can be restructured is
shown in Figure 3(c) and Figure 3(d). Using FRLs instead of
PRLs can speed up the transformation process by reducing
� by a factor of 2. This is because they can be disconnected
from their endpoints and used to connect the other two nodes
in3− . However, as in the case of PRLs, FRLs should satisfythe conditions in Remark 1. Similar to PRLs, the following
conditions are necessary for G′ to be acyclic.
Proposition 3. To ensure that G′ is a simple graph, re-
structuring FRL ei = uv, in unidentifiable topology G, into
e′i = wz, where u, v ∈ with v ∈ (u) andw, z ∈ 3− , is
the mapping between ei and e

′

i i.e., ei ∈ E(G)→ e′i ∈ E(G
′ )

such that the following conditions are met

1. w ≠ z; and
2. w ∉ (z) (or z ∉ (w)).

Proof. Replacingw by v and z byw, then the proof is similar
to the one for Proposition 1

Assuming that � ≥ 2 and there are at least two nodes in
 that are neighbours, then the following is the sufficient
condition to ensure having acyclic and connected topology
G′ .
Proposition 4. Any FRL in unidentifiable topologyG can be
disconnected from their end-points, u ∈ 3+ and v ∈ 3+ ,
and reconnected to other end-pointsw ∈ 3− and z ∈ 3− ,
such that the resulting graph G′ is acyclic and connected iff
for G − uv, w ∈ c1 (or w ∈ c2) and z ∈ c2 (or z ∈ c1),
where c1, c2 ∈ (G∗) and G∗ = G − {uv}.

Proof. Replacing w with v and z with w in Proposition 2
then the proof is similar to that of Proposition 2.

Based on the above theoretical analysis, Procedure 4 is
derived, illustrating how FRLs can be used to transform
an unidentifiable topology towards an identifiable one. This
procedure is similar to Procedure 3 except that it uses FRL
when � ≥ 2 and � ≥ 2. It finds two neighbouring nodes
in  and disconnects them, then it checks if two nodes
w, z ∈ 3− are in different components, if so a link will
be added between them.

Procedure 4: FRL(G,3− , )
Output : GFRL
Initialize:
GFRL ← G
 ← ∅
� ← |3− |
� ← ||

1 while � ≥ 2 and � ≥ 2 do
2 for i = 1 ∶ � do
3 u = 3+ [i]
4 for j = i + 1 ∶ � do
5 v = 3+ [j]
6 if v ∈ (u) then
7 G ← G − {uv}
8  ←  ∪ {c1, c2}
9 for k = 1 ∶ � do
10 w = 3− [k]
11 for m = k + 1 ∶ � do
12 z = 3− [m]
13 if (w ∈ c1 and z ∈ c2) or

(z ∈ c1 and w ∈ c2) then
14 G ← G + {wz}
15 update � and �
16 else
17 continue

18 GFRL ← G
19 return GFRL

Transforming an unidentifiable topology G into identi-
fiable Gi by restructuring links using either PRLs or FRLs
results in the total number of links 
Gi in Gi being


Gi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩


G, if 'u = � and 'u < �u

G, if �u − 1 = � and 'u ≥ �u

G + (� − 'u), if 'u < � and 'u < �u

G + (� − �u + 1), if �u − 1 < � and 'u ≥ �u

(5)

4.3. Transformation Algorithm
The transformation algorithm (Algorithm 5) starts by

checking if � > 0, if so it checks if both � ≥ 2 and � ≥ 2.
In this case, it uses FRL for the transformation using Pro-
cedure 4. If the resulting topology is identifiable, it returns
it and stops the algorithm (lines 4-6). Otherwise, it updates
the values for � and � and uses the transformation with
PRL using Procedure 3 (lines 7-9). Again, it checks if the
resulting topology is identifiable or not. If it is unidentifiable,
it uses the transformation for case 1 using Procedure 2 after
updating � and � (lines 13-16). If � = � = 1, then the
algorithm uses Procedure 3, checks for identifiability and
uses Procedure 2 if the resulting topology is unidentifiable
(lines 19-28).
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Algorithm 5: Transform to identifiable topology
Inputs : G
Output : Gi
Initialize:
3− ← {u ∈  ∶ d(u) < 3}
3+ ← {u ∈  ∶ d(u) > 3}
 ← {u ∈ 3+ ∶ �u > 1}
� ← ||

