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Abstract—The collaborative path planning and scheduling can
overcome the limitations of single vehicle intelligence to obtain a
globally optimal decision strategy in cognitive internet of vehicles
(CIoVs). The collaboration of vehicles necessitates the exchange
of environmental and decision information, generating massive
collaborative computing tasks with strict latency requirements.
Leveraging mobile edge computing (MEC) technology, computing
tasks can be processed near the vehicles to reduce latency.
However, traffic congestion and computational load imbalance
seriously affect traffic efficiency and computational latency. In
hybrid driving scenarios, it is challenging to fulfill the diverse
service requirements of vehicles with different intelligence levels.
Moreover, non-collaborative tend to result in traffic congestion
due to vehicle aggregation effects, while centralized solutions
lack flexibility and have high computational complexity. To
address these concerns, a distributed multi-agent reinforcement
learning (DMARL) algorithm is proposed for collaborative path
planning and scheduling in a blockchain-based collaboration
framework. In this framework, we model the communication,
traffic situation and task processing of the system and formulate
a joint optimization problem to minimize both travel time and
computation latency. Last, we convert the scheduling problem
for different types of vehicles into Markov decision processes
(MDPs) and propose Q-learning-based DMARL algorithm to
achieve proactive load balancing of both road infrastructures
and MEC nodes (MECNs). Simulation results demonstrate that
the proposed approach outperforms the comparison schemes in
terms of load balance indexes of roads and MECNs, travel time,
and computation latency.

Index Terms—Cognitive Internet of vehicles, mobile edge com-
puting, path planning and scheduling, multi-agent reinforcement
learning, load balancing.
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THE cognitive Internet of vehicles (CIoVs) introduce cog-
nitive engines to perceive the traffic environment and net-

work status which can assist the path planning and scheduling
of vehicles [1]. The collaborative path planning and scheduling
of different types of intelligent vehicles requires analysis of
a large amount of onboard and environment perception data
for decision making, which will generate a large number of
computing tasks and consume numerous computing resources.
Meanwhile, the intelligent vehicles with computing power
need to efficiently handle complex autonomous driving tasks
to improve traffic efficiency and reduce traffic congestion.
However, vehicles with constrained storage and computing re-
sources are not sufficient to handle these explosive computing
tasks. Due to the limited capacity and high energy consump-
tion of vehicles, a large number of computing tasks need to be
offloaded to mobile edge computing nodes (MECNs) deployed
at the roadside for processing [2].

In hybrid driving scenarios, the vehicles with different
levels of intelligence, such as connected automated vehicles
(CAVs) and connected ordinary vehicles (COVs) have dif-
ferent requirements and priorities for computing and traffic
services [3]. Furthermore, the traffic efficiency and computing
task processing latency are closely affiliated with the traffic
situation and the computing load on the MECNs. However,
the imbalanced distribution of vehicles and computation loads
often leads to road congestion or overload of MECNs in
CIoVs, which will seriously affect the traffic efficiency and
computational latency of vehicles [4], [5]. In addition, the
unbalance distribution and mismatch of resources and demands
will also cause underutilization of resources, thus affecting
system performance. To improve the performance of intelligent
transportation systems (ITSs) powered by CIoVs, the intelli-
gent path planning and scheduling of vehicles are essential to
reduce the travel time and task processing latency for various
types of vehicles [6], [7].

On the other hand, due to the selfish behavior of individ-
uals, the independent decision making approach may cause
secondary congestion by navigating excessive vehicles to non-
congested road sections. It will lead to an aggregation effect of
vehicles thus causing the traffic congestion and computational
performance degradation. The decision of vehicles affects
the environment state, which in turn influences the decision
of other vehicles. Therefore, the non-collaborative approach
cannot obtain a globally optimal scheduling policy. The col-
laborative decision making among vehicles provides a solution
for obtaining global optimal path planning and scheduling

https://orcid.org/0000-0002-1067-1786
https://orcid.org/0000-0001-8824-4007
https://orcid.org/0000-0003-2143-4003


2

strategy [8]. However, centralized solutions increase computa-
tional complexity and mismatch with the flexibility needs and
temporal relevance of decisions. In addition, effective vehicle
collaboration requires ensuring trustworthiness of shared infor-
mation. Blockchain with the characteristics of decentralization,
immutability, auditability, and anonymity, ensuring that the
information on the chain cannot not be tampered with, thus
providing a credible information base for vehicle collabora-
tion and traffic accident determination [9], [10]. Leveraging
blockchain technology to perform secure information sharing
can facilitate distributed collaborative decision making for
ITSs [11], [12]. However, blockchain with high computation
and communication overhead is difficult to apply directly to
CIoVs considering the cost and efficiency issues. Furthermore,
current research efforts are mainly focused on reducing travel
time and lacks joint optimization with the computation latency
in CIoVs, ignoring the diverse service requirements of differ-
ent types of vehicles in the hybrid driving scenarios.

To address these issues, we consider a hybrid driving scenar-
ios and propose a distributed multi-agent reinforcement learn-
ing (DMARL) algorithm for collaborative path planning and
scheduling in blockchain-based CIoVs. We utilize blockchain
to build a collaborative framework based on our prior work
[13] to facilitate distributed collaborative decision making in
CIoVs. In the framework, we build a communication model for
information transmission and analyze the factors influencing
the consensus latency of vehicle collaboration. In hybrid
driving scenarios, we analyze traffic efficiency and compu-
tational performance of different types of vehicles to satisfy
diverse service requirements for ITSs. Then, we formulate a
joint optimization problem to minimize both travel time and
computation latency. To solve the problem, we propose a Q-
learning-based DMARL algorithm to find the globally optimal
path and scheduling strategy for proactive load balancing of
road infrastructure and MECNs. The main contributions of this
paper are as follows:

• We propose a blockchain-based collaboration framework
to support global collaborative decision optimization of
vehicles. The collaborative decisions are recorded as
transactions in the block, which facilitates the credible
collaboration and helps in traffic incident tracing and
investigation.

• We consider a realistic hybrid driving scenario and ana-
lyze the collaborative consensus latency of the distributed
decision process. For the traffic and network environ-
ments, we model the communication, traffic situations
and computational task processing to satisfy the diverse
service requirements of different types of vehicles.

• We formulate a joint optimization problem based on the
established models to minimize travel time and computa-
tion latency. Furthermore, we devise the scheduling prob-
lem as Markov decision processes (MDPs) and propose
a Q-learning-based DMARL algorithm for collaborative
path planning and scheduling to achieve proactive load
balancing of both road infrastructure and MECNs.

• Extensive experiments are conducted and discussed to
evaluate the effectiveness of the proposed algorithm

compared with other benchmark schemes regarding load
balancing indexes, travel time, and computation latency.

The rest of our work is organized as follows. Section II
introduces related works. Section III presents the collaboration
framework for collaborative path planning and scheduling.
Section IV discusses the system model and analyzes the
collaborative consensus latency for problem formulation. In
Section V, the proposed solution of Q-learning-based DMARL
algorithm for collaborative path planning and scheduling is
presented in detail. Section VI discusses the simulation results.
Finally, we conclude this paper in Section VII.

II. RELATED WORKS

In this section, we investigate the related works on path
planning and load balancing, blockchain for information shar-
ing, and multi-agent reinforcement learning in vehicular net-
works, respectively.

