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Reliable Data Transmission Scheduling for
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Abstract—Reliability is significant for unmanned aerial ve-
hicle (UAV)-assisted air-to-ground (A2G) communications. In
this letter, we address the reliability optimization problem by
properly scheduling data transmissions under Non-Line-of-Sight
(NLoS) channel fading. We capture the channel fading effect
by the Rayleigh distribution and then formulate the A2G
communication reliability from a probabilistic perspective. We
propose a constrained optimization model that jointly takes into
account the impacts of the aerial and ground nodes’ mobility,
the stochastic fading characteristics of the A2G channel, and
the transmission constraints. From the model, we derive a
closed-form reliability-optimal solution for data transmission
scheduling and theoretically characterize the optimal reliability
that is achievable. Simulation results verify our theoretical results
and show the superior performance of the proposed scheduling
solution over benchmark methods.

Index Terms—Air-to-ground communication, NLoS radio
propagation channel, Rayleigh fading model, reliability-oriented
optimization, unmanned aerial vehicle.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been playing a
more and more important role in a wide range of wireless
networks and communication systems, such as aerial Inter-
net of Things (IoT), Aerial-Ground Cooperative Vehicular
Networks (AGCVNs), and software-defined Space-Air-Ground
Integrated Networks (SAGINs). In these existing or envisioned
information network architectures, UAV-assisted air-to-ground
(A2G) communications are considered a key enabling technol-
ogy supporting a massive number of mobile users’ pervasive
connectivity and high transmission rates. However, there exist
some significant challenges to be addressed for the practical re-
alization of UAV-assisted A2G communications, such as topo-
logical dynamic nature, large-scale Non-Line-of-Sight (NLoS)
path loss and severe radio fading, and intense contention for
channel access. In particular, the A2G communication links
usually experience intermittent connectivity resulting from
the high mobility of flying UAVs and ground mobile nodes.
Hence, it is of paramount significance to guarantee the A2G
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Fig. 1. The implementation framework for reliability-optimal data transmis-
sion scheduling.

communication reliability in the presence of external dynamic
and stochastic effects.

In most of the current studies in the field of UAV-assisted
networking, communication, aerial caching, and edge comput-
ing, researchers are engaged in developing novel solutions for
the joint optimization of UAVs’ deployment positions, trajecto-
ries and resource allocation, such as these works [1]–[20] and
the references therein. Considerable system models and opti-
mization algorithms are reported on either the maximization of
system-level throughput [1]–[4], energy-efficiency [5]–[7] and
computation rate [8], [9] or the minimization of overall energy
consumption [10]–[16] and application-specified cost [17],
[18]. Reference [19] uses Q-learning algorithms with power
allocation to optimize the sum capacity of the UAV com-
munication system. Reference [20] discusses the challenges
and solutions for achieving ultra-reliable IoT communications
with UAVs in a swarm scenario. However, limited research
efforts have been made and few results have been presented to
reliability-optimal data transmission scheduling for the UAV.

In this paper, we propose a novel data transmission schedul-
ing method to maximize the reliability for a UAV-assisted
A2G communication network. Specifically, we first model the
mobility of the UAV and ground nodes. We then use the
well-known Rayleigh fading model to capture the statistical
effect of NLoS radio propagation channels and characterize the
UAV-assisted A2G communication reliability, which takes into
account the network mobility and application requirements.
Upon the reliability modeling, we propose a constrained opti-
mization model to maximize the overall reliability. From this
model, we derive a closed-form reliability-optimal solution
for data transmission scheduling. Overall, the novel contri-
bution of this paper is twofold: 1) The proposed constrained
optimization model jointly considers the coupled effects of
the aerial and ground nodes’ mobility, the stochastic fading
characteristics of the A2G wireless channel, and the trans-
mission constraints imposed by an upper-layer application,
and 2) a closed-form reliability-optimal scheduling solution
is analytically obtained and the optimal reliability of the
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UAV-assisted A2G communications is also derived, thus the
achievable upper bound on the overall probability of successful
data transmissions during limited time slots can be theoreti-
cally characterized. Finally, the advantages of the proposed
scheduling solution in transmission capacity over benchmark
methods are verified by the numerical simulation results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In general, the fundamental requirements of an upper-layer
application can be abstracted into two key parameters, the total
amount of data bits, Q, that need to be transmitted from the fly-
ing UAV to the ground mobile node 1 and the limited number
of time slots allocated for UAV-assisted A2G transmissions, S.
In order to successfully transmit all the application data within
the limited duration in the presence of high mobility, path
loss, and channel fading, the UAV should partition the whole
data content, Q, into a sequence of smaller-size data pieces,
{q[k], k = 1, 2, . . . , S}, and properly schedule the size of each
data piece, q[k], to be transmitted in each time slot k. For no-
tation simplicity, let q = col {q[k], k = 1, 2, . . . , S} ∈ RS×1

