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Abstract—Vehicular edge computing (VEC) is a new com-
puting paradigm that enhances vehicular performance by in-
troducing both computation offloading and service caching,
to resource-constrained vehicles and ubiquitous edge servers.
Recent developments of autonomous vehicles enable a variety
of applications that demand high computing resources and low
latency, such as automatic driving, auto navigation, etc. However,
the highly dynamic topology of vehicular networks and limited
caching space at resource-constrained edge servers calls for intel-
ligent design of caching placement and computation offloading.
Meanwhile, service caching decisions are highly correlated to the
computation offloading decisions, which pose a great challenge
to effectively design service caching and computation offloading
strategies. In this paper, we investigate a joint optimization prob-
lem by integrating service caching and computation offloading
in a general VEC scenario with time-varying task requests. To
minimize the average task processing delay, we formulate the
problem using long-term mixed integer non-linear programming
(MINLP) and propose an algorithm based on deep reinforcement
learning to obtain a suboptimal solution with low computation
complexity. The simulation results demonstrate that our proposed
scheme exhibits an effective performance improvement in task
processing delay compared with other representative benchmark
methods.

Index Terms—Vehicular edge computing, service caching, com-
putation offloading, deep reinforcement learning.

I. INTRODUCTION

THE rapid development of Internet of Things (IoT) and
artificial intelligence (AI) has recently led to the emer-

gence of diverse computation-intensive and latency-sensitive
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vehicular applications, such as augmented reality (AR) navi-
gation and autonomous driving. However, offloading all the
computing tasks to the remote cloud results in a heavy
backhaul load and unacceptable latency. Through vehicular
edge computing (VEC) [1], vehicular users can offload their
tasks via vehicle-to-infrastructure (V2I) communications to
edge nodes to reduce response latency, which caters for un-
precedentedly exploding data traffic and increasingly stringent
requirements of vehicular applications [2].

Task computation requires both input task data from users
and program data installed on edges, which are defined as
content caching and service caching, respectively. Content
caching refers to caching of the input data needed and output
data generated (e.g., in computational or infotainment appli-
cations) at vehicles and edge nodes [3]–[7]. Since these data
dominate mobile data traffic, content caching at edge servers
can effectively alleviate mobile traffic on backhaul links and
reduce content delivery latency [3]. On the other hand, service
caching refers to caching the specific programs for task execu-
tion [8]–[14]. As a motivating example, in object detection, the
input data consists of videos and radar sensor data, and task
execution requires the corresponding object detection service
program to be cached in the vehicle or the edge server. The
input data of object detection service is typically unique and
hardly reusable for other executions. In comparison, service
program data in the cache is evidently reusable by future
executions of the same type of tasks. Because edge servers
have limited caching space, how to selectively cache service
program over space (e.g., at multiple edge servers) and time
resources for achieving optimum transmission and computing
performance is crucial for efficient task computation.

The design of optimal computation offloading and service
caching faces many challenges in vehicular networks. First,
vehicles and edge servers can only cache a small number
of service programs at a time due to limited storage space.
Thus, which service programs should be cached needs to
be decided judiciously. Second, the computing resources on
different edge servers may be unevenly distributed. It is critical
to balance the computation load by cooperative offloading.
Third, the computation offloading decisions and the service
caching decisions are closely correlated. Intuitively, we tend
to offload a task if the required program is already cached at
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the edge.1 Besides, the network status and available resources
of edge servers change dynamically during the movement
of vehicles. Therefore, it becomes significant and yet very
challenging to design an appropriate service caching and
computation offloading strategy in the VEC systems.

In this paper, we investigate a joint optimization of service
caching and computation offloading for a VEC system with
limited storage and computing capacities, taking account of
time-varying task requests and dynamic network topology. In
order to make full use of the limited caching and computing re-
sources of each node (i.e. vehicles and edge servers) as well as
the cooperative offloading between edge servers, we propose
a deep reinforcement learning (DRL)-based service caching
and computation offloading scheme to provide low-complexity
decision making and adaptive resource management. The main
contributions of this paper can be summarized as follows:

1) We design a novel edge service caching and computation
offloading framework with cooperation among the cloud, edge
servers and vehicles, which not only balances the computa-
tion load among edge servers, but also enables integration
of caching and computing resources combined with edge
intelligence.

2) We minimize the cumulative average task processing
delay over a long time-slotted horizon, considering dynamic
task requesting, offloading and service caching, as well as
dynamic channel conditions between vehicles and edge servers
at each time slot. To solve the formulated long-term mixed
integer non-linear programming (MINLP) problem, we pro-
pose an edge caching and offloading scheme based on deep
deterministic policy gradient (DDPG) [15] to efficiently make
decisions on task offloading and service caching.

3) We carry out extensive simulations to evaluate the
average task processing delay and energy consumption of
the proposed scheme in VEC. Numerical results demonstrate
that our proposed scheme can achieve better performances
compared with the other benchmark approaches.

The rest of the paper is organized as follows. We review the
related work in Section II. The system model and the problem
formulation are described in Section III. In Section IV, the
proposed scheme is presented in details. Section V provides
numerical results, and Section VI concludes this paper.

II. RELATED WORK

In the past few years, computation offloading in mobile edge
computing (MEC) has been intensively discussed [16]–[19].
Zhang et al. [16] minimize the average bandwidth consump-
tion with a novel bidirectional computation task model by joint
caching and computing offloading policy optimization. Tout et
al. [17] find the optimal dissemination of computational tasks
within MEC-based infrastructures while satisfying persona
needs on a wider range of devices and assuring minimal
additional fees imposed by remote execution. Multi-user multi-
task computation offloading and resource allocation for mobile
edge computing are proposed in [19]. For the task offloading
in VEC [1], [2], [20]–[24]. Tan et al. [2] propose a joint

1 In this paper, we use the terms “edge”, “edge node” and “edge server”
interchangeably.

communication, caching and computing strategy to minimize
the system cost. To guarantee the reliability of communication
systems, powerful error correction codes, such as low-density
parity-check (LDPC) codes, can be applied to enhance the
anti-noise and anti-fading capability [25]–[27]. Qiao et al. [20]
minimize the content access cost for a novel cooperative edge
caching framework. Ning et al. [21] design a mobility-aware
edge computing and caching scheme to maximize mobile
network operators’ profits. However, all these works are based
on the implicit assumption that all the services are available in
edge servers, which is impractical due to their limited storage
capacities.