A. Path Planning and Load Balancing in Vehicular Networks

To avoid road congestion, Sun et al. [6] proposed a path
planning algorithm to obtain the shortest travel time and
maintain global load balancing based on the prediction of
average travel velocity. Lin et al. [14] proposed a social
vehicle route selection algorithm to find the optimal route for
vehicles to reduce traffic congestion and manage traffic flow.
Li et al. [4] proposed a proactive load balancing approach
to enable efficient cooperation among mobile edge servers
based on the predicted traffic situation in vehicular networks.
Pan et al. [15] proposed a distributed rerouting system for
congestion avoidance in which a large portion of the rerouting
computations are offloaded on vehicles to accelerate the rerout-
ing process. Xie et al. [16] investigated a joint optimization
problem of vehicle data offloading and route selection to
improve the throughput and reduce the travel time of vehicles.
Dai et al. [17] proposed an offloading scheme considering
the load balancing and resource allocation of the vehicular
edge computing system to maximize the system utility. Li
et al. [18] proposed an online reinforcement learning based
load balancing method in vehicular networks by observing
the characteristic of urban traffic flow. Most of the works
investigated path planning and load balancing methods to
avoid road congestion. However, they mainly considered the
performance optimization of vehicle traffic efficiency, which
cannot meet the service requirements of different vehicles
in hybrid driving scenarios. In addition, due to the lack of
information interaction and analysis of the impact of vehicle
decisions on the environment state, individual decision cannot
effectively address the aggregation effect of vehicles.

B. Blockchain for Information Sharing in Vehicular Networks

Blockchain provides an effective solution to facilitate the
sharing of information in the distributed vehicular networks
[3], [19]. A lot of works have focused on knowledge and
information sharing based on blockchain in vehicular networks
[20]–[22]. Blockchain enables intelligent vehicles to collabo-
rative inferences and makes decisions by sharing information
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and knowledge in a secure and privacy-preserving manner.
Fu et al. [12] utilized vehicular blockchain to support the
knowledge transfer of deep reinforcement learning (DRL)
for autonomous lane-changing systems, which improved the
driving security of vehicles. Song et al. [3] proposed a
blockchain-based positioning error sharing model to improve
the positioning accuracy of common vehicles through a deep
neural network (DNN) algorithm. Chai et al. [20] proposed
a hierarchical blockchain framework for knowledge sharing
in distributed vehicular networks, which facilitated vehicles
learning environmental data through machine learning meth-
ods and sharing the learning knowledge. He et al. [21]
employed blockchain to build a decentralized machine learning
system that enables CAVs to obtain a better global model.
Jiang et al. [22] proposed a blockchain-enabled distributed
deep learning model sharing approach assisted by MEC to
improve the object detection performance of autonomous
driving systems. Blockchain improves the trusted sharing of
information in CIoVs. However, these works did not consider
the collaborative path planning and scheduling in vehicular
networks, which are still in the preliminary stage.

C. Multi-Agent Reinforcement Learning in Vehicular Net-
works

Multi-agent reinforcement learning based algorithms facil-
itate intelligent vehicles to make the correct action strategies
to improve the performance of ITSs in the complex traffic
environment. Lin et al. [23] designed a deep Q-learning (DQN)
based distributed multi-agent reinforcement learning model to
solve the online routing decision problem of vehicles in the
software-defined IoVs. Guillen et al. [24] proposed a multi-
agent deep reinforcement learning (MADRL) method that
enables the collaborative movement of CAVs at intersections to
enhance the capacity of autonomous intersection management
systems. Ren et al. [25] proposed a multi-agent reinforcement
learning model based on the encoder-decoder framework for
vehicle path planning, which optimized the route length and
travel time simultaneously. Qin et al. [26] proposed a multi-
agent reinforcement learning approach based on an actor-critic
algorithm to perform dynamic transportation task assignments
for vehicles in the urban transportation system. Kwon et
al. [27] proposed a multi-agent deep deterministic policy
gradient (MADDPG) approach to improve the throughput of
connected vehicles in vehicular networks. Although the above
works have achieved satisfactory results in improving the
performance of advanced applications in vehicular networks,
they did not consider the interaction among intelligent vehicles
with autonomous decision making capabilities, which cannot
satisfy the low latency and flexibility requirements of large-
scale collaboration scenarios in CIoVs.

III. DISTRIBUTED COLLABORATION FRAMEWORK FOR
COLLABORATIVE PATH PLANNING AND SCHEDULING

This section introduces the distributed collaboration frame-
work for collaborative path planning and scheduling in
blockchain-based CIoVs, including the system architecture and
collaboration and consensus processes.

TABLE I
MAIN NOTATIONS

Notation Definition

N ,M,V Set of vehicles, MECNs, and collaborative vehicles
Cpro

n Computation resources provided by vehicle n
Creq

b Computation resources required for block generation
Cava

m Available computing resources of MECN m
Ng Number of vehicles on road section g
Γnm Communication rate of vehicle n access to MECN m
hn,m Channel gain between vehicle n and MECN m
Bm Total bandwidth
an Node selection factor
Db Data volume of the generated block
Dg Vehicle density of road section g
vg Maximum velocity limit of road section g
Fg Vehicle traffic flow of road section g

ajn selection factor of CAV n for task j
bnm Selection factor of MECN m for CAV n

Cj
min Minimum computation resources allocated to task j

Na Number of collaborative vehicles

A. System Architecture

Fig. 1 shows the system architecture for collaborative path
planning and scheduling in blockchain-based CIoVs. Collab-
orative path planning and scheduling not only selects the
optimal path for different types of vehicles in hybrid driving
scenarios, but also optimizes road congestion and MECN load
through a reasonable scheduling strategy to achieve proactive
load balancing of both road and MECNs. The vehicle set
is denoted by N = {1, 2, . . . , n, . . . , N}, and the MECNs
set is represented as M = {1, 2, . . . ,m, . . . ,M}. In hybrid
driving scenarios, the CAVs and COVs act as mobile ter-
minals with different communication, computing, and control
capabilities, have different driving and service requirements.
Among them, CAVs have a large number of computing tasks
with low latency requirements to support secure autonomous
driving systems [28]. Meanwhile, COVs with human drivers
are more focused on improving the driving experience and
reducing travel time. The CAVs and COVs set are denoted as
V =

{(
V cav
1 , V cav

i , · · · , V cav
q

)
,
(
V cov
1 , V cov

j , · · · , V cov
N−q

)}
.

The micro base stations or roadside units (RSUs) as MECNs
are deployed at each road section g in urban areas and
equipped with edge computing servers to provide latency-
sensitive computing services [29], [30]. In addition, vehicles
can utilize distributed edge computing resources for model
training through edge learning, avoiding the dependence and
limitation on centralized servers, and can efficiently support
large-scale collaborative decision making among vehicles [31].
The CAVs with limited computing resources offload latency-
sensitive and computation-intensive tasks to the MECNs.
Meanwhile, the macro base station connects to the remote
cloud server to provide latency-insensitive services for vehi-
cles. Each MECN serves one road section area and multiple
vehicles. Vehicles can be divided into different clusters as
batch collaborative units and each vehicle is served by one
MECN in a timeslot within the coverage of MECNs. The main
notations in this paper are illustrated in Table I.
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Fig. 1. System architecture of collaborative path planning and scheduling in blockchain-based CIoVs.