� ← |3− |
1 if � > 0 then
2 if � ≥ 2 and � ≥ 2 then
3 GFRL ← FRL(G,3− ,)
4 if Sd(GFRL) = true then
5 Gi ← GFRL
6 go to line 28
7 else
8 update � and �
9 GPRL ← PRL(GFRL,3− ,)

10 if Sd(GPRL) = true then
11 Gi ← GPRL
12 go to line 28
13 else
14 update � and �
15 Gi ← Case1(GPRL,3− )
16 go to line 28
17 else
18 GPRL ← PRL(GFRL,3− ,)
19 if Sd(GPRL) = true then
20 Gi ← GPRL
21 go to line 28
22 else
23 update 3−
24 update 
25 Gi ← Case1(GPRL,3− )
26 go to line 28
27 Gi ← Case1(G,3− )
28 return Gi

In general, an unidentifiable topology is not guaranteed
to have FRL for which Procedure 4 might be used, in this
case, PRL, if existed will be used (Procedure 3). Other-
wise, the problem will be reduced to case 1 transformation
(Procedure 2). A flowchart summary of how the overall
transformation algorithm works is depicted in Figure 4.
4.3.1. Complexity analysis

The time complexity for checking for identifiability con-
dition in Procedure 1 is(�+�) where � is the total number
of nodes and � is the total number of internal nodes in
G. Procedure 2 takes (�), while restructuring links takes
(� ⋅d(u) ⋅�) using PRL (Procedure 3) and (�2 ⋅�2) using
FRL (Procedure 4), where � ∶= || and u ∈  . Thus, the

complexity of the overall transformation algorithm is

Complexity =
⎧

⎪

⎨

⎪

⎩

(� + � + �2�2), if � ≥ 2 and � ≥ 2
(� ⋅ d(u) + �+�

� ), if � = 1 or � = 1
(�), if � = 0

(6)
From (6), it is clear that the worst case scenario is when
�, � ≥ 2, in which the algorithm takes (� + � + �2�2).

Start
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Use Procedure 1

Output: Sd(G)

Sd(G) = true? Gi = G End

� > 0?

� ≥ 2 and
� ≥ 2?

Use
Procedure 2

Use
Procedure 3
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yes

no

no
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no
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Figure 4: A flowchart illustrating the transformation algorithm
of unidentifiable topology G into identifiable topology Gi.

Note that the transformation algorithm shown in Algo-
rithm 5 only transforms any unidentifiable topology into
an identifiable one without considering whether the result-
ing topology has a minimum number of links (i.e., being
optimal) or not. The following section discusses this and
provides an optimisation algorithm that ensures that the
identifiable topology has a minimum number of links.

5. Topology Optimisation
This section proposes an optimisation algorithm for any

identifiable topology. The goal is to achieve a minimum
number of links while keeping the topology identifiable. Any
topology that meets these two criteria is therefore optimal.
5.1. Conditions

Asmentioned earlier, the Ethernet-based topology shown
in Figure 2 is unidentifiable. And by using the transformation
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algorithm (Algorithm 5), the number of links in the resulting
topology Gi will be increased. This results in 
Gi > 
G,where G is the original topoogy.

However, in automotive networks, where the wiring adds
up to the total weight and complexity of the vehicle, it is
desirable to minimise the number of links. The following
theorem quantifies the minimum number of links required
to achieve identifiable topology.
Theorem 4. The minimum number of links that can exist in
an identifiable topology G with � internal nodes is

2� + 1 (7)
Proof. From Lemma 1, we know that we need to have
at least � − 1 links in G. Otherwise, the topology would
be disconnected. However, Lemma 1 ensures connectivity,
but it does not ensure identifiability. To ensure having a
topology that is identifiable, the condition in Theorem 2 has
to be satisfied. Without loss of generality, we can assume
a topology with internal nodes only and let � ∶= ||.
Because each u ∈  should have at least d(u) = 3 to
achieve identifiability, 3� links are needed, including the
� − 1 links required to have a connected graph. Therefore,
the minimum possible number of links that can exist in
identifiable topology is 3� − (� − 1) = 2� + 1.