Service caching, which refers to the caching of related
programs for computational task execution, can significantly
affect the performances of MEC systems since service caching
strategies and computation offloading strategies are always
coupled. There has been considerable research focusing on
joint service caching, computation offloading and resource
allocation for mobile users in MEC system [8]–[12]. Yan
et al. [8] propose an MEC service pricing scheme to co-
ordinate with service caching decisions and control wireless
devices’ task offloading behaviors in a cellular network. Ko
et al. [9] maximize a sum-utility for multi-mobile service
caching enabled MEC. Bi et al. [10] formulate a mixed
integer nonlinear programming (MINLP) that jointly optimizes
service caching placement, computation offloading decisions,
and system resource allocation to minimize computation delay
and energy consumption of mobile user. Zhang et al. [12]
investigate joint service caching, computation offloading and
resource allocation problem in a general multi-user multi-task
scenario and aim to minimize the weighted sum of all users
computation cost and delay cost. However, the joint caching
and computing strategy optimization in MEC systems cannot
be directly applied to VEC systems. The high mobility of
vehicles results in complicated and dynamic topology as well
as frequent server switching.

There have been emerging efforts on content caching and
computation offloading in VEC [20], [21], [28]–[31]. Tian
et al. [30] propose a collaborative computation offloading
and content caching method, by leveraging DRL for a self-
driving system. Wu et al. [31] propose a multi-agent based
reinforcement learning (RL) algorithm to make decisions on
task offloading and edge caching to optimize both service
latency and energy consumption of vehicles. The important
difference between content caching and service caching is
that the latter not only concerns storage capacity but also the
computing capacity. Thus, the service caching brings more
challenges to the VEC system design. To the best of our
knowledge, so far only a few works [13], [14] have inves-
tigated the problem of joint optimization of service caching
and computation offloading in VEC system. Tang et al. [13]
apply application caching to VEC to optimize the response
time for the outsourced applications while satisfying the time
slot spanned energy consumption constraint. The Lyapunov
optimization technology is adopted to tackle this constraint
issue. Finally, two greedy heuristic algorithms are incorporated
into the drift-plus-penalty based algorithm to help finding the
approximate optimal solution. Lan et al. [14] propose a fog-
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based vehicular architecture featuring computation offloading
with service caching and design the offloading strategies based
on a DRL algorithm to reduce the task computation delay and
energy cost. However, the limitation of storage and computing
resources in vehicles or edge servers is not considered in [13],
[14]. Based on the existing literature, service caching and
computation offloading scenarios involving vehicles and edge
servers with limited resources in VEC have not been explored.

In recent years, AI-based algorithms have been successfully
applied in numerous related works on emerging vehicular
applications and services which are mostly delay-sensitive.
This smart driving assistance thus can significantly improve
driving safety, reduce energy consumption, and enhance traffic
management efficiency [32], [33]. Specifically, RL and DRL
have been demonstrated to significantly improve the perfor-
mances of vehicular task offloading [14], [20], [21], [29]–[31],
[34]–[39]. Zhu et al. [35] propose a multiagent DRL-based
computation offloading scheme to minimize the total task exe-
cution delay of the considered system during a certain period.
Since current vehicular services always contain multiple tasks
with data dependency, a knowledge driven service offloading
framework is proposed in [36] by exploring the DRL model
to find the long-term optimal service offloading policy. Since
DRL agents can react to vehicular environment changes in
milliseconds to achieve real-time decision making, they have
superiority in complex and highly dynamic vehicular networks
with fast varying channels and computation load.

The above studies on VEC are mostly based on the assump-
tion that service programs are completely available in vehicles
or edge servers with limited resources, which is not always
feasible in practice. To the best of our knowledge, Refs. [13]
and [14] are the only existing literature that do not assume full
availability of service programs. However, they have not taken
the resource limitation into consideration. To fill this gap, we
aim at joint computation offloading and service caching, taking
full advantage of the limited resources of vehicles and edge
nodes as well as edge cooperative offloading to minimize the
average task processing time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first provide the system overview, com-
munication model, as well as the service caching and task
offloading model. Then we analytically derive the computa-
tion delay, energy consumption, and provide extreme value
analysis of single task processing delay and edge node energy
consumption. Last we present our problem formulation, which
is essential for service caching and task offloading scheme de-
cision making. The primary notations utilized in the following
are summarized in Table I.

A. System Overview

As illustrated in Fig. 1, we consider a general vehicular
network consisting of an edge pool (the set of edge nodes
are denoted as E = {1, 2, ...e, ...NE}), the cloud and a
number of moving vehicles (the set of vehicles are denoted
as V = {1, 2, ...v, ...}). Suppose that there are NK ser-
vice programs (e.g., executable .EXE files) corresponding to

TABLE I
PRIMARY NOTATIONS

Notation Definition
V The set of vehicles V = {1, 2, ...v, ...}
E The set of edge nodes E = {1, 2, ...e, ...NE}
K The set of service programs K = {1, 2, ...k, ...NK}
B The total bandwidth of each edge server
Bv,e(t) The bandwidth of edge server e allocated to vehicle v

in time slot t
dk The input data size of task k
θk The required storage space of service program k
SV
v (SE

e ) The storage at each vehicle (edge)
γv,e The signal-to-noise ratio from edge e to vehicle v
gv,e(t) The up-link gain between edge e and vehicle v in time

slot t
fV (fE) The fixed CPU frequency of each vehicle (edge)
κ The computing energy efficiency parameter
λ The nature of service application
cVv,k(cEe,k) The caching decision of vehicle v’s (edge e’s) service

program k
oVv,k(oEe,k) The offloading decision of vehicle v’s (edge e’s) task

k
Ntask

e (t) The total number of tasks received at edge e in time
slot t

Redge(Rcloud) The transmission rate from edge to edge (cloud)
pedge(pcloud) The transmission power from edge to edge (cloud)

Service A B C D E ...Service A B C D E ...