B. Security of Blockchain-Based Collaboration Processes

The proposed blockchain-based collaboration approach uti-
lizes authorization and credibility evaluation mechanisms to
ensure the security of the system. First, the Certificate Au-
thority (CA) authorizes the collaborative vehicle nodes and
distributes keys. The CA-authorized vehicle n receives an
asymmetric public-private key {Kpu

n ,Kpr
n } and an anonymous

identity for identity verification and authorization manage-
ment. The Kpu

n and Kpr
n are the public key and private key

of collaborative vehicle n respectively. To ensure the security
and reliability of vehicle collaboration information, the sender
performs a hash operation on the decision message and uses
Kpr

n encryption to generate a digital signature. The receiver
exploits the sender’s public key Kpu

n to decrypt the digital
signature and verify whether the sender’s identity is legitimate.
This process compares the hash value of the shared decision
data through a hash operation to ensure the integrity of the
received message and verify whether it has been tampered
with, destroyed or forged. In addition, to ensure security
and resist malicious attacks in the network environment, the
proposed blockchain system evaluates node credibility through
our proposed credit-based delegated byzantine fault tolerance
(CDBFT) algorithm, thus eliminating security issues caused by
malicious node interference [13]. The credit of consensus node
MECNs changes based on the normal and abnormal behavior
of the consensus process. Abnormal or malicious attacks by
consensus nodes will be punished and their credit value will be
reduced. Therefore, the credibility of consensus node i can be
obtained is Ri = η1R

O
i − η2RU

i . Among them, η1 and η2 are
weight coefficients, RO

i and RU
i respectively represent normal

and abnormal behaviors that affect the credibility of consensus
node i. By adjusting the coefficient η2, a more stringent
penalty strategy can be obtained [13]. Unlike other existing

consensus protocols of DBFT [32] and practical byzantine
fault tolerance (PBFT) [33], during our proposed consensus
process, candidate consensus nodes with higher credibility
ranking priority are selected to participate in the consensus
process to resist malicious attacks. Assuming that the number
of the selected consensus node set is Nc, the maximum number
of fault-tolerant nodes is f = (Nc − 1)/3. When the voting
confirmation message is not less than Nc−f , the proposed new
block completes the consensus, thereby ensuring the security
and efficiency of the blockchain system [13], [32].

1) Distributed Decision Process: As shown in Fig. 2, we
design a collaboration framework based on our previous work
[13] in blockchain-based CIoVs to support an auditable, trace-
able, and trusted collaborative path planning and scheduling.
The consortium blockchain is exploited and the consensus
process utilizes our proposed CDBFT algorithm in [13] taking
into account the energy consumption and time efficiency.
We introduce credibility evaluation and penalty mechanisms
to stimulate participants to behave honestly and make them
comply with the consensus rules. In addition, the proposed
distributed collaborative decision making and the consensus
process of the blocks are carried out simultaneously, which
ensures the efficiency and data security of collaborative path
planning of vehicles. Furthermore, asymmetric encryption
technology and hash function are utilized to verify the authen-
ticity of decisions and ensure the system security [12], [33].
During the collaboration process, the MECNs on the roadside
update the environment state and perform collaborative deci-
sion consensus simultaneously. The processes of collaborative
path planning and scheduling are as follows:

• Firstly, the vehicles perform path planning using Q-
learning algorithm based on the current state of the
environment and share the signed decisions with the
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nearby cognitive engines deployed at MECNs.
• Then, if the decision information passes validation, the

cognitive engines update the environment states concern-
ing traffic situations and computation loads based on the
decisions. The other collaborative vehicles dynamically
adjust the reward function according to the updated
environment state.

• Finally, all collaborative vehicles obtain the global opti-
mal decision and MECNs package them into new blocks
for consensus to achieve consistency. The distributed
decision making and consensus process on blocks are are
executed in parallel.

2) Consensus Process: The consensus process of the pro-
posed CDBFT consensus mechanism is shown in Fig. 3.

a) Pre-Prepare: The leader node packages the validated
decision transactions into a new block proposal and broadcasts
the unconsensus new block to other consensus nodes for
verification and conformation.

b) Prepare: the selected consensus node decrypts the new
block signature via public key to verify the integrity and the
legitimacy of the block. If the verification passes, the selected
consensus node votes for the new block signature and sends
a verification message to other consensus nodes.

c) Commit: All consensus nodes participating in the veri-
fication send a vote confirmation message conf to the leader
node. Once it confirms that no less than Nc − f voting
information is satisfied, it sends a confirmation completion
message to the consensus node.

d) Reply: After receiving the confirmation completion mes-
sage, the consensus nodes reply to the leader node to complete
the confirmation and enter the block generation stage.

e) Block Generation: Once the consensus node receives no
less than Nc − f confirmation completion message, it replies
to the leader node to complete the confirmation and enter
the phase to reach consensus, and the new block will be
permanently recorded on the blockchain [13], [32].

Specifically, take vehicle n as an example, vehicle n uses
private key Kpr

n to sign the decision digest to guarantee the
authenticity and legitimacy of the uploaded decisions. Then,
the receiving cognitive engine verifies the identity of the
sender with the public key Kpu

n and validate the hash to
ensure the integrity of the received message which cannot
be tampered with. For each consensus epoch, the authorized
MECNs form a group of verifiers based on their credibility.

The verifier group selects the packer based on the credibility
and resource status of the candidates, which is selected as
leader node MECN for block production. In the current epoch,
the leader node packs the shared decisions into a new block
with a common structure as shown in Fig. 2 [13]. The leader
node signs the new block with the private key Kpr

m and broad-
cast to other verifiers for consensus. If more than two-thirds of
the verifiers endorse the block, a consensus is reached and it is
added to the end of the chain. Once consensus is reached, the
collaborative decisions are permanently and securely stored
on the blockchain, which facilitates the traceability of traffic
events [34]. During the consensus process, the vehicle does
not acquire the decision information but adjusts its strategy
according to the expected environment state updates of the

cognitive engine. The participants reach consensus on collab-
orative path planning and scheduling strategies, resulting in
credible and traceable online proof of collaborative decision
results, which is beneficial for improving traffic management
and accident determination in CIoVs. If a traffic accident or
incident requires liability determination and investigation, the
service requester will pay the appropriate tokens to access the
information on the blockchain.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we construct the communication model, traf-
fic situation and computation load model, and task processing
model in CIoVs. Then, the factors affecting the collaborative
consensus latency are analyzed, and a joint optimization prob-
lem for proactive load balancing of both road infrastructures
and MECNs is formulated.

A. Communication Model

The environment state needs to be dynamically updated
based on the vehicle’s decisions to support vehicle collabora-
tion, which requires the transmission of decision information.
Therefore, the proposed collaboration framework utilizes the
PC5 and the Uu interface of 5G V2X [35] for vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-
to-network (V2N) communication. We consider the wireless
channel gain between vehicle n and RSU m is hn,m which
follows an exponential distribution due to Rayleigh fading, and
the transmission power from the vehicle to RSU is pn,m [36],
[37]. We assume that the total bandwidth is Bm(t), Nn,m(t)
denotes the number of vehicles served by RSU m, and Bm(t)
is dynamically assigned to the serving vehicles in a time slot t
[38]. In addition, to avoid inter-cell interference, neighboring
RSUs use different frequency bands. The communication rate
of the n-th vehicle served by m-th RSU can be written as

Γnm(t) =
Bm(t)

Nn,m(t)
log2(1+

pn,m|hn,m|2(t)
δ2 +

∑
k∈B,k ̸=m pn,k|hn,k|2(t)

),

(1)
where δ2 denotes the noise power of the additive Gaus-
sian white noise (AGWN) with zero mean and variance δ2

[39]. The fraction in parentheses represents the signal-to-
interference-plus-noise ratio (SINR) of n-th vehicle served by
m-th RSU. The

∑
k∈B,k ̸=m pn,k |hn,k|2 represents the inter-

ference from other micro base stations B in vehicular networks
[18]. Also considering the traffic service requirements of the
vehicle, we performed the traffic situation analysis below.

B. Traffic Situation and Computation Load Model

1) Mobility Model: We build a traffic situation model based
on the perception of the traffic environment. Assume the
number of vehicles on road section g at timeslot t is Ng(t),
the vehicle density of road section g can be derived as

Dg(t) =

∑Ng(t)
n=1 ln
Lgug

, (2)

where ln are the length of vehicle n, Lg is the length of the
road section g, and ug is the number of lanes. The estimated



6

…

Hash 
(Block k-2)

Timestamp

Decision of CAV1

...