Note that (7) is just the minimum number of links in
an identifiable topology. In practice, the total number of
links can be larger. Thus, any network topology with fewer
number of links implies that the topology is unidentifiable.

The aim now is to convert any identifiable topology with
links larger than 2� + 1 into an optimal topology with only
2� + 1 links. The next section describes this conversion.
5.2. Optimisation Algorithm

The optimal topology that satisfies the identifiability
condition is the one with 2�+1 (see Theorem 4). Generally,
there are two cases of the given identifiable topology Gi:

1. topology is identifiable and 3+ = ∅;
2. topology is identifiable and 3+ ≠ ∅.
In the first case, 
Gi = 2�+1 and the topology is alreadyoptimal according to Theorem 4, whereas in the second,


Gi > 2� + 1 and the topology is not yet optimal. The
following discusses how this topology can be optimised.

Recall that the new E/E architectures focus on utilising a
few numbers of powerful ECUs instead of a large number
of limited-capabilities ECUs. The optimisation algorithm
is designed to support this goal in which it can consoli-
date different ECUs into one single ECU, such ECU can
be thought of as a High-Performance Computing Platform
(HPCP) [29, 30].

The conversion can be done by removing 
 − (2� + 1)
links. Then, the nodes connected to the removed links can
be mapped to other nodes. The following shows how these
nodes can be mapped.

Let u ∈ 3+ , then the list of nodes (connected to u) to bemapped is the candidate setu. To ensure the identifiability

of the topology, the number of nodes to be mapped should
not be larger than 'u, in other words, |u| = 'u.

Procedure 6: nodesListT oMap(Gi, u)
Output : u
Initialize:
'u ← d(u) − 3
u ← ∅

1 for j = 1 ∶ | (u)| do
2 if  (u)[j] ∈  then
3 u ← u ∪ { (u)[j]}
4 if |u| > 'u then
5 u ← u∖{ (u)[j]}
6 break
7 if  (u) ∩  ≠ ∅ then
8 u ← u∖{va}
9 for k = 1 ∶ | (u)| do
10 if  (u)[k] ∈  then
11 u ← u ∪ { (u)[k]}
12 if |u| > 'u then
13 u ← u∖{ (u)[k]}
14 break
15 return u

The process for finding u is shown in Procedure 6. It
first prioritisesmapping edge nodes over intermediate nodes.
So it starts by looping through the neighbouring nodes of u ∈
3+ . If a neighbour is an edge node, it will be added to the
list. After the addition of each node to the list, the procedure
checks if the number of elements in the list is larger than
'u. If so, the recent node added will be removed from the
list and the procedure stops (lines 4-6). Additionally, if there
is an edge node(s) connected to u, then we need to ensure
that not all of them will be in the list as there should be at
least one edge node to map to (lines 7-8). Then the procedure
loops again through the neighbouring nodes of u, this time
checking if each neighbour is an intermediate node, and do
the same as with edge nodes while ensuring that |u| ≯ 'u(lines 9-14).

Algorithm 7 shows how the topology can be optimised
so that 
Go = 2� + 1.The optimisation algorithm is only needed when3+ ≠
∅ as otherwise the topology is optimal. The algorithm starts
by looping through nodes in 3+ and for each of these
nodes, it chooses the set of candidate nodes tomapu usingProcedure 6 (lines 1-4). Next, for each candidate node v, if
it is an edge node, then it can simply be mapped into another
edge node and hence removed from the topology (lines 5-8).
Otherwise, if it is an internal node, the algorithm removes
this node and maps it to one of the existing internal nodes
(line 18). However, it needs to reconnect the link previously
connected to v to the new node. For this, the algorithmmakes
sure that the new link does not result in cycles as the case
with the identifiability algorithm (lines 9-17). Then, 3+
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Algorithm 7: Transform to optimal topology
Inputs : Gi
Output : Go
Initialize:
� = |Gi |
3+ ← get_3+ (Gi)