Edge pool

Task offloading Service caching

Service program

Caching resource

Computing resource

Edge cooperative offloading

Energy

Fig. 1. System illustration.

service-dependent tasks in the system (i.e., running these tasks
requires precaching of their corresponding service programs).
If the associated service program of a requested task has been
cached at the cloud or the edge pool, vehicles can offload
a portion of the computing tasks via wireless communication
(e.g., cellular vehicle-to-everything (C-V2X)) to the edge pool
or the cloud, depending on the trajectory of the vehicle and
the location of the cached service program. The edge pool
consists of a set of interconnected edge servers to balance
different computing and caching resources. Due to the mobility
of vehicles, cooperative edge offloading between multiple edge
servers can further improve the caching efficiency. However,
unlike the cloud which has abundant computing and storage
resources, limited computing and caching resources of edge
nodes allow only a small set of services program to be
cached at the same time. Therefore, an AI-based management
controller (i.e., agent) is typically deployed at the edge pool,
which collects information from vehicles and edge servers, and
makes decisions on service caching and task offloading. To this
end, time is divided into a set of discrete time slot, indexed
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Fig. 2. Flowchart of task offloading.

by {1, 2, ...t, ...tend}, each of which has an equal duration
∆t. The service caching and task offloading strategy can be
updated at each time slot.

B. Communication Model

To characterize a practical vehicle moving environment,
vehicles with driving speed ranging from Vmin to Vmax are
considered [4], [5] and edge nodes are assumed to be aware
of all the vehicles belonging to its coverage area. We consider
a multi-channel uplink model, where each edge has overall
bandwidth of B, and each channel has two possible states (i.e.,
occupied and unoccupied). Note that the allocated spectrum is
the same for different edge nodes and the allocated channels
are all orthogonal so that the interference is negligible in the
coverage area of the same edge node. We assume that each
vehicle can only send one task request in time slot t, with
N task
e (t) denoting the total number of tasks received at edge

node e in time slot t. In this case, the signal-to-interference-
plus-noise ratio (SINR) between vehicle v and edge e in time
slot t is given by

γv,e(t) =
gv,e(t)pv,e(t)∑NE

e=1 gv,e(t)
∑Ntaske (t)
v=1 pv,e(t) + σ2

, (1)

where σ2 refers to the variance of additive white Gaussian
noise, gv,e(t) denotes the average channel gain, and pv,e(t)
represents the average channel transmission power of edge
node e.

If vehicle v needs to offload data to the nearest edge e, the
wireless transmission rate at time slot t is calculated based on

the Shannon’s formula:

Rv,e(t) = Bv,e(t)log2(1 + γv,e(t)), (2)

where Bv,e(t) is the allocated bandwidth for vehicle v and
Bv,e(t) = B/N task

e (t).

C. Service Caching and Task Offloading Model

At the beginning of each time slot t, vehicles entering the
range of edge nodes update task requests, and complete task
offloading and computation in this time slot. Before the end
of each time slot, service caching decisions for edge nodes are
made by the management controller, while those for vehicles
are made by the vehicles themselves based on interests. Let
K = {1, 2, ...k, ...Nk} denote the set of service programs.
Each task can be represented as {dk, θk}, k ∈ K where
dk denotes data size of the input data and θk denotes the
required storage space of service program k. Then we have
the following storage capacity constraints:

NK∑
k=1

cVv,k(t)θk ≤ SVv ,∀v, t, (3)

and
NK∑
k=1

cEe,k(t)θk ≤ SEe ,∀v, t. (4)

where cVv,k(t) ∈ {0, 1}, cEe,k(t) ∈ {0, 1} are binary decision
variables to denote whether service program k is cached (i.e.,
cVv,k(t) = 1, cEe,k(t) = 1) or not (i.e., cVv,k(t) = 0, cEe,k(t) = 0)
on vehicle v and edge node e in time slot t. SVv and SEe
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TABLE II
TASK OFFLOADING RATIO OF DIFFERENT CACHING CASES

Cases for caching
Task offloading ratio

Task execution
in vehicle

Task execution in
the nearest edge

Task execution
in edge pool

Task execution
in cloud

Case 1
cVv,k(t) = 1, cEe,k(t) = 0,∑NE

i=1,i6=e c
E
e,k(t) ≥ 0

1− oVv,k(t) = 1 oVv,k(t) = 0 0 0

Case 2
cVv,k(t) = 1, cEe,k(t) = 1,∑NE

i=1,i6=e c
E
e,k(t) ≥ 0

1− oVv,k(t) oVv,k(t) 0 0

Case 3
cVv,k(t) = 0, cEe,k(t) = 1,∑NE

i=1,i6=e c
E
e,k(t) = 0

1− oVv,k(t) = 0 oVv,k(t)(1− oEe,k(t)) = 1 oVv,k(t)oEe,k(t) = 0 0

Case 4
cVv,k(t) = 0, cEe,k(t) = 1,∑NE

i=1,i6=e c
E
e,k(t) > 0

1− oVv,k(t) = 0 oVv,k(t)(1− oEe,k(t)) oVv,k(t)oEe,k(t) 0

Case 5
cVv,k(t) = 0, cEe,k(t) = 0,∑NE

i=1,i6=e c
E
e,k(t) > 0

1− oVv,k(t) = 0 oVv,k(t)(1− oEe,k(t)) = 0 oVv,k(t)oEe,k(t) = 1 0

Case 6
cVv,k(t) = 0, cEe,k(t) = 0,∑NE

i=1,i6=e c
E
e,k(t) = 0

0 0 0 1

are the storage capacity of each vehicle and each edge server,
respectively.