Block k-1

Decision of COV2

Decision of CAVn

Hash 
(Block k-1)

Timestamp

Decision of CAV1

...

Block k

Decision of COV2

Decision of CAVn

Vehicular Blockchain

… …

Uploading 
decision
 ( )W t

Environment 
state 

Uploading 
decision
 ( )W t

Environment 
state 

V2V

Data 
sharing

V2I

V2V

V2I

Collaborative 
agents

COVsCAVs V2V V2I

Fig. 2. Blockchain-based distributed collaborative decision process.

Leader node

MECNs 1

MECNs 2

...

MECNs m

CIoVs 

system

Request Pre-Prepare Prepare Commit Reply
Block 

generation

Fig. 3. The consensus process.

velocity Vg is derived from the vehicle density of the road and
can be written as [15]

Vg(t) = vg

(
1− Dg(t)

Djam(t)

)
, (3)

where vg is the maximum velocity limit of road section g,
Djam is the vehicle density when the road g is congested.
Since the road with a fixed total length, we can derive
Dg(t)

Djam(t) =
∑Ng(t)

n=1 ln∑Njam
n=1 ln

=
Ng(t)
Njam

, Njam is the maximum number

of vehicles when road is congested. We derive the travel time
of vehicle n on the road section g as

Tg,n =
Lg

Vg
=

Lg

vg

(
1− Ng(t)

Njam

) =
Lg ×Njam

vg (Njam −Ng (t))
. (4)

2) Traffic Flow Model: We build a traffic flow model to
adapt to dynamic traffic situations. The volume of inflow and
outflow directly influence the congestion variation on the road,
which can be crowd sensed by induced loops, vehicular sensor
data, and cameras [4]. The traffic inflow and outflow on road
section g at timeslot t are fin,g (t) and fout,g (t), respectively.
We derive the traffic volume on road section g at timeslot t as

Ng(t) = Ng (t− 1) + fin,g (t)− fout,g (t) , Ng(t) ≥ 0. (5)

If fin,g(t) < fout,g(t), the number of vehicles on the road
is decreasing, which can reduce the level of road congestion
and load on MECNs. It keeps decreasing or even Ng(t) =
0 will cause the underutilization of computing resources and

road infrastructures, especially during rush hour. Conversely,
if fin,g(t) > fout,g(t), it increases the load on the MECNs
and road infrastructures. We define the change in traffic flow
as Fg(t) = fin,g(t)− fout,g(t), where Fg(t) > 0 denotes that
the inflow is greater than the outflow, |Fg(t)| indicates the
number of vehicles added to the road section g and vice versa.
For better computing performance and driving experience, the
ational scheduling of COVs and CAVs should be performed
to fully utilize the computing resources of MECNs without
causing congestion.

3) Computation Load Distribution: The computation load
of MECNs is tightly related to the vehicle density and the
proportion of CAVs which have various computing tasks such
as image recognition, object detection, decision making, etc.
Based on the perception of the traffic situation, we derive the
computation load distribution of the MECN m,

Loadm(t) =
∑χ(t)Ng(t)

n=1
Jn(t), (6)

where Jn(t) is the amount of computing tasks for CAV n,
and χ(t) is the proportion of CAVs. There will be a large
number of computing tasks offloaded to connected MECNs
as the vehicle density and the proportion of CAVs increase.
Since a large number of computational tasks of CAV require
the assistance of MECNs, the edge computing task processing
model is analyzed below.

C. Computing Task Processing Model

The latency of computing tasks offloaded to MECNs for
processing includes transmission latency, queuing latency,
and computing latency. It depends on the number of tasks,
bandwidth, and available computation resources of MECNs,
i.e., the central processing unit (CPU) cycles per second [31],
[40]. Assume CAV n has J different computing tasks, each
task has a data volume of Dj

n,m, the computation resources
required to complete task j is Creq

n,j . The computing tasks j
need to be completed within the specified maximum latency
T j,max
n . The transmission latency of CAV n for offloading the

computing tasks to MECN m can be written as

T tj
nm =

∑J

j=1
ajnbnm

Dj
n,m

ρΓnm
, (7)

where ρ denotes communication disturbance factor, ajn denotes
the selection factor of CAV n offloading the computing task
j to MECNs, ajn = 1 represents CAV n offloads the task
j, otherwise ajn = 0. Similarly, bnm = 1 represents CAV n
offloading computing tasks to MECN m, otherwise bnm = 0.

Task j has to queue if the available computation resources of
MECN m are less than Cj

min that the minimum computation
resource for task j. The MECNs take the First Input First
Output (FIFO) queue to process the arriving tasks. We assume
that the MECN m has a computing capacity of Ccap and Φ
computing tasks before task j. The queuing options ϖnj for
task j can be derived as

ϖnj =

1
(
Ccap −

∑Φ
i=1 C

i
nm

)
< Cj

min

0
(
Ccap −

∑Φ
i=1 C

i
nm

)
≥ Cj

min

, (8)
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where Ci
nm is the computing resources occupied by previous

task i, Cocc =
∑Φ

i=1 C
i
nm represents occupied computing

resources of MECN m. The queuing latency Twj
nm for the task

j from CAV n offloaded to MECN m can be expressed as

Tϖj
nm = ϖnj

∑Φ

i=1

Ci
n

Ci
nm

,∀i ∈ Φ, Ci
nm ≥ C

j
min, (9)

where Ci
n is the computation resources required for previous

task i. Then, we can derive the computation latency of CAV
n as

T cj
nm =

∑J

j=1
ajnbnm

Creq
n,j

Cj
nm

, Cj
nm ≥ C

j
min

Cj
nm =

Ccap − Cocc∑q−NΦ

n=1 Jn
,

(10)

where Cj
nm is the computation resource allocated to task j,

Creq
n,j is the computation resource required to complete task j

from CAV n, and NΦ denotes the number of service vehicles
corresponding to the previous Φ tasks. The total latency of
CAV n offloading the computing tasks to MECN m process
is achieved as

Tnm = T tj
nm + Tϖj

nm + T cj
nm

=
∑J

j=1
ajnbnm

Dj
n,m

ρΓnm
+ϖnj

∑Φ

i=1

Ci
n

Ci
nm

+
∑J

j=1
ajnbnm

Creq
n,j

Cj
nm

.

(11)

The total computation latency of tasks offloaded by all
CAVs is an indicator to evaluate the computing performance
of CIoVs, which can be derived as

Tm =
∑q

n=1

∑M

m=1
Tnm, (12)

where q is the total number of CAVs and M is the total number
of MECNs.