1 while 3+ ≠ ∅ do
2 for i = 1 ∶  do
3 u← 3+ [i]
4 u ← nodesListToMap(Gi, u)
5 for j = 1 ∶ |u| do
6 v ← u[j]
7 if v ∈  then
8 Gi ← Gi − {v}
9 else if v ∈  then
10 for k = 1 ∶ | (v)| do
11 w←  (v)[k]
12 for m = 1 ∶ || do
13 z ← [m]
14 Gi − {wz}
15  ← {c1, c2}
16 if (w ∈ c1 and z ∈ c2) or

(z ∈ c1 and w ∈ c2) then
17 Gi ← Gi + {wz}

18 Gi ← Gi − {v}

19 3+ ← get_3+ (Gi)
20 Gi = Go
21 return Go

will be updated (line 19). Finally, the algorithm stops when
3+ = ∅ and returns the optimised algorithm Go.
5.3. Complexity Analysis

Procedure 6 runs in (�), where � ∶= |

|

|

 (u)||
|

.
Thus, the overall complexity of the optimisation algo-

rithm is

Complexity =
{

( ⋅ � ⋅ � ⋅ ! ⋅ �), if v ∈ 
( ⋅ � ⋅ �), if v ∈  ,

(8)

where ! ∶= |

|

|

 (v)||
|

and � ∶= |

|

|

u
|

|

|

. Hence, the worst-
case running time can occur when v ∈ , where v ∈ uand u ∈ 3+ .

6. Discussion
In this section, we highlight the relevance of topology

optimisation and the minimal weight of in-vehicle networks,
a desirable feature for any vehicle network. Moreover, we
briefly discuss the redundancy feature and how it can still be
achieved even when the topology is optimal and with min-
imal added weight compared with the non-optimal topolo-
gies.

6.1. Minimal Weight with Topology Optimisation
It is important to note that modern E/E architectures for

automotive networks are increasingly moving towards cen-
tralization, facilitated by SDN and SOA (Service Oriented
Architecture), allowing the integration of multiple nodes
into a single unit to reduce the weight of in-vehicle networks.
In other words, the aim is to replace the numerous resource-
constrained ECUs in current networkswith a smaller number
of highly powerful ECUs [7, 31]. In light of this shift, the
proposed optimisation algorithm is one way of reducing
the vehicle’s network weight as well as ensuring its full
identifiability.
6.2. Redundancy in In-vehicle Networks

Most in-vehicle networks were originally designed with-
out redundancy (the redundancy index for these topologies is
zero), based on the assumption that they were inherently ro-
bust against failures. However, this perspective has changed
recently with the increased connectivity of vehicles to exter-
nal networks, making themmore susceptible to cyberattacks.
Therefore, it is important to redesign the in-vehicle network
such that it is robust against failures.

Although the network robustness is not the main fo-
cus of this study (the main focus of this work is to study
identifiability properties in in-vehicle networks in order to
achieve fully identifiable topologies with minimal weight),
we briefly highlight the usefulness of optimising the iden-
tifiable topologies in achieving such robustness properties,
in particular achieving redundant in-vehicle network topolo-
gies by augmenting them with fewer numbers of links.

Robust in-vehicle networks are defined as those that can
still operate under failures, i.e., fail-operational networks
[32]. This can be translated into having redundant compo-
nents that can be used once the original ones are down.More
formally, we define network redundancy as having at least
two disjoint routes between any two communicating nodes.

In this work, we show that both the optimal and non-
optimal topologies can be augmented with more links in or-
der to become redundant. For instance, consider the central-
gateway topologies shown in Figure 5. Figure 5(a) and Fig-
ure 5(c) are non-redundant topologies for the non-optimal
and the optimal versions, respectively. To add redundancy
to these topologies, two more internal nodes (g2 and g3)should be added and connected to the central gateway g1(forming a cycle). As shown, the optimal topology could
still be redundant with a fewer number of links than the non-
optimal version while maintaining full identifiability.