In our system model, a partial offloading strategy is used
for vehicles’ tasks in each time slot, as illustrated in Fig. 2.
For example, when vehicle v within communication range
of edge e initiates an offloading request for task k, if the
corresponding service program is not locally cached, this task
will be completely offloaded to the nearest edge. Then if the
edge pool does not have the needed service program for task k
precached, the task will be uploaded to the cloud for execution
(Case 6 in Fig. 2). If program k is cached in both the vehicle
and its nearest edge node, the task can be handled at edge
nodes by partial offloading (Case 2 in Fig. 2). If program k
is cached in the nearest edge node and the edge pool but not
in the vehicle itself, the vehicle completely offloads task k to
the nearest edge node, and then task k is partially offloaded
from the nearest edge node to the edge pool (Case 4 in Fig. 2).
As can be seen from Fig. 2, tasks are offloaded to different
computing nodes based on the corresponding service caching
strategies. Therefore, caching and computing resources need
to be properly allocated by the agent to achieve maximum
benefits.

D. Computation Delay and Energy Consumption

Following [10], the time and energy consumption for the
computation of task k are calculated as

Dk =
ωk
fk
, (5)

and
εk = κfαk Dk = κωk(fk)α−1, (6)

respectively, where fk denotes the CPU frequency and is
constrained by a maximum frequency fmax (i.e., fk < fmax),
κ (κ > 0) denotes the computing energy efficiency parameter,
and α (in this work we assume that α = 2) denotes the

exponent parameter. ωk denotes the number of cycles needed
for service program k, which is expressed as the number
of computation input data dk multiplied by a factor λ, i.e.
ωk = λdk. Here λ (λ > 0) is determined based on the nature
of service application, (e.g., computational complexity) [40].
fV and fE denote the fixed CPU frequencies of the vehicle
and the edge server, respectively.

When vehicle v within communication range of the nearest
edge e initiates a offloading request for task k, the agent
selects device nodes that task k should be offloaded to
according to the cache placement of the service program,
and determines the offload ratio for resource allocation. Let
oVv,k(t) ∈ [0, 1], oEe,k(t) ∈ [0, 1] be a continuous decision
variable to denote the ratio of task k offloaded to the nearest
edge and edge pool, and (1-oVv,k(t)) and (1-oEe,k(t)) bes the
remaining task that is locally executed at vehicle v and the
nearest edge e, respectively. Table II lists the mathematical
expressions of the task offloading ratio in different caching
cases (corresponding to those in Fig. 2). Based on those, the
computation time and transmission time of tasks involving
different caching cases are derived as follows.

Then the local execution delay of task k in vehicle v at time
slot t can be given as

T localv,e,k (t) = cVv,k(t)(1− oVv,k(t))
λdk
fV

. (7)

If task k needs to be offloaded to the nearest edge e, the time
consumption for the input data offloading of task k is

Tupv,e,k(t) =

{
ϕ(

∑NE
e=1 c

E
e,k(t))oVv,k(t) dk

Rv,e(t)
, Rv,e(t) > 0,

0, Rv,e(t) = 0,
(8)

where

ϕ(x) =

{
1, if x > 0,

0, if x = 0.
(9)
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In (8), Rv,e(t) = 0 indicates that the caching scheme belongs
to Case 1, and tasks do not need to be offloaded to edge nodes.

The execution time on this nearest edge is expressed as

T edgev,e,k(t) = cEe,k(t)oVv,k(t)(1− oEe,k(t))
λdk
fE

. (10)

If the nearest edge server e is unavailable and task k needs
to be further offloaded to other edge servers in the edge pool,
the uploading time is obtained as

Tuppoolv,e,k (t) =(1− cVv,k(t))ϕ(

NE∑
i=1,i6=e

cEe,k(t))oVv,k(t)oEe,k(t)

× dk
Redge

,

(11)
where Redge denotes the transmission rate among edge servers.
Then, the delay resulting from the computation at edge pool
can be given as

T poolv,e,k(t) =(1− cVv,k(t))ϕ(

NE∑
i=1,i6=e

cEe,k(t))oVv,k(t)oEe,k(t)

× λdk
fE

.

(12)
Since the output data is typically much smaller than the

input task size, we ignore the time delay of the output return
process [31]. As the computing and storage resources are
abundant in the cloud, we ignore the queuing and computing
latency incurred by the cloud. However, users need to consider
the latency for task offloading to the cloud. Considering
the transmission delay and calculation delay under different
caching and offloading decisions, the total delay of processing
task k in time slot t can be expressed as

T totalv,e,k (t) = max{T localv,e,k (t), Tupv,e,k(t)

+ max{T edgev,e,k(t), Tuppoolv,e,k (t) + T poolv,e,k(t)}}

+ (1− cVv,k(t))(1− ϕ(

NE∑
e=1

cEe,k(t)))

× (
dk

Rv,e(t)
+

dk
Rcloud

),

(13)

which can represent all the cases of service caching and task
offloading in Table II. Rcloud denotes the transmission rate
from an edge server to the cloud.

Additionally, the energy consumption of the computing and
offloading of task k on the edge server in time slot t is

εtotalv,e,k(t) =κ(fE)2(T edgev,e,k(t) + T poolv,e,k(t)) + pedgeT
uppool
v,e,k (t)

+ (1− cVv,k(t))(1− ϕ(

NE∑
e=1

cEe,k(t)))
pclouddk
Rcloud

,

(14)
where pedge denotes the transmission power from an edge
server to another edge server and pcloud denotes the trans-
mission power of communication from an edge server to the
cloud.