D. Collaborative Consensus Latency Analysis

The Collaborative consensus latency of blockchain-based
CIoVs system includes decision completion latency Tc, de-
cision transmission latency Tt, and block consensus latency
Tv which are associated with the number of collaborative
vehicles, communication, and computation resources. Assume
that the node selection factor is an, i.e., participating in the
collaboration, an = 1, otherwise an = 0. The decision
completion latency for path planning and scheduling can be
expressed as

Tc =
∑N

n=1

anC
r
n(ξ,Ω)

Cpro
n

, (13)

where Cr
n represents the computation resources required by the

path planning and scheduling algorithm, which is associated
with the algorithm complexity ξ and the state and action space
dimensions Ω owned by the vehicle n, Cpro

n is the computation
resources provided by collaborative vehicle n. The state and
action space dimensions Ω will affect the complexity of the
decision algorithm. The data volume of decision information
for each vehicle is Dn, we can derive the transmission latency
as follows,

Tt =
∑N

n=1
an

Dn

ρΓnm
. (14)

As shown in Fig. 3, in the consensus process, the block
consensus latency for collaborative decisions mainly includes
the block production latency, verification latency, and the la-
tency of verification results broadcasting and judgment among
verifiers. The leader node MECN 1 gets the privilege to pack
new blocks for proposal in a consensus epoch, the block
consensus latency can be written as

Tv(an, Db, C
ava
v ) =

Db(an)C
req
b

Cava
m

+
Creq

v

Cava
v

+ ϑDb |M| , (15)

where Creq
b and Cava

m represent the volume of computing
resources required for block production and available com-
puting resources of packager, respectively, and Db is the
packaged block size. The amount of computation required for
verification is Creq

v , and the available computation resources
of verifier v is Cava

v . Similar to that in [37], the latency
of verified block broadcast and verification results judgment
among verifiers is a function of the block size Db, the number
of verifiers |M|, and average verification speed of each verifier,
which denoted as ϑDb |M|. Specifically, ϑ is a predefined
parameter for the process of verification result broadcast and
judgment, which is related to the behavior of consensus nodes.
Attacks and interference from malicious consensus nodes will
seriously slow down the consensus process and are related
to the abnormal attack behavior of consensus nodes. Two
typical attack models are considered here, namely Blackhole
Miners attacks and Colluding Attacks. Blackhole miners are
when selected consensus nodes refuse to broadcast blocks or
perform verification during the consensus process. Collusion
attacks refer to malicious consensus nodes colluding together
to perform biased and erroneous consensus guidance and add
malicious blocks on the blockchain [41]. From the above
analysis, the collaborative consensus latency of blockchain-
based CIoVs systems can be written as

Tcon = Tc + Tt + Tv. (16)

It can be seen that Tcon is mainly associated with the node
selection factor an that participates in collaboration, decision
making algorithm complexity, and the available computation
resources Cr = {Cpro

n , Cava
m , Cava

v }. Therefore, the proposed
solution will focus on optimizing the above parameters, i.e.,
reducing the complexity of the algorithm and perform load
balancing of the MECNs. To meet the low latency demand of
CIoVs, the proposed consensus mechanism prioritize nodes
with abundant computing resources and high credit to com-
plete block generation and consensus [13]. Moreover, we
reduce the state and action space dimensions Ω of MARL
that affect the decision latency Tc by distributed collaboration
and control the node selection factor an that involved in col-
laboration considering a batch iterative update strategy. Next,
based on the developed model and analysis, we performed the
problem formulation.

E. Problem Formulation

The travel time and computing latency are associated with
the density of vehicles and the volume of computing tasks
offloaded on MECNs which can be optimized by proac-
tive load balancing of MECNs and road infrastructures. The
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large number of congested and idle road sections and the
MECNs indicate a high index of load disparity which will
degrade the system performance. Therefore, a reasonable path
planning and scheduling strategy is needed to complete the
load balancing of road and MECNs. We divide the map
area into different road sections G = {1, 2, . . . , g, . . . , G},
the vehicle density set of road sections and computing load
set of MECNs are D = {D1,D2, . . . ,Dg, . . . ,DG} and
L = {Load1, Load2, . . . , Loadm, . . . , LoadM}, respectively.
To evaluate the system performance, we define the road load
balance index B and MECNs load balance index L [42], which
can be expressed as

B(t) =

√∑G

g=1

∣∣Dg(t)− D̄(t)
∣∣2

G
, (17)

L(t) =

√∑M

m=1

∣∣Loadm(t)− Load(t)
∣∣2

M
, (18)

where Dg and D̄ are the vehicle density of the road section g
and the average vehicle density of all road sections; Loadm
and Load are the load of the MECN m and the average
load of all MECNs, respectively. The uniformity of load
distribution is inversely proportional to the index value B and
L, B ≥ 0, L ≥ 0, the smaller the value, the better the load
balancing performance. Travel time and computational latency
are closely related to vehicle density and computational load
of MECNs. Active load balancing of MECNs and road infras-
tructure enables efficient and rational utilization of physical
and cyberspace multidimensional resources. The collaborative
path planning and scheduling guides vehicles to lighter load
and non-congested road sections and minimize {B(t),L(t)}.

Since MECNs load balance index L directly affects the total
computing latency Tm, we formulate the joint optimization
problem to obtain the optimal collaborative path planning and
scheduling strategies Ψ = {ψ1, ψ2, ..., ψq, ψq+1, ..., ψN} as
follows:

P : arg
Ψ

Min

λ1B (t) + λ2Tm︸ ︷︷ ︸
joint optimization

+
∑

∆

∑
∆′
η
∣∣Ng→g′(t)

∣∣︸ ︷︷ ︸
Penalty:L1regularization


s.t. C a) : max

{
Cocc, C

req
n,j , C

i
nm, C

j
nm

}
≤ Ccap

b) : Tnm ≤
∑J

j=1
T j,max
n ,∀n ∈ N ,m ∈M

c) : Ng→g′ ≥ Fg(t) ≥ 0;Fg(t) > Fg′(t), g
′ ∈ R (g)

Ng→g′ ≤
∣∣Fg′(t)

∣∣ ;Fg′(t) < 0, g′ ∈ R (g) ,
(19)

where λ1, λ2 are optimization weights, Ng→g′(t) is the number
of CAVs dispatched from section g to adjacent sections g′ at
timeslot t, g′ ∈ R (g). R (g) denotes the adjacent road set
of road section g. The objective is to minimize the road load
imbalance index B and total computation latency Tm.

Meanwhile, to avoid over-scheduling, the number of vehi-
cles scheduled to a neighbor region needs to be minimized
while satisfying load balancing conditions. Specifically, if the
objective is only to consider minimizing the λ1B (t) + λ2Tm,

A/4 D/2 G/1

B/7 E/5 H/3

C/9 F/8 I/6

N1,GDW

2,GHW

3,DAW

4,DEW

5,HEW

6,HIW

7, ABW

8,EBW

9,EFW

10, IFW

 11,BCW

 12,FCW

Fig. 4. Road networks.

there may exist multiple optimal scheduling strategies result-
ing in redundancy and unnecessary expense while does not
significantly improve performance. For instance, two adjacent
regions g and neighbor g′ , the computation capacity is all
50, and the load of g is 70, g′ is 20. In this case, there
exist multiple optimal policies for g to schedule the load
to g′, i.e. (Ng→g′(t) = 20,Ng′→g(t) = 0), (Ng→g′(t) =
{21, 22, ..., 29},Ng′→g(t) = 0) , (Ng→g′(t) = 30,Ng′→g(t) =
0). However, all solutions except the first one are unnecessary.
Hence, a complexity penalty term

∑
g

∑
g′ η

∣∣Ns→g′(t)
∣∣ is

added to the formula, which is L1 regularization with parame-
ter η, avoiding unnecessary scheduling of vehicles to obtain the
unique solution [4]. The formulated joint optimization problem
is a complex non-linear programming (NP) problem. In the
following, we present our proposed solution of DMARL.

V. PROPOSED SOLUTION

This section introduces the proposed Q-learning-based
DMARL algorithm for collaborative path planning and
scheduling to solve the formulated joint optimization problem
in detail.