7. Evaluation
In this section, we evaluate the proposed transformation

algorithms. First, the algorithm for transforming an uniden-
tifiable topology into an identifiable one will be evaluated
followed by the evaluation of the optimisation algorithm pro-
posed to achieve an identifiable topology with a minimum
number of links. Further, these algorithms will be applied
to real in-vehicle network topologies and the results will be
shown.
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Figure 5: Augmenting the topology to achieve redundancy. (a) non-optimal topology, (b) redundant topology for topology in (a),
(c) optimal topology, and (d) redundant topology for the optimal topology in (c). Note that the topologies shown in (b) and (d)
were restructured to achieve full identifiability.

7.1. Transformation Algorithms
Using MATLAB, we evaluated the proposed transfor-

mation algorithms by simulating random topologies with
different numbers of nodes in the range [10, 100]. Because
topologies are generated randomly, they are neither guaran-
teed to be connected nor acyclic. Therefore, we checked each
topology for these conditions to be met. We removed cycles
if existed, and connected the topology if it had more than one
component (i.e., disconnected). Let �� and �
 be the number
of added nodes and links, respectively4, in the transformed
topology, then in the following, we discuss the results for
identifiability transformation of unidentifiable topologies
into identifiable ones. For each value of � ∈ {10,… , 100},
we ran the simulation for 100 times with different topolo-
gies. Next, we show how the optimisation algorithm further
improved the resulting identifiable topologies byminimising
the number of links.
7.1.1. Transformation to Identifiable Topology

(G ⟶ Gi)We evaluated the transformation using PRLs, FRLs, and
the basic method of adding more � links and nodes as
illustrated in Procedure 2. Transformation results depicted in
Figure 6(a) show the number of additional nodes and links
in Gi. As shown, the additional number of nodes and links
are the same in each scenario, this is because adding any
node requires adding a link to connect it to the network.
In addition, using either PRL or FRL results in the same
number of added links and nodes. On the other hand, using
Procedure 2 (�G + � and 
G + �), results in more nodes
and links than FRL and PRL. The maximum weight added
using FRL is only 10.96% of the original topology before the
transformation when � = 100.

Although the number of added nodes and links for PRL
and FRL are the same, we highlight the benefit of using FRL
over PRL in terms of speed. This can be seen in Figure 6(b)

4When saying �(G), we refer to the overall added weight regardless of
whether it is for nodes or for links

where we show the average (over a number of topologies that
had FRL links in the first repetition) value of � during each
iteration of the transformation. As seen, the � value in the
case of PRL is larger than that of FRL. This is because FRL
reduces � by 2 in a single iteration, while PRL reduces it by 1
in each iteration. Therefore, FRL can transform the topology
much faster than PRL.
7.1.2. Transformation to Optimal Topology (G ⟶ Go)The resulting topologies of the transformation algorithm
into identifiable topologies are then fed to the optimisation
algorithm. The results of this optimisation are shown in
Figure 7.

Figure 7(a) shows the added number of nodes and
links (averaged over 100 repetitions) after transforming G
into identifiable topology Gi as well as after transforming
the identifiable topology Gi into optimal topology Go. Asshown, the additional weight in Go is reduced compared to
Gi. Additionally, Figure 7(b) shows that the added number
of links in the optimised topology Go is the same as the
theoretical value of the minimum number of links (2� + 1)
derived in Theorem 4. Furthermore, Figure 7(c) illustrates
the ratio of additional weight in the transformed topology to
the weight of the original topology. The worst-case scenario
is when � = 10 where the ratio of the added link is ≈ 0.35%
for Gi. This is because this topology was random and had
way fewer links (and nodes) than the required minimum.
Thus, the added weight is larger for such topologies. On the
other hand, for some topologies, it has been observed that
the optimisation algorithm even reduced the weight of the
original topologies. The blue and green plots in Figure 7(c)
indicate that the optimisation algorithm further improved the
overall weight to almost 0% when � approaches 100.
7.2. Algorithms Application on In-Vehicle

Networks
This section evaluates the use of the proposed algo-

rithms to transform real in-vehicle network topologies.
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(a)

(b)
Figure 6: Transformation results: (a) number of added nodes
and links after transformation into Gi, (b) values of � when
using FRL and PRL.