We define the average delay of task processing in time slot
t as

Td(t) =
1

NE

NE∑
e=1

1

N task
e (t)

Ntaske (t)∑
v=1

T totalv,e,k (t). (15)

Similarly, the average energy consumption of edge servers in
time slot t can be calculated as

ε(t) =
1

NE

NE∑
e=1

1

N task
e (t)

Ntaske (t)∑
v=1

εtotalv,e,k(t). (16)

E. Problem Formulation

With the emerging of interactive AR/VR services, user ex-
perience is crucial for users’ viscosity, which is the key to the
success of those services. As an important aspect of the user
experience, the task processing delay is gradually becoming a
crucial wireless network performance metric. The main goal
of our work is to design a joint computation offloading and
service caching scheme for the purpose of minimizing long-
term cumulative average task processing time. Specifically, the
optimization problem can be described as:

min
{cE
e,k

(t),oV
v,k

(t),oE
e,k

(t)}

tend∑
t=1

γt−1(
Td(t)

Tdmax
), (17)

s.t.

cVv,k(t) ∈ {0, 1},∀v ∈ V,∀k ∈ K,∀t ∈ {1, 2, ..., tend},
(17a)

cEe,k(t) ∈ {0, 1},∀e ∈ E, k, t, (17b)

0 ≤ oVv,k(t) ≤ 1,∀v, k, t, (17c)

0 ≤ oEe,k(t) ≤ 1,∀e, k, t, (17d)

0 ≤ γ ≤ 1; (17e)
NK∑
k=1

cVv,k(t)θk ≤ SVv ,∀v, t, (17f)

NK∑
k=1

cEe,k(t)θk ≤ SEe ,∀e, t. (17g)

Where γ is the discounted factor. Tdmax is the maximum
tolerable delay (constant) and Tdmax = max{max{Td(t)}} =
max{max{T totalv,e,k (t)}}. Constraints (17f) and (17g) are the
caching capacity limitation of each vehicle and edge server.
Note that the problem is a long-term MINLP problem and
NP-hard. In order to solve this optimization problem, the
key is to make appropriate decisions on task offloading and
service caching at each time period. Moreover, constantly
changing status of vehicle participation and ephemeral interac-
tions increase the operation complexity of edge management
controller. The system state space becomes large with the
increasing of vehicles and edges. Thus, we need to find an
effective approach to address these issues.

F. The extreme value analysis of T totalv,e,k (t) and εtotalv,e,k(t)

In order to evaluate the maximum and minimum values
of T totalv,e,k (t), we need to derive the task processing delay in
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time slot t under different caching cases, in which the caching
decision variable cVv,k(t), cEe,k(t) are not relevant.

1) Case 1:

TCase1d (t) =
λdk
fV

. (18)

2) Case 2:

TCase2d (t) = max{(1− oVv,k(t))
λdk
fV

,

oVv,k(t)(
dk

Rv,e(t)
+
λdk
fE

)}.
(19)

3) Case 3:

TCase3d (t) =
dk

Rv,e(t)
+
λdk
fE

. (20)

4) Case 4:

TCase4d (t) =
dk
Rv,e

+ max{(1− oEe,k(t))
λdk
fE

,

oEe,k(t)(
dk

Redge
+
λdk
fE

)}.
(21)

5) Case 5:

TCase5d (t) =
dk

Rv,e(t)
+

dk
Redge

+
λdk
fE

. (22)

6) Case 6:

TCase6d (t) =
dk

Rv,e(t)
+

dk
Rcloud

. (23)

From the above analysis, we have

max{T totalv,e,k (t)} = max
{i=1,...6}

{TCaseid (t)}

= max{TCase1d (t), TCase5d (t), TCase6d (t)}

= max{λdk
fV

,
dk

Rv,e(t)
+

dk
Redge

+
λdk
fE

,

dk
Rv,e(t)

+
dk

Rcloud
}.

(24)

min{T totalv,e,k (t)} = min
{i=1,...6}

{TCaseid (t)}

= min{TCase2d (t), TCase4d (t), TCase6d (t)}.
(25)

In order to eliminate the offloading decision variables, it is
easy to obtain the minimum delays of Case 2 and Case 4
based on their properties as piecewise linear functions.

min{TCase2d (t)} =
dk(fE + λRv,e(t))

fV fE

λ + fVRv,e(t) + fERv,e(t)
,

(26)
where ov,k(t) = 1/(1 + fV

λ ( 1
Rv,e(t)

+ λ
fE

)).

min{TCase4d (t)} =
dk

Rv,e(t)
+
λdk(λRedge + fE)

fE(2λRedge + fE)
, (27)

where oe,k(t) = 1/(2 + fE

λRedge
).

Hence, the minimum value of T totalv,e,k (t) can be expressed as

min{T totalv,e,k (t)} = min{min{TCase2d (t)},min{TCase4d (t)},
TCase6d (t)}.

(28)
The analysis above indicates that the maximum and min-

imum task processing delays are related to the communi-
cation, computing and caching capabilities of each device.
Meanwhile, aiming at minimizing the delay, cache decisions
corresponding to the maximum tolerated delay should be
avoided as much as possible.

Similarly, in order to evaluate the maximum and minimum
values of εtotalv,e,k(t), we need to derive the energy consumption
of edge servers in time slot t under different caching cases.

1) Case 1:
εCase1(t) = 0. (29)

2) Case 2:

εCase2(t) = κ(fE)2(ov,k(t)
λdk
fE

). (30)

3) Case 3:

εCase3(t) = κ(fE)2(
λdk
fE

). (31)

4) Case 4:

εCase4(t) = κ(fE)2((1− oe,k(t))
λdk
fE

+ oe,k(t)
λdk
fE

)+

oe,k(t)pedge
dk

Redge

= κfEλdk + oe,k(t)pedge
dk

Redge
.

(32)
5) Case 5:

εCase5(t) = κfEλdk + pedge
dk

Redge
. (33)

6) Case 6:

εCase6(t) = pcloud
dk

Rcloud
. (34)

Based on the above analysis, we have

max{εtotalv,e,k(t)} = max
{i=1,...6}

{εCasei(t)}

= max{εCase5(t), εCase6(t)}

= max{κfEλdk + pedge
dk

Redge
,

pcloud
dk

Rcloud
}.