A. DMARL Modeling

As shown in Fig. 4, we adopt a road map from the
OpenStreetMap (OSM1) to construct the road networks, which
is formulated as a grid with vertices and edges. Since the state
of the traffic environment changes dynamically over time and
space with a strong short-term correlation, one-off planning on
a large area lacks effective foresight of the future environment.
Thus, we select a 3-row, 3-column road map in a limited area
and model it as a graph,

G(t) = ⟨V,E,W(t)⟩ , (20)

where V is the vertex, E is the edge, and W(t) is the weight
matrix of the edges which represents the computation load
distribution and traffic situation. Each edge represents a road
section, and the vertex is the intersection. The weight matrix
W(t) = {Vg(t), Loadm(t)} , g ∈ G,m ∈ M characterizes the
travel velocity and computation load of the MECNs, respec-
tively. As shown in Fig. 5, we formulate the path planning and
scheduling for different types of vehicles as two MDPs with

1https://www.openstreetmap.org/
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Fig. 5. Markov decision process for CAVs and COVs.

different reward functions, the numbering of the intersections
corresponds to {G=1,D=2,H=3,A=4,E=5,I=6,B=7,F=8,C=9},
where node G stands for departure point and node C for desti-
nation. The theoretical driving trajectories from origin to des-
tination corresponds to the road section serial number {1-3-7-
11,1-4-8-11,1-4-9-12,2-5-8-11,2-5-9-12,2-6-10-12}. Based on
the established MDPs, the collaborative agents, states, actions,
and rewards of the DMARL are introduced as follows:

1) Agents: The collaborative agents are the objects that
learn and explore from the environment, i.e., CAVs and COVs.

2) States: The states denote the location, category, and
environment information of the agent at each step. The states
of the collaborative agent n can be written as

Sn(t) = {positioni(t), classi,Wi(t)}i=1,··· ,Na
, (21)

where position represents the location of vehicles and MECNs
that process the offloading tasks, class is the category of the
vehicle, Na is the number of collaborative agents, and Wi(t) is
the state of environment which is changing dynamically with
the actions of the agents.

3) Actions: The MDPs has two discrete southward
and westward actions at each intersection, i.e.
(′′south ↓′′;′′ west←′′). The set of actions from
the origin to the destination of the agent n is
An = {an1, an2, · · · , anH}n=1,··· ,Na

. The collaborative
actions of multi-agent can be obtained as

ANa =

 a11 . . . a1H
...

. . .
...

aNa1 · · · aNaH


KNa

, (22)

where H is the action steps of each agent, and KNa is the
signature of all collaborative agents.

4) Environment State Update: As shown in Fig. 6, the
optimal Q-table of each agent is obtained by collaborative
decisions and environment state updates. Since the decisions
of agents affect the environment state and the decisions
of other agents. Therefore, the environment state needs to
be dynamically updated according to the action strategies.
The cognitive engine needs to update the environment state
W(t) based on agent action decisions ANa . We consider two
strategies, iterative update, which updates W(t) according to
the action of each agent, and batch update is based on the

group actions. The environmental state update according to
Equations (3) and (6) can be expressed as

W(t) =

{
[Vg(t), Loadm(t)]⇐ {act(An)} Iterative
[Vg(t), Loadm(t)]⇐ {acts [ANa

]} Batch
.

(23)
Then, the collaborative agents learn from the updated envi-

ronment states and find the optimal decision strategies with the
maximum rewards, maximizing global cumulative rewards.

5) Rewards: In the hybrid CIoVs scenarios, the rewards for
different types of vehicles associated with the velocity Vg and
the computation load Loadm of the MECNs m. Normalizing
the vectors Vg and Loadm, the rewards for different types of
agents i and j are achieved as

Rcav
i∈q (τ) =

∑
g∈G

(
λeVg + βe2−Loadm

)
e−

Fg(τ)

φ , (24)

Rcov
j∈N−q (τ) =

∑
g∈G

(
λeVg

)
e−

Fg(τ)

φ , (25)

where λ and β represent the weight coefficients, respectively,
and φ is the penalty factor, the total cumulative rewards of the
collaborating agents at step τ is

RMix (τ) =
∑q

i=1
Rcav

i∈q (τ) +
∑N−q

j=1
Rcov

j∈N−q (τ)

=
∑q

i=1

(∑
g∈G

(
λeVg + βe2−Loadm

)
e−

Fg(τ)

φ

)
+

∑N−q

j=1

∑
g∈G

(
λeVg

)
e−

Fg(τ)

φ .

(26)
Based on the above analysis, to solve the joint optimization

problem in Section IV-E, the optimization objective is con-
verted to maximize the total cumulative rewards RMix of all
collaborating agents. That is, the global optimal collaborative
path planning and scheduling strategy can be obtained by
maximizing the cumulative reward RMix. Therefore, the joint
optimization problem can be solved by maximizing RMix,

Max RMix (τ) S ⊆ G(t)
si(τ)∈ S, ai(τ)∈ A

(27)

B. Q-Learning-Based DMARL Algorithm

As shown in Algorithm 1, to maximize the to-
tal cumulative rewards RMix of collaboration, we pro-
pose Q-Learning-based DMARL algorithm for collabo-
rative path planning and scheduling. We design the
multi-agent reinforcement learning model as a tuple
{Na,S, (a1, · · · , aNa

) , (r1, · · · , rN ) , γ, Tp(s′ |s, a )}, S is
the environment states based on the established graph network
G(t) [43]. Where (a1, · · · , aNa), (r1, · · · , rNa) are the set of
actions and rewards of the agents, respectively, Tp(s′ |s, a ) is
the state transfer probability function representing the prob-
ability that the agent performs action a in the current state
s to transfer to the next state s′; γ ∈ [0, 1) is discount
factor representing the degree of decay for future rewards,
Rn (s

′ |s, a) is the reward function, representing the reward
for agent n taking action a in state s [44], [45].

The state, action, and reward update trajectory from
departure to the destination of each agent is (s, a, r) =
{sτ , aτ , rτ ; sτ+1, aτ+1, rτ+1; · · · ; sτ+H , aτ+H , rτ+H}. The
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Fig. 6. The Q-learning-based DMARL model.

reward r further away from the current state, the more severe
the reward decay. Q (s, a) is the state-action value function,
representing the reward for acting a in a particular state
s. The goal of each agent is to maximize the cumulative
discounted reward expectation,

Q∗(sτ , aτ ) = max
π

E [Rτ |sτ ∈ S, aτ ∈ A ] , (28)

where E represents expectation, which evaluates the merit of
acting aτ in the state sτ .

To achieve the maximum cumulative reward and the op-
timal strategy π∗(s) = argmaxa∈AQ

∗(s, a), we propose
the ε − greedy decay algorithm to explore and exploit the
action space efficiently. The agent randomly selects the actions
with probability ε and chooses the behavior corresponding to
the largest value Q∗ in the Q-table with probability 1 − ε,
Q∗ (s, a) = maxQ(s, a), a ∈ A. The action selection of the
agent can be expressed as

a =

{
argmax

a∈A
Q(s, a), probability 1-ε

random, probability ε
. (29)

The agent requires more exploration when it is unfamiliar
with the environment, i.e., ε decays as learning proceeds.
Since the agents start learning unaware of their environment,
thus require a large proportion of random actions to gain
experience. We design the dynamic decay strategy to adjust the
ratio of exploitation to exploration for ε− greedy algorithm.
As the number of episodes increases, the ε is gradually reduced
until the end of training or the minimum value is reached.
The dynamic decay update function of the ε− greedy can be
written as

ε(τ + 1) = ε(τ)× (1− EDe) , (30)

where EDe is the decay factor of ε. The ε value is updated
iteratively for each episode.

Based on the reward of environmental feedback, DMARL
algorithm employ time-difference to update the Q-value critic

Algorithm 1 The Q-Learning-Based DMARL Algorithm
1: Initialization: hyperparameters, N , M, and parameters
ε(·); Initialize traffic flow Fg(t), state matrix W(t), Q-
function Q(·).