denote a solution for data transmission scheduling. At this
point, the following application-specified constraints should
be met so as to guarantee the data transmission integrity

Q(Q,S) :=
{
q ∈ RS×1 : 1Tq = Q; q ≥ 0

}
, (1)

where 1 and 0 are two S × 1 column vectors, all of whose
elements are 1 and 0, respectively. Indeed, Q(Q,S) ⊂ RS×1

denotes the feasible region consisting of all the scheduling
solutions satisfying the constraints in (1).

We follow [6] to plan the trajectory of the aerial node before
a certain mission period. Similar to [8], [22], [23], we adopt a
time-discrete double-integral kinematics model to effectively
describe the motion state of the UAV. We capture the time-
varying spatial position, sl[k], velocity, vl[k], and acceleration,
al[k], of a node l as{

sl[k + 1] = sl[k] + τvl[k] +
τ2

2 al[k], l ∈ {i, j};
vl[k + 1] = vl[k] + τal[k], l ∈ {i, j},

(2)

where i and j denote the UAV and the ground mobile node,
respectively, and τ denotes the duration of a time slot. Using
(2), the time-dependent relative distance between the aerial
and the ground nodes, Li,j [k], can be expressed as

Li,j [k] = ∥si[k]− sj [k]∥2 . (3)

Besides, according to the existing literature [5]–[7], we
adopt the well-known orthogonal channel access model to
calculate the number of data bits that can be transmitted per
time slot via the A2G communication link as follows

π[k] =
B

N
log2

(
1 +

piδjg
2 (Li,j [k])

n2
0

)
, (4)

1We follow the existing works such as [5] and focus on a single UAV sce-
nario. However, our proposed model and solution can be naturally extended to
a multi-node application scenario without altering our methodology proposed
here. For example, we can further combine the time division multiple access
(TDMA) protocol to extend our method to multi-UAV or multi-node scenarios
[15], [21]. We leave extending our system model as future work.

where B is the total bandwidth available for the A2G commu-
nication channel, N denotes the number of nodes accessing the
same channel at the same time, and g (Li,j [k]) represents the
random channel gain that is related to the mobility-dependent
relative distance, propagation path loss, and channel fading
characteristics. According to [24]–[26], we consider that the
aerial-ground channel follows quasi-static fading, in which the
channel is considered static within each time interval while
varies across different time intervals. In addition, pi denotes
the transmission power of the UAV i, δj ∈ [0, 1] denotes the
portion of the transmission power that can be allocated to the
ground mobile node j, and n2

0 is the average noise power in
the environment.

We focus on a heavily built-up urban scenario where the
UAV flight is often conducted at a low height or some
others where there are many obstacles that can scatter the
UAV’s radio signal before it arrives at the ground mobile
node. The well-known Rayleigh distribution can be used to
model channel stochastic fading in the above NLoS radio
propagation environment [27]–[32]. In such a Rayleigh fading
channel, the squared channel gain g2 (Li,j [k]) usually follows
an exponential distribution with the parameter Lβ

i,j [k] where
β denotes the path loss exponent. Therefore, the probability
that the UAV can successfully transmit the data piece q[k]
scheduled in time slot k to the ground mobile node can be
derived from the probabilistic perspective as follows

Pr(q[k]) = Pr

{
π[k] ≥ q[k]

τ

}
= Pr

{
B

N
log2

(
1 +

piδjg
2 (Li,j [k])

n2
0

)
≥ q[k]

τ

}
= Pr

{
g2 (Li,j [k]) ≥

2
q[k]N
Bτ n2

0 − n2
0

piδj

}

= exp

(
−2

q[k]N
Bτ n2

0 − n2
0

piδjL
−β
i,j [k]

)
.