(35)

From (29) it can be easily observed that min{εtotalv,e,k(t)} = 0.
From the analysis of the maximum and minimum values

of T totalv,e,k (t), it can be seen that in order to reduce the task
processing delay, it is necessary to make Case 2 and Case 4
caching decisions as many as possible. That is, tasks should be
offloaded to the edge nodes as much as possible. On the other
hand, energy consumption is also a critical indicator for edge
server operators. Offloading tasks to edge nodes can reduce
task processing delays, but it increases energy consumption of
edge servers.
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IV. DEEP REINFORCEMENT LEARNING FOR EDGE
CACHING AND OFFLOADING

Due to diverse user demands and the constrained compu-
tation and caching resources, it is complex to minimize the
cumulative system average delay in (17). Most traditional
optimization methods (e.g. convex optimization, game theory,
etc.) are assumed to have the knowledge of key factors in
vehicular networks, such as channel conditions and content
popularity. However, these key factors are time-varying and
unavailable in reality. These methods can merely achieve
optimal or near optimal results for one snapshot, since they
ignore how the current decision exerts long-term influence on
resource allocation [21]. DRL is viewed as an efficient way to
solve the complicated problem in a dynamic environment by
optimizing the expected cumulative reward. In DRL, an agent
collects the needed information regarding diverse demands
of users and available resources in vehicular networks. Then
the agent takes an action to manage offloading and caching
decisions and optimizes resource allocation. We formulate the
joint optimization problem as a discrete-time markov decision
process (MDP) and propose a DDPG-based edge caching and
offloading scheme for joint service caching and computation
offloading strategy design.

A. Problem Formulation Based on DRL

1) State space: At the initial phase of each time slot t, each
edge server gathers all the environmental parameters, which
contains the following parts:
• Iv,k(t) : The request indicator for task k by vehicle v

within the coverage range of edge node e at time slot t,
• cVv,k(t) : The service caching indicator for vehicle v

within the coverage range of edge node e at time slot
t.

• Bv,e(t), γv,e(t) : The bandwidth that edge node e allo-
cates to vehicle v and the received SINR of edge node e
at time slot t.

• cEe,k(t) : The service caching indicator of edge node e at
time slot t.

The state of edge node e at time slot t is denoted as

se(t) ={[I(t)]ρmax×NK , [cV (t)]ρmax×NK , [B(t)]ρmax×NK ,

[γ(t)]ρmax×NK , [cE(t)]ρmax×NK},
(36)

2 where ρmax denotes the maximum vehicle density within
each edge node. The system state at time slot t consists of the
states of all edge nodes, defined as

st = {s1(t), s2(t), ..., sNE (t)}. (37)

Where the states of edge node e is denoted as se(t) after
dimensionality reduction and normalization.

2) Action space: The agent obtains the states of service
caching and communication information between vehicles and
edge nodes, and then decides the offloading ratio of all tasks
and updates service caching of all edge nodes. Here, the
corresponding action contains the following parts:

2 Bold letters are used to denote matrices.

• cEe,k(t) : The service caching indicator of edge node e
after completing all task offloading and calculation in
time slot t.

• oVv,k(t) : The proportion of vehicle v offloading task k to
edge node e in time slot t.

• oEe,k(t) : The proportion of edge node e offloading task
k to edge pool in time slot t.

The action of edge node e in time slot t is denoted as

ae(t) ={[cE(t)]ρmax×NK , [oV (t)]ρmax×NK , [oE(t)]ρmax×NK}.
(38)

Then the actions of all edge nodes are denoted as ae(t) after
dimensionality reduction and normalization. The system action
at time slot t consists of the actions of all edge nodes, defined
as

at = {a1(t), a2(t), ..., aNE (t)}. (39)

3) Reward: The agent’s behavior is reward-based, and the
reward should correspond with the objective function. Hence,
we set the reward in time slot t as

rt = r(st, at) = −(
Td(t)

Tdmax
). (40)

B. DDPG-Based Edge Caching and Offloading Scheme

Since the state space consists of a great amount of dynamic
environmental information and the action space contains con-
tinuous value, we exploit the deep deterministic policy gradi-
ent (DDPG) algorithm, a model-free and actor-critic algorithm,
to solve the joint computation offloading and service caching
problem. The framework of DDPG-based method is illustrated
in Fig. 3, consisting of primary networks, target networks and
a replay buffer.

Based on the deterministic actor-critic model, we leverage
deep neural networks to provide accurate estimation of de-
terministic policy function µ(st) and action-value function
Q(st, at), which should satisfy the following condition:

Q(st, µ(st|θµ)|θQ) ≈r(st, at)+
γQ(st+1, µ(st+1|θµ

′
)|θQ

′
).

(41)

As shown in Fig. 3, The primary networks use the actor
network µ(st|θµ) and the critic network Q(st, at|θQ) to
approximate the policy function and the Q-value function,
respectively. In addition, The target networks contain a actor
network µ(st|θµ

′
) and a critic network Q(st, at|θQ

′
) with the

same structure. The target Q-value can be represented as

yt = r(st, at) + γQµ(st+1, µ(st+1|θµ
′
)|θQ

′
). (42)

We utilize the actor network to explore the policies and
the critic network to critic the policies. The actor network
architecture is illustrated in Fig. 4, which takes the state st
as input, and outputs an action at. The action variable cEe,k(t)

needs to be discretized (i.e. dcEe,k(t))e).
At the beginning of each time slot t, the agent collects

environmental information to get the current system state st.
In order to solve the exploration problem of deterministic
policy, we construct the action space by adding behavior noise
nt to obtain action at = µ(st|θµ) + nt. After vehicles and
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Fig. 4. The actor network architecture.

edges carry out the computing offloading and service caching
scheme based on action at, the agent can observe the next
state st+1 and the immediate reward rt. Then the transition
(st, at, rt, st+1) is stored in the replay buffer. This operation
can avoid sample-correlation during the training process. After
that, the algorithm randomly selects N transitions from the
replay buffer to make up a mini-batch sample and inputs it
into primary networks and target networks to update network
parameters. Then, we update parameter θQ in the primary
critic network by minimizing the loss function, i.e.,

J(θQ) =
1

N

N∑
j=1

(yj −Qµ(sj , µ(sj |θµ)|θQ))2. (43)

The parameter θµ in the primary actor network is updated
by the policy gradient, which can be expressed as

5θµJ(θQ) =
1

N

N∑
j=1

[5aQ(s, a|θQ)|s=sj ,a=µ(sj |θµ)

×5θµµ(s|θµ)|s=sj ].