2: for each agent do
3: Get current environment status updates W(t);
4: Establish the MDPs of CAVs and COVs;
5: for episode = 1 : max episode do
6: if ε > 0.01 then
7: ε = ε ∗ (1− EDe);
8: else
9: ε = ε;

10: end if
11: S = S0;
12: is terminated = False;
13: while is terminated ! do

14: a(τ) =

{
argmax

a∈A
Q(s, a), probability 1-ε

random selection, probability ε
15: Move every agent to the next state s(τ + 1) by

taking the action a(τ) and get rewarded R;
16: if s(τ + 1) != ’terminal’ then
17: Calculate Q target = r + γmax

a′∈A
Q (s′τ , a

′
τ );

18: else
19: Q target = R;
20: is terminated = True;
21: end if
22: Update Q′(sτ , aτ ) using Eq. (31);
23: s′ ← s(τ + 1);
24: episode = episode+ 1
25: end while
26: end for
27: if agent ∈ V cav then
28: Calculate Rcav

i∈q for CAVi using Eq. (24);
29: else
30: Calculate Rcov

j∈N−q for COVj using Eq. (25);
31: end if
32: Update environment state W(t) using Eq. (23);
33: Calculate total rewards RMix (τ) using Eq. (26);
34: end for

Q (sτ , aτ ). We derive the update strategy for the Q-value
function as follows:

Q′(sτ , aτ ) = Q(sτ , aτ )

+α


critic loss function︷ ︸︸ ︷

r + γmax
a′∈A

Q (s′τ , a
′
τ )︸ ︷︷ ︸

target

−Q(sτ , aτ )︸ ︷︷ ︸
estimation

 ,
(31)

where the part in brackets is the loss function and the learning
rate is 0 < α < 1.

C. Computation Complexity Analysis

For the centralized MARL approach, the dimensionality of
the Q-table grows exponentially as the number of collaborative
agents increases will result in slow convergence that cannot
satisfy the low latency requirements [38]. Each agent with
the sizes of states and actions |S| and |A|, respectively. Since
the agents need to explore all possible joint action cases, the
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TABLE II
THE SIMULATION PARAMETERS

Simulation parameters Value

Maximum velocity limit vg 60 Km/h
Learning rate α 0.9 [38]
Discount factor γ 0.9
Penalty factor φ 5
Epsilon greedy ε 0.9
Epsilon decay factor EDe 0.01
Reward weight λ, β [1, 1]
Maximum episode 120
Batch size 50
Section length 1Km
Number of lanes 3
Number of collaborative vehicles 200
CAV ratio χ 0.5
Vehicles of congested road Njam 300
Minimum computation resources Cj

min 0.1 G CPU cycles/s [46]
Computing capability of MECNs Cmax

m 100 GHz [47]
Computing workload for one-bit data 500 CPU cycle/bit [48]
SINR 20dB [49]
Data volume of task j Dj

n,m 0.5Mbits [48]
Bandwidth Bm 20MHz [31]

state and action space of Q-table for centralized multi-agent
Q-learning is Ωc

multi = |S|
Na × |A|Na , which is exponential

growth with the number of collaborative agents. Therefore, the
MARL with centralized learning algorithm is hard to achieve
online real-time collaborative decisions. In addition, due to the
dynamic nature of traffic demand in CIoVs, the centralized
solution does not match the temporal correlation of vehicle
decisions.

To deal with the dimensional explosion issue and reduce the
algorithm complexity, the proposed Q-learning-based DMARL
algorithm and iterative updating policy to obtain the optimal
solution quickly with low complexity. As shown in Fig. 6, each
agent corresponds to a Q-table of decision strategies with size
|S| × |A|, and the total distributed Q-tables dimension space
of all agents is Ωd

multi = Na × |S| × |A|, much smaller than
Ωc

multi = |S|
Na × |A|Na of centralized MARL.

VI. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we conduct experiments to evaluate the ef-
fectiveness of the proposed approach based on the established
road networks as shown in Fig. 4.

A. Simulation Settings

As shown in Fig. 4, we select a map with 2km × 3km
square area, which is pulled from OSM and mapped as a 3×3
road network. Each node represents an intersection and each
edge is a road segment. In order to achieve different vehicle
velocities of road sections and evaluate the performance of
the proposed algorithm under different parameters, we set
different traffic volume in the selected road section of the map
to be Ng1 = [80, 89, 110, 66, 70, 95, 30, 60, 26, 161, 88, 72]
and Ng2 = [75, 84, 105, 61, 65, 90, 25, 55, 21, 156, 83, 67] re-
spectively. Moreover, the traffic flow Fg is set to be Fg =
[−4,−3, 6,−5,−5,−4,−3, 1, 4, 5, 1, 1], Njam = 300. We
consider the number of MECNs M is 12 which are deployed
on each road segment to execute offloading computing tasks
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Fig. 7. The convergence of DMARL.

[46]. The total number of collaborative vehicles is Na = 200
and each CAV has 5 offloading tasks, J = 5 [50]. We perform
the simulations on a computer with Intel(R) Core(TM) i5-
8250U CPU @ 1.60 GHz, 8 GB 1600 MHz DDR4 RAM.
Table II summarizes the other main simulation parameters.
For the fairness of comparison in simulation, each scheme
adopts the same simulation parameters as Table II. To verify
the effectiveness of the proposed algorithm, we compare the
performances with the other schemes as follows:

• Non-collaborative scheme: Each vehicle makes decisions
individually without environmental state updates, as la-
belled as “Noncollaboration scheme” [23].

• Non-joint optimization scheme: The vehicles optimize
only the travel time without considering the computation
latency, as labelled as “RoadLoadoptimal scheme” [6].

• Random selection scheme: The vehicle selects the path
in a random way, rather than according to the traffic
situation and updated state of the environment, as labelled
as “Random scheme” [14].

• Proposed batch collaboration scheme: Collaborative vehi-
cles perform distributed collaborative decision making in
a batch update fashion where the environmental state is
updated in a batch-based manner, as labelled as “Batch-
Collaboration scheme”.

• Proposed collaborative scheme: Each vehicle makes col-
laborative decision based on a real-time iterative update
of the environmental state employing iterative update
strategy, as labelled as “Collaboration scheme”.
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Fig. 8. The global convergence of different schemes.

B. The Convergence of Proposed Algorithm

This subsection shows the training process and analyzes
the convergence of DMARL for different types of vehicles
in a hybrid driving scenarios. As shown in Fig. 7, both agents
CAVs and COVs can quickly converge at around 70 episodes.
Since they have different service demands and reward func-
tions, the optimal rewards for convergence are different. Fig.
7 (a) shows the training process of the agent CAVs, we can
find that the optimal cumulative rewards Rcav

i∈q (τ) = 39.3441
equals to the theoretical optimal value. The estimated long-
term discounted reward Q0 gradually converges to 34.0894
due to γ < 1. Similarly, Fig. 7 (b) shows the training process
of COVs. The optimal reward Rcov

j∈N−q (τ) = 9.1096, Q0 =
7.8817 which are all achieve the theoretical optimal value
for COVs. The above results show that different types of
vehicles are able to find the optimal decision strategy to meet
their service requirements, which provides a practical and
feasible basis for distributed collaborative decision making.
Fig. 8 shows the global convergence of different optimization
approaches. As shown in the Fig. 8, the “Noncollaboration
scheme” cannot converge to the theoretical value for the actual
updated environment state since it cannot obtain the state
updates caused by the decisions of other agents. The rewards
RMix obtained by the proposed “Collaboration scheme” and
“BatchCollaboration scheme” are closest to the theoretical
optimal value, which illustrates the rapid convergence of the
proposed distributed collaborative approach. The reason is
that the collaborative solutions can update the environment
state based on the agent’s decision to obtain the global
optimal strategy. The “RoadLoadoptimal scheme” has the
worst convergence due to its poor performance in terms of

computational latency and MECNs load balancing, as it only
considers the optimization of road load. The simulation results
demonstrate that the proposed approach is able to accurately
find the globally optimal path and scheduling strategy that
maximizes the cumulative reward RMix. In the following, we
will further verify the performance of the proposed approach
on each performance metric.