These topologies are shown in Figure 8. In Figure 8(a),
we show a simple in-vehicle network topology with two
CAN networks connected through an Ethernet network.
The second topology shown in Figure 8(b) is based on
central-gateway architecture where there is a single cen-
tral gateway connecting multiple CANs (9 CANs in this
example). Figure 8(c) shows an advanced topology that is
used in modern vehicles. It is based on central architectures
where an Ethernet switch connects different networks. On
the other hand, the topology shown in Figure 8(d) is a more
complicated one and it is based on a real car prototype, i.e.,
RECBAR [33].

For each topology G, Procedure 1 is used to check if
the topology is identifiable or not. If not, Algorithm 5 is
used to transform it into an identifiable one. The resulting
topologyGi is then checked for optimality, if the topology is
not optimal, Algorithm 7 is used to optimise it. The number
of links 
Go in the resulting optimised topology Go is thencompared with the minimum number derived in Theorem 4
(i.e., 2� + 1). If the topology is already identifiable (or
optimal), then Gi = G (or Go = G).

The results are shown in Figure 9. The results here are
normalised by the original network weight. For the first
topology shown in Figure 8(a), the identifiability algorithm
resulted in an added weight of only 1% of the original
topology, and the resulting topology is already optimal with
2� + 1 links. For the topology shown in Figure 8(b), the
identifiability check indicated that the topology is already
identifiable, however, it is not optimal. The optimisation
algorithm then reduced the number of nodes and links by 6%.
On the other hand, the topology shown in Figure 8(c) is not
identifiable and hence the transformation algorithm resulted
in adding only three nodes as well as links (equivalent
to 3% of the original topology weight). And the result-
ing identifiable topology is already optimal. The RECBAR
topology shown in Figure 8(d) is unidentifiable. Using the
identifiability algorithm, only restructurable links are used
without adding any extra weight, hence the same weight for
the identifiable topology Gi. However, this topology is not
optimal. Using the optimisation algorithm, the weight was
reduced by 2% of the total original weight.

The above results show the effectiveness of the proposed
transformation algorithms in achieving a fully identifiable
topology while minimising the weight cost.
7.3. Comparison with Existing Solutions

It is important to mention that the monitoring solutions
in the existing literature do not focus on the internal moni-
toring of the vehicle network. This is, as mentioned earlier,
because it is not possible to access the internal networking
elements. What they focus on instead is monitoring the end-
to-end traffic and its performance. In this work, we compare
our network tomography monitoring with two of the state-
of-the-art monitoring solutions: OTIDS [12] and COIDS
[13]. In particular, we highlight the advantage of network
tomography in terms of the number of nodes participating in
the monitoring process as well as the number of monitoring
messages. In addition, we compare the number of uniquely
identifiable links with partial network tomography [26].

Figure 10(a) shows the number of monitoring nodes |m|in each of the topologies shown in Figure 8 (where G, Gi,
Go are the original, identifiable and optimised topology,
respectively). The results here are also normalised by the
original network size. It is clear that all approaches utilise
fewer number of nodes as monitors compared to the total
number of nodes in the network. Assuming that each CAN
is connected to one CAN node, both OTIDS and COIDS use
the same number of monitors. They use an additional node
physically plugged into the CAN bus in order to monitor its
traffic while the other edge nodes transmit the monitoring
messages. Therefore, for both, the number of monitoring
nodes is | + 1|. For the second topology, the number of
monitoring nodes is fewer than the number of total nodes
in the topology by 6. In contrast, NT uses fewer number
of monitors (in G) as it only needs || monitors. However,
in Gi, due to the potential increase in the number of nodes
during the transformation process, the number of monitors
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(a) (b)

(c)
Figure 7: Optimisation results: (a) number of added nodes and links after transformation into Go, (b) comparison with the
theoretical minimum number of links in an identifiable topology, and (c) ratio of additional weights to the original topology
weight.

s1g1 g2c1 c2

t1

t2

e1

e2e3

e4e5 e6

(a)

g1

c1 c4. . . c9. . .

e1
e4 e9

(b)

s1

g1
g4. . . g9

. . .

c1
c4

c9
. . . . . .

e1
e4

e9

e10
e13

e18

(c)

s1s2 s3

g1 g4. . . g9. . .t1

t2

t3 t4

t5

t6

t7

c1 c4 c9. . . . . .