(44)

Finally, we utilize the soft updating method instead of copy-
ing the parameters θQ and θµ to partially update parameters
of the target networks, which can be expressed as

θQ
′
← τθQ + (1− τ)θQ

′
,

θµ
′
← τθµ + (1− τ)θµ

′
,

(45)

where τ is the updating coefficient. The whole process of the
DDPG-based edge caching and offloading scheme is presented
in Algorithm 1.

Algorithm 1 DDPG-Based Edge Caching and Offloading
Algorithm

Input: The initial parameters: γ, θµ, θµ
′
, θQ, θQ

′
τ , M ,

tend, D, N .
Output: Primary optimal actor network parameter θµ.
1: Initialize primary networks and target networks.
2: Empty the experience replay buffer D.
3: for episode = 1, 2, ...M do
4: Initial observation state s0.
5: Add a random Gaussian distributed behavior noise nt

for action exploration.
6: for t = 1, 2, ...tend do
7: Agent receives normalized observation state st.
8: Select action at = µ(st|θµ) + nt.
9: Perform action at, calculate immediate reward rt, and

obtain the next normalized state st+1.
10: if the replay buffer is not full then
11: Store transition (st, at, rt, st+1) in replay buffer D.
12: else
13: Randomly replace a transition in replay buffer D

with (st, at, rt, st+1).
14: Randomly sample a mini-batch of N transitions

(sj , aj , rj , sj+1), ∀j = 1, 2, ..., N from D.
15: Set yj = r(sj , aj) + γQµ(sj+1, µ(sj+1|θµ

′
)|θQ′

).

16: Update the θQ in critic network by minimizing the
loss according to (43).

17: Update actor network θµ by the gradient of the
policy according to (44).

18: Update target networks according to (45).
19: end if
20: end for
21: end for

V. PERFORMANCE EVALUATION

In this section, we evaluate the performances of the pro-
posed scheme through numerical simulations. We first provide
experimental settings in Sec. V-A and then present extensive
simulation results in Sec. V-B.
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TABLE III
SIMULATION PARAMETERS

Parameter Value
Total number of time slots (tend) 40
The duration for each time slot ∆t 30 s
Density of vehicles within range of edge (ρ) [2,5]
Each edge communication range 500 m
Bandwidth of each edge server (B) 20 MHz
The value of SINR 4∼5 dB
Number of edge servers (NE ) 3
Number of service types (NK ) 5
Data size of each task (dk) 20 Mb
Storage space of each service program (θk) 50 Mb
CPU cycles of each vehicle (fV ) 5 × 108 cy-

cles/s
CPU cycles of each edge server (fE ) 1 × 109 cy-

cles/s
Computation intensity for each task (λ) 105 cycles/bit
Storage capacity of each vehicle (SV

v ) 50 Mb
Storage capacity of each edge server (SE

e ) 100 Mb
The computing energy efficiency parameter (κ) 1× 10−26

Transmission rate between edge servers (Redge) 15 Mbps
Transmission rate from edge to the cloud Rcloud 10 Mbps
Transmission power between edge servers (pedge) 1 W
Transmission power from edge to the cloud (pcloud) 2 W
Discount factor (γ) 0.99
Learning rate of actor network (lra) 0.001
Learning rate of critic network (lrc) 0.002
Soft update coefficient (τ ) 0.01
Size of mini-batch sample (N ) 128
The size of experience replay buffer (D) 10000

A. Experimental Settings

The involved parameters along with their corresponding
values are listed in Table III. These previous works [10],
[12], [31] can bring rich experience to the parameter settings,
including the duration for each time slot ∆t, κ, ε and so
on. For instance, ∆t should be set appropriately such that
on one hand the agent has enough time to make caching and
offloading decisions, and on the other hand tasks offloaded to
edge server can be completely accomplished by the end of time
slot. We use Python 3.6 to create a simulation environment
for the considered vehicular edge caching and task offloading
system. In the simulation, each vehicle randomly requests its
task of interest at the beginning of each time slot. The duration
of each time slot is set appropriately such that the agent has
sufficient time to make caching and offloading decisions, while
tasks offloaded to other nodes can be accomplished by the
end of a time slot. Furthermore, we use TensorFlow 1.14.0
to implement the DDPG-based edge caching and offloading
scheme.

We consider the following benchmark methods for perfor-
mance comparison:

1) Offloading without edge caching: Tasks requested by the
vehicle are computed locally or offloaded to the cloud.

2) Offloading based on latency minimization: The task
offloading is performed according to the optimal ratio to
achieve the minimum latency under each case based on the
DDPG learning algorithm.

3) Offloading based on energy minimization: The task
offloading is performed according to the optimal ratio to
achieve the minimum energy consumption under each case
based on the DDPG learning algorithm.

4) Random edge caching and offloading: The service
caching and task offloading ratios are random in each time

slot.
5) Least recently used (LRU) edge caching and offloading:

The services requested by the edge server in the previous time
slot continue to be cached in the next time slot, the services
that have not been requested are randomly replaced [41], and
the offloading ratio is determined according to the offloading
scheme based on latency minimization.

6) Executing all tasks in the cloud: All tasks are offloaded
to the cloud for execution.

B. Simulation Results

First, we compare the total delay per episode of different
schemes based on the DDPG learning algorithm. It can be seen
in Fig. 5 that all schemes can approach their stable cumulative
average delay as the number of episodes increases. Meanwhile,
since the energy consumption is related to the task processing
delay, we evaluate the total energy consumption per episode
in Fig. 6. As the number of episodes increases, except for
the offloading without edge caching scheme, the total delay
of all the other considered schemes decreases and reaches a
stable value, while the total energy consumption increases and
reaches a stable value. As analyzed in Sec. III-F, to reduce
latency, it is necessary to offload tasks to edge nodes as much
as possible, which on the other hand increases the energy
consumption of edge nodes. This is verified in Fig. 5 and
Fig. 6. Another notable point is that our proposed scheme
achieves the lowest task processing latency with the same
energy consumption of edge nodes. The offloading without
edge caching scheme keeps the maximum delay, which is
approximately the same as the total delay that the offloading
scheme based on energy minimization converges to. This is
because when aiming to minimize energy consumption, the
offloading ratios are determined as the ones that minimizes
energy consumption in all the considered cases. However, of-
floading without edge caching scheme consumes the maximum
energy. The offloading without edge caching scheme remains
smooth because agent cannot participate in decision-making,
and edge servers cannot provide computing and caching
resources. Our proposed scheme can yield the lowest total
delay compared with the other benchmark schemes, which
demonstrates the efficiency of DDPG-Based edge caching and
offloading scheme.