C. Consensus Latency and Throughput of Blockchain System

This subsection shows the consensus latency and throughput
of blockchain system. Since attacks by malicious nodes will
slow down the consensus process, the consensus latency under
untrusted conditions reflects the security of blockchain sys-
tems. To verify the security of blockchain system, we conduct
experiment to evaluate the consensus latency under different
number of consensus nodes compared with different protocols.
We select two consensus protocols for comparison, including
DBFT [32] and PBFT [33] consensus protocols. As shown in
Fig. 9, the proposed CDBFT consensus algorithm has achieved
the lowest consensus latency. Moreover, it can be seen that
with the increase of the credit node ratio, the consensus
latency gradually decreases. In addition, we conduct exper-
iments and verify the throughput of the blockchain system,
i.e., the number of decision transactions which successfully
reaching consensus per second [51], under the condition that
the consensus node number CNs is 30. It can be seen from the
Fig. 10 that our proposed CDBFT consensus protocol obtains
the highest throughput, which can process tens of thousands of
decision transactions per second. The simulation results show
that our proposed CDBFT consensus algorithm has the lowest
consensus latency compared with other consensus protocols,
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Fig. 10. Throughput of blockchain system.

indicating that our proposed consensus protocol can resist
attacks by malicious nodes. Furthermore, the results also show
that the proposed consensus protocol can efficiently support
the application of the proposed DMARL algorithm in large-
scale vehicle collaborative decision making scenarios.

D. The Effectiveness of Proposed Approach

Fig. 11 and Fig. 13 show the road load balance index B un-
der different parameters of Ng1 and Ng2, respectively. As can
be seen from the figure, our proposed collaboration approach
achieves a smaller value compared to the “Noncollaboration
scheme” and “Random scheme”. Moreover, all curves fall and
then rise as the number of vehicles increases. To explain, the
“Noncollaboration scheme” does not consider the impact of
vehicle decisions on the environment, and the selfish behavior
leads to the aggregation of vehicles. Meanwhile, the “Road-
Loadoptimal scheme” approach considers only the load of the
road networks, which is why it achieves the lowest B. The pro-
posed collaborative approach can perceive environmental state
updates caused by vehicle decisions, thus achieving a better
load balancing performance than other schemes. Fig. 12 and
Fig. 14 show the MECNs load balance index L under different
parameters. The results prove that the proposed algorithm
achieved better load balancing performance compare with
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Fig. 11. The road load balance index B (Ng = Ng1).
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Fig. 12. The MECNs load balance index L (Ng = Ng1).
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Fig. 13. The road load balance index B (Ng = Ng2).

other algorithms under different parameters of Ng1 and Ng2.
In contrast to Fig. 11 and and Fig. 13, the “RoadLoadoptimal
scheme” has the largest value indicating a severe imbalance
load distribution of MECNs, which will seriously affect the
computation latency of CAVs. The reason is that it ignores
the optimization of the computation load of MECNs in hybrid
driving scenarios. Our proposed collaborative approaches also
achieve the optimal results. To explain, the CAVs agents can
be scheduled to light-loaded MECNs based on load distribu-
tion and vehicle decisions, avoiding vehicle aggregation and
MECNs overload.
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Fig. 14. The MECNs load balance index L (Ng = Ng2).

E. The Travel Time and Computation Latency

In this subsection, we evaluate the performance of the
proposed algorithm on vehicle travel time and computation
latency compared with different optimization approaches. Fig.
15 shows the travel time for each vehicle. The proposed
approaches and the “RoadLoadoptimal scheme” are shorter
than other schemes. We also find that all curves increase
gradually with the increase of vehicles. The reason is that
the vehicle density of the road affects the vehicle velocity.
The roads will become congested as the number of vehicles
increases. The results show that the proposed collaborative
approaches can effectively carry out the load balancing of road
and avoid congestion caused by vehicle aggregation, which
promotes the reduction of travel time.

To further validate the global collaboration performance, we
compared the total cumulative travel time of the collaborating
agents. As shown in Fig. 16, the cumulative travel time of
“Noncollaboration scheme” has the longest travel time. The
proposed “Collaboration scheme” and “BatchCollaboration
scheme” are close to the “RoadLoadoptimal scheme” which
are shorter than the other schemes. This is because the
aggregation effect of the “Noncollaboration scheme” tends to
lead to secondary congestion on the roadway, increasing travel
time. Since “RoadLoadoptimal scheme” focuses only on opti-
mizing the road load, the shortest travel time is achieved. The
results show that our proposed approach can obtain globally
optimal paths and scheduling strategies to uniformly distribute
vehicles on the road network, thus efficiently utilizing road
infrastructure and reducing traffic congestion.

We evaluate the computation latency of CAV n regarding
Tnm and Tm of completing the offloaded tasks. Fig. 17 shows
the computation latency Tnm of each vehicle. It can be seen
that the proposed “Collaboration scheme” has the lowest com-
putation latency while the “Noncollaboration scheme” grows
exponentially with the increase of vehicles. The “Random
scheme” randomly selects roads without considering traffic
situations, which is why it has a longer computation latency
close to that of the “RoadLoadoptimal scheme”. To explain,
as the load on MECNs increases, the computation resources
allocated to individual tasks decrease.

Fig. 18 shows the total cumulative computation time versus
the number of collaborative vehicles. It can be seen that
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Fig. 15. The travel time of each vehicle.
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the “RoadLoadoptimal scheme” has the longest cumulative
computation time since it only focuses on optimizing the road
load balance index B and ignores the MECNs load balance
index L. The “Random scheme” also has a long cumulative
computation time since its random nature resulting in the
inability to obtain the optimal paths with a light computation
load. The proposed “Collaboration scheme” achieve the short-
est latency since it can perform globally optimal collaborative
scheduling and avoid overload of MECNs. The results also
shows that all curves rise dramatically with the increase of
vehicles while our approaches are still significantly lower than
other schemes. The above results demonstrate the effectiveness
of our proposed approach, which achieve better load balancing
performance to meet the traffic and computational demands of
different types of vehicles in hybrid driving scenario.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we consider a hybrid driving scenario and
propose a DMARL algorithm for collaborative path planning
and scheduling in blockchain-based CIoVs to satisfy the
diverse service requirements of different types of vehicles. We
design a blockchain-based collaborative framework to support
distributed decision making for global collaborative optimiza-
tion, effectively avoiding the aggregation effect caused by
individual decisions. By modeling the communication, traffic
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Fig. 17. The computation latency of each vehicle.
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Fig. 18. The cumulative computation time of collaborative vehicles.

situation and computational models, we analyze the distributed
collaborative consensus latency and formulate a joint opti-
mization problem to minimize both travel time and compu-
tation latency. Finally, to solve the problem, we reformulate
the scheduling of different types of vehicles as MDPs and
propose a Q-learning-based DMARL algorithm to obtain the
globally optimal collaborative path planning and scheduling
strategy and achieve proactive load balancing of both road
infrastructure and MECNs. Simulation results show that the
proposed approach achieves better performance compared with
the benchmark schemes in terms of load balancing indexes,
travel time, and computation latency. In future work, we
will consider an incentive scheme and explore the social
properties of vehicles to facilitate intelligent collaborations
among vehicles and safeguard the service requirements of
high-priority vehicles in CIoVs.
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