(5)
Based on the multiplication principle in probability theory,
we establish the mathematical definition of UAV-assisted A2G
communication reliability as follows.

Definition 1: The reliability of UAV-assisted A2G commu-
nications under large-scale NLoS channel fading is defined as
the total probability of the UAV successfully transmitting all
the Q-bit data to the ground mobile node during the given S
time slots as follows

Pr(Q,S) =

S∏
k=1

Pr(q[k]) = exp

(
S∑

k=1

n2
0 − 2

q[k]N
Bτ n2

0

piδjL
−β
i,j [k]

)
. (6)

Furthermore, the reliability-oriented optimization model for
data transmission scheduling is proposed under the upper-layer
application constraints presented in (1) as follows

max
q

: Pr(Q,S) = exp

(
S∑

k=1

n2
0 − 2

q[k]N
Bτ n2

0

piδjL
−β
i,j [k]

)
s.t. q ∈ Q(Q,S).

(7)
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III. MAIN THEORETICAL RESULTS

In the following, we first analyze the convexity of (7), and
further obtain the closed-form optimal scheduling solution.

Lemma 1: The maximization model (7) is concave with
respect to the decision variable q. A local optimum of (7)
is a globally optimal solution.

Proof: Note that application-specified constraints (1) con-
tains equality and inequality constraints, and both of them
are linear constraints. At this point, the convexity of the
optimization model depends on the objective function. Let

F (q[k]) =
n2
0 − 2

q[k]N
Bτ n2

0

piδjL
−β
i,j [k]

. (8)

The objective function Pr(Q,S) is a composite function
formed by the sum of F (q[k]) and an exponential function,
so its convexity depends only on the convexity of F (q[k]).
The second-order derivative of F (q[k]) with respect to q[k] is
expressed as

d2F (q[k])

d(q[k])2
= −

N2n2
0(ln 2)

2Lβ
i,j [k]

B2τ2piδj
2

q[k]N
Bτ ≤ 0,∀k, (9)

which implies that the function F (q[k]) is concave w.r.t. all
p[k]. So Pr(Q,S) is also concave w.r.t. q, and (7) is concave.
According to convex optimization theory, a local optimum of
(7) is a globally optimal solution.

We further derive a closed-form solution for data transmis-
sion scheduling and the optimal analytical reliability as in the
following theorem. The closed-form solution is guaranteed to
be a globally optimal solution for (7) based on Lemma 1. The
optimal analytical reliability can provide the maximum achiev-
able reliability bound on the UAV communication system.

Theorem 1: Suppose that there exists an optimal solution
of (7) that is an interior feasible point, denoted by qopt =
col{qopt[k], k = 1, 2, . . . , S} ∈ int(Q(Q,S)). The globally
optimal solution qopt is expressed as

qopt[k] = α

log2
(

S∏
k=1

Li,j [k]

) 1
S

− log2(Li,j [k])

+
Q

S
,

(10)
for k = 1, 2, . . . , S, where α = Bτβ/N . By using the locally
optimal solution qopt, the achievable optimal reliability of the
UAV-assisted A2G communications can be expressed as

Propt(Q,S) =

exp


∑S

k=1 n
2
0L

β
i,j [k]− S2

Qβ
Sα n2

0

(∏S
k=1 L

β
S
i,j [k]

)
piδj

 .
(11)

Proof: Let f(q) =
∑S

k=1 L
β
i,j [k]2

βq[k]
α in the objective

function of (7). Since only f(q) involves the decision variables
q, solving (7) boils down to dealing with the following
minimization problem

qopt = argmin {f(q) : q ∈ Q(Q,S)} . (12)

From (12), the corresponding Lagrangian function is

L(q,λ, σ) = f(q)− λTq − σ
(
1Tq −Q

)
, (13)
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Fig. 2. The analytical and numerical optimal scheduling solutions.