Next, we investigate the effects of vehicle density on the
total delay and energy consumption for different schemes in
Fig. 7. As the density of vehicle ρ increases, the number
of task requests increases, while the bandwidth allocated to
each vehicle and the transmission rate of tasks uploaded to
edge nodes decrease, resulting in an increase in the total task
processing delay. When ρ = 2, 3, the total latency of the
executing all tasks in the cloud scheme is lower than that of
the offloading without edge caching scheme. This is because as
each vehicle occupies more bandwidth resources, tasks can be
uploaded faster to the cloud, which has powerful computing
resources. As the vehicle density continues to increase, this
superiority vanishes. It can be observed that our proposed
scheme outperforms the other methods in terms of the total
delay in the period tend.
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Fig. 5. The performance of total delay per episode.
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Fig. 6. The performance of total energy per episode.

In order to explore the impacts of different caching deci-
sion schemes on latency and energy, we count the average
number of edge caching case decisions made by different
schemes in the tend period, which is shown in Fig. 8. Ac-
cording to the parameter settings in Table III and the analysis
in Sec. III. F, it can be deduced that max{T totalv,e,k (t)} =

TCase5d (t),max{εtotalv,e,k(t)} = εCase6(t). That is, greater num-
ber of caching decisions in Case 5 leads to higher task
processing delay, and that in Case 6 leads to higher energy
consumption at edge nodes. It can be observed that the DDPG-
based edge caching and offloading scheme avoids caching
decisions in cases with the largest delay as much as possible.
This decision can greatly reduce the task processing delay. It
is reasonable to observe that offloading without edge caching
scheme only makes decisions in Case 1 and Case 6, and
the executing all tasks in the cloud scheme only make Case
6 decisions. For the LRU and random edge caching and
offloading schemes, it can be seen that more than 85% of
the tasks are executed locally or in the edge pool. This is
because the cached service programs at edge nodes increase
the task hit ratio, thereby having less energy consumption
compared with that when tasks are uploaded to the cloud. Our
proposed scheme can jointly optimize caching and offloading
decisions, allocate caching and computing resources properly,
and improve user experience within a reasonable range of
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Fig. 7. The effect of the vehicle density ρ on the total task processing delay.

Fig. 8. The average number of edge caching decision cases in the period
tend with ρ = 5.

energy consumption.
Then we investigate the effects of task size on unnormalized

total latency and energy consumption using different schemes
in Fig. 9 and Fig. 10, respectively. The total delay and energy
consumption increases linearly with the task size, which is
because that the functions of delay and energy are proportional
to the task size dk, as presented in eqs. (13) and (14). Larger
task size increases the transmission delay, computation delay
and total energy consumption for all the schemes. However, In
order to avoid making Case 5 decisions with the largest task
processing delay, more decisions are made in Case 6, which is
the case with the largest energy consumption of edge nodes.
This explains why our scheme has higher energy consumption
than the LRU and the random edge caching and offloading
schemes in Fig. 10.

Fig. 11 shows the impacts of the edge server cycle frequency
on the unnormalized total delay using five different schemes.
Certainly, higher edge server cycle frequency can reduce the
total execution latency except for the offloading without edge
caching and the executing all tasks in the cloud schemes.
This is because the tasks of these two schemes do not
perform computations at edge nodes, and are not related to
the computing power of the edge servers. For the LRU and
the random edge caching and offloading schemes, more tasks
are offloaded to the edge pool for execution. As the cycle
frequency increases, the total latency is lower than that of
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Fig. 9. The total delay (unnormalized) versus task size with ρ = 5.
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Fig. 10. The total energy (unnormalized) versus task size with ρ = 5.

the executing all tasks in the cloud scheme and offloading
without edge caching scheme, indicating that the benefits of
task computing on the edge server outweighs offloading to the
cloud. In addition, due to randomness, the performances of the
random edge caching and offloading scheme is quite unstable.
Moreover, the result demonstrates that the proposed scheme
can significantly reduce the task execution delay.

To conclude, the above evaluation results show that the
proposed DDPG-based edge caching and offloading scheme
can significantly reduce total delay of service caching and task
offloading in dynamic vehicular environments.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel edge service caching and com-
putation offloading framework in a general VEC system. To
minimize the cumulative average task processing delay of task
offloading and service caching, we formulate the optimization
problem as a long-term MINLP problem, which is challenging
to solve since service caching decisions and computation
offloading decisions are strongly coupled. Furthermore, we
deduce the boundaries of task processing delay and energy
consumption in each case in detail. Considering the highly
dynamic vehicular environments, we propose a DDPG-based
scheme to update offloading decisions and service caching
placements. Extensive simulations show that our proposed
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Fig. 11. The total delay (unnormalized) versus edge sever cycle frequency
with ρ = 5.

scheme can effectively decrease the long-term average task
processing delay by utilizing the available caching and com-
puting resources and is easy to implement.

There are several interesting directions in future work. First,
the cached service programs from different vehicles may be
shared. This can effectively reduce task uploading cost, but on
the other hand raises new technical challenges, such as privacy
issues in service data sharing. Second, in this work, each
vehicle is assumed to only generate a single task. We believe
that the edge service caching and computation offloading with
multi-tasking vehicles taken into consideration is an interesting
step forward. Last but not least, the application of multiagent
systems in edge service caching and computation offloading
design is expected to become a powerful tool to solve more
complex problems and remains much to be explored.
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