e1 e2

e3

e4e5 e6

e7

e8e9

e10
e13 e18

e19 e22 e28

(d)
Figure 8: In-vehicle network topologies before transformation. (a) simple in-vehicle network, (b) in-vehicle network topology with
central-gateway, (c) topology with central Ethernet switch, and (d) Ethernet backbone within the RECBAR car [33]. ci represents
CAN node(s) and ti represents Ethernet node(s).
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Figure 9: Results of proposed algorithms applied to real in-
vehicle network topologies.

could be increased too. This is specifically clear in topolo-
gies (a) and (c). On the other hand for Go, the number of
monitors usually decreases as shown for topology (d) where
the number of monitors was decreased by 2.

Let Δ and Δm be the total number of normal messages
and the total number of monitoring messages. Then we can
see that the number of monitoring messages is constant
using NT as depicted in Figure 10(b) (the results are for the
topology (d)). This is because NT only needs � number of
messages which is equivalent to (||2

), hence it only depends
on the number of edge nodes in the topology and not the
number of unique message IDs. For OTIDS and COIDS
they use all the unique message IDs in the monitoring with
OTIDS doubling this as it sends both request and reply mes-
sages of each ID. Thus, the number of monitoring messages
in OTIDS and COIDS relies on the total number of unique
messages in the network and is not affected by the topology.

Note that OTIDS and COIDS do not monitor the internal
network as NT. Therefore, we cannot compare the number
of identifiable links using NT with these approaches. How-
ever, we can compare the full network tomography (FNT)
approach proposed in this paper with the partial network
tomography (PNT) proposed in [26]. The results are shown
in Table 2 where the ratio of the uniquely identifiable links.
For all the topologies, FNT can uniquely identify all the
links. For topology (b), PNT is not needed as the topology
is already identifiable so even using PNT all links will be
identifiable. However, for other topologies, a small ratio
of links can be uniquely identified using PNT except for
topology (c) where no links can be identified. This is because
the topology is unidentifiable with all nodes in  having
degree < 3.

These results show that a fully identifiable topology is
needed to monitor the overall network performance includ-
ing the internal elements. This is important to identify any
failure or risks that occur to the network, especially to the
internal elements that are hard to directly monitor.

Table 2
Ratio of uniquely identifiable links using Partial Network
Tomography (PNT) and Full Network Tomography (FNT).

Topology PNT FNT

(a) 0.25 1.00
(b) 1.00 1.00
(c) 0.00 1.00
(d) 0.33 1.00

8. Conclusion
Network tomography has proven to be successful for

monitoring different types of networks, including in-vehicle
networks. However, the applicability of network tomography
requires a fully identifiable topology under the existing mon-
itor placement constraint. For in-vehicle networks, such con-
straint is translated into having only edge nodes being able
to monitor the network, while OEMs often restrict access
to the (internal) network devices they provide. Under this
constraint, this work extensively studied the identifiability
problem of in-vehicle networks and analysed the conditions
required to achieve a fully identifiable topology. Further-
more, based on the derived theoretical results, we proposed a
transformation algorithm that transforms any given topology
into an identifiable topology where monitoring nodes are the
edge nodes. The resulting topology, however, is not guaran-
teed to be optimal (with a minimum number of links). For
this, we further proposed another transformation algorithm
that transforms the identifiable topology into optimal with a
minimumnumber of linkswhilemaintaining the identifiabil-
ity property. Evaluation results on both random and real in-
vehicle network topologies showed the effectiveness of such
algorithms with minimal added weight, better monitoring
overhead, and full identifiability ratio, as compared with
other monitoring solutions.

Moreover, these algorithms can support the gradual
transformation of existing in-vehicle network topologies
where designing new topologies from scratch can be ex-
tremely costly. The focus of the current work was to establish
in-vehicle network topologies that can benefit from network
tomography in monitoring the overall network without the
need to access the internal networking elements. However,
the resulting, identifiable topologies are not robust enough
against malicious behaviour. In other words, if a link within
the network has failed, due to an attack for instance, the
network cannot react to reroute the traffic passing through
such link due to the lack of redundancy support. Therefore,
one of our future works is to enhance the topology with
redundancy capabilities so that the network becomes fail-
operational.
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