Fig. 3. The impacts of the requirements and the contending nodes on the
optimal reliability.

where λ = col{λ[k] ∈ R≥0, k = 1, 2, . . . , S} are the nonneg-
ative Lagrangian multipliers while σ ∈ R is an unconstrained
Lagrangian multiplier. Thus, the Karush-Kuhn-Tucker (KKT)
conditions for a feasible point of (7) to be locally optimal can
be established as follows

∇qL(q,λ, σ) = ∇qf(q)− λ− σ1 = 0;

λ⊙ q = 0;

q ∈ int(Q(Q,S));

λ ∈ RS×1
≥0 ,

(14)

where ⊙ represents the Hadamard product that operates the
element-wise multiplication between any two matrices with the
same size. In (14), the first equation denotes the stationarity,
the second denotes the complementary condition, the third
denotes the primal feasibility, and the last denotes the dual
feasibility. That is, qopt must satisfy the above conditions.

Note that qopt is a feasible interior point, i.e., qopt > 0.
At this point, combining the complementary condition and the
dual feasibility implies λ = 0. Based on this result and the
stationarity in (14), we obtain

σ =
∂f(q)

∂q[k]
=

βLβ
i,j [k]

α
2

βq[k]
α ln 2 (15)
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Fig. 4. The A2G communication reliability of our method, the uniform and the random schemes under different numbers of contending nodes.

Fig. 5. The transmitted data volume achieved by different methods under the
reliability satisfaction of 99.999%.

and thus

q[k] =
α

β
log2

(
σα

βLβ
i,j [k] ln 2

)
(16)

for k = 1, 2, . . . , S. Substituting (16) into the equality con-
straint 1Tq = Q can obtain

Q =
α

β
log2

((
σα

β ln 2

)S S∏
k=1

L−β
i,j [k]

)
, (17)

which derives a closed-form σ as follows

σ =

(
S∏

k=1

L
β
S
i,j [k]

)
β2

βQ
αS ln 2

α
. (18)

Therefore, substituting (18) into (16) can immediately obtain
(10). Similarly, substituting (10) into (6) can get (11). Accord-
ing to Lemma 1, (10) is a globally optimal solution for data
transmission scheduling.

Based on the proposed theorem above, we develop the im-
plementation framework of reliability-optimal data transmis-
sion scheduling for the UAV-assisted A2G communications as
illustrated in Fig.1. As shown in the figure, by using the closed-
form scheduling solution, the flying UAV can dynamically
adapt its application-specified transmission data at each time
slot to guarantee communication reliability even under a high-
mobility scenario.

IV. MAIN SIMULATION RESULTS

We conduct simulations to validate our theoretical results
and the proposed scheduling solution. In the simulations,
the total bandwidth is set to B = 10MHz, the path loss
exponent is β = 2.75 to simulate the effect of the large-
scale NLoS channel fading, and the slot duration is τ = 0.5 s.
The UAV’s power pi is specified as pi = 30dBm along
with the environmental noise power of n2

0 = −100 dBm. The
power allocation ratio is δj = 1. Additionally, the number of
available time slots is given as S = 60 such that the scheduling
time horizon is 0.5 × 60 = 30 s, while the application data
load is set to Q = 300Mbit. For the sake of the case
study, the mobility of the UAV and the ground mobile node
are configured according to specific trajectory planning data.
First, two case studies under different numbers of contending
nodes, N = 2, 10, are used to compare the scheduling results
obtained by our closed-form expression in Theorem 1 and by
a numerical constrained optimization algorithm based on the
well-known sequential quadratic program (SQP). From Fig. 2,
it is observed that both optimization methods can provide the
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Fig. 6. Comparison results for different UAV velocity constraint bounds.

same scheduling solution. This fact confirms the correctness
of our theorem and numerically verifies the proposed closed-
form solution.

Besides, in Fig. 3, the impacts of the data volume required
to be transmitted and the number of contending nodes on
the optimal reliability is analyzed by using our theoreti-
cal model. It is seen that increasing the transmission load
or channel contention can reduce communication reliability.
Nevertheless, even though under severe channel contention,
N = 20, and a large transmission load, Q = 108 bits,
the A2G communication reliability can be guaranteed above
0.99 by using our transmission scheduling solution. Fig. 3
sheds light on the high-reliability region for designing the
total transmission load under different numbers of contending
nodes, e.g., Q ∈ [0, 109] (bits) under N = 2.

Furthermore, Fig. 4 compares the A2G communication
reliability of our transmission scheduling method to other
baselines, including the uniform and the random schemes
under different numbers of contending nodes. It is noted
that these two conventional schemes are widely used as the
benchmark methods in the literature such as [33]–[35]. It
can be seen that the random allocation performs the worst.
Our method maintains higher transmission reliability, which
ensures more than 0.996 despite the transmission load reaching
109 bits (Fig. 4(a)). Meanwhile, our method improves the
reliability by about 2.38% and 2.52% in Fig. 4(c) and Fig.
4(d), respectively, compared to the uniform scheme. This
is because our proposed method is adaptive to the network
mobility, which enables the UAV to dynamically schedule the
data volume in each transmission slot in order to maximize the
reliability. In contrast, the random and the uniform schemes
can not adapt to the mobility.

In addition, to verify the advantage of the proposed schedul-
ing solution, we compare it to a benchmark solution, i.e., the
conventional method that uniformly schedules the data bits in
each time slot, in Fig. 5. We also show the baseline ultra-
reliable and low-latency communications (URLLC), which is
one of the most important requirements for 5G. As required
by the 5G URLLC specification, the 32-byte user-plane data

should be transmitted per 1ms with the reliability requirement
of 99.999%, i.e., the required data volume is equivalent to
32×8×103×30 bits = 7.68Mbit over the total time horizon
of 30 s. From Fig. 5, it can be seen that the conventional
solution fails in achieving the required data volume when the
contending node number is higher than N = 10, while our
scheduling solution can transmit much larger data meanwhile
satisfying the 5G URLLC reliability requirement. The data
volume achieved by our solution is about 3.3369 times larger
than that achieved by the conventional method on average.
In particular, even with a large contending node number,
N = 20, our solution improves the transmitted data volume
by about 84.0% than the 5G URLLC-required baseline. These
comparative results confirm the advantage of our reliability-
optimal scheduling solution in terms of transmission capacity.

Finally, we also compare the performance of different
methods under different UAV mobility. Specially, we set three
cases of UAV velocity bounds, i.e. [−10, 10], [−20, 20], and
[−50, 50] m/s. These different velocity bounds lead to differ-
ent UAV trajectories and different flight velocities, which sim-
ulate low, medium, and high mobility scenarios, respectively.
The UAV mobility can influence the time-varying relative
distance between the aerial and ground nodes, thus affecting
the channel quality. Fig. 6 shows the total data transmission
volume that can be achieved by different methods when
the transmission reliability reaches 99.999% under different
mobility scenarios. In the case of low mobility, our method
outperforms the other methods, making the data volume 13
times larger than that of the other methods on average. In the
case of medium mobility, our method gets a 12.07% increase
in the data volume when compared to the uniform scheme. In
the high mobility scenario, the volume of data transmitted by
the uniform scheme is less than half of our method. It shows
that our method achieves the highest reliability and meets the
URLLC requirement under different mobility scenarios.

V. CONCLUSION

This letter provides a closed-form reliability-optimal so-
lution for scheduling UAV-assisted A2G data transmissions
under large-scale NLoS channel fading and also theoreti-
cally characterizes the achievable optimal reliability from the
probabilistic perspective. The theoretical results capture the
effects of the aerial and ground nodes’ mobility, the chan-
nel stochastic characteristics, and the application constraints
on the A2G communication reliability. Simulation results
show that the proposed scheduling solution achieves a much
larger transmitted data volume than the conventional method
when satisfying the same reliability requirement. Moreover,
the proposed solution provides a considerable performance
improvement over the 5G URLLC-required baseline. In the
future, we can extend our method to multi-UAV or multi-
node scenarios. While the current work focuses on the NLoS
channel, it is necessary to extend the work to situations where
the UAVs fly in rural areas with high altitudes and the A2G
channels incorporate probabilistic LoS links.
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