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Abstract—Platoon-based vehicular cyber-physical systems
(VCPSs) have attracted much attention due to their potential
to improve road capacity and energy efficiency. However, the
comprehensive effect of the mismatched modeling dynamics and
unknown disturbances can impose a great challenge on the
convergence and stability of vehicle platooning. In this paper,
we propose a novel decentralized robust control approach to
address the external disturbances in vehicle platooning. Specifi-
cally, by combining a super-twisting second-order sliding mode
(SOSM) strategy and a disturbance observer (DO), we design
a super-twisting SOSMDO platoon controller. We also derive
some design conditions of the controller and observer gains.
Using the Lyapunov methodology, we theoretically prove under
the design conditions the finite-time convergence of the super-
twisting SOSMDO to the platooning equilibrium state and its
closed-loop stability to the disturbances. Extensive simulations
have been conducted and the results demonstrate the superior
performance of the proposed control approach in terms of inter-
vehicle spacing, velocity tracking, and platoon robustness.

Index Terms—Vehicle platoon, sliding mode control, distur-
bance observer, stability.

I. INTRODUCTION

CONNECTED and automated vehicles (CAVs) have been
considered as a promising system component for revo-

lutionizing social mobility. In particular, automated vehicles
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moving as platoons, i.e., platooning vehicles in a closely
spacing group, are expected to dramatically improve driving
experience, traffic efficiency and safety, road capacity, and also
reduce energy consumption in road transportation systems [1]–
[3]. With recent advances in wireless communications and
edge computing, intelligent vehicles can be equipped with
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications to exchange real-time information, process
data-massive and latency-critical applications, and thus en-
able the autonomous coordination among themselves [4],
[5]. Therefore, over the past several decades, the interaction,
automation, and coordination of platooning vehicles have
attracted increasing attention from both academia and industry.
In order to ensure safe and reliable mobility, automatic control
of closely spaced platoons is required. More importantly,
control stability and robustness are critical and should be guar-
anteed for vehicle platooning in a real complex environment.

A. Literature Review

Many vehicle platooning or interconnected system control
strategies have been proposed in the current literature [1], [2],
among which the constant spacing (CS) policy [6] and the con-
stant time headway (CTH) policy [7], [8] are most commonly
exploited since they can be practically implemented with low
complexity. Based on the CS or the CTH policies, exten-
sive advanced adaptive cruise control (ACC) and cooperative
adaptive cruise control (CACC) schemes have been currently
developed by combining different adaptive mechanisms, such
as the parameter-space linear quadratic regulator-based CACC
approach [9], the communication delay-compensated approach
[10], the acceleration/control feedback-based approach [11],
the infrastructure-assisted linear ACC [12], and many others
[13]–[17]. Although a broad range of traditional ACC and
CACC controllers based on the CS or CTH policies can bring a
promising performance and simplify system deployment, they
have some restrictions in reality. Namely, their implementation
requires full or partial accurate state information. The linear
time-invariant controller gains are usually designed without
compensating the effect of external unknown disturbances.

To cope with the external disturbances or uncertain system
dynamics, other control designs are proposed based on the
well-known linear matrix inequality (LMI) method and robust
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H-infinity control theory [18]–[23]. The robust H-infinity
control approaches aim to achieve the platoon string stability
by guaranteeing the worst-case control performance that is
usually measured by the H-infinity norm. In essence, these
approaches also rely on the state feedback/feedforward to
realize robust controllers. However, their static state feed-
back/feedforward gains do not take into account the dynamic
disturbance compensation and require solving a worst-case
optimization problem that involves complicated nonlinear con-
straints in the vehicle platooning scenario.

In addition, a wide range of vehicle platoon control ap-
proaches are fundamentally based on mathematical optimiza-
tion theory like [24]–[27], i.e., falling into the specific category
of optimal control. In the optimal control paradigm, a control
solution is obtained by solving a finite-horizon optimal control
problem that usually has an explicit optimization objective
and a set of constraints on both the system state and control.
According to the control implementation and the time horizon
for solving the optimization model, the optimal control can
also be divided into two categories, i.e., the rolling horizon
control [24], [25] and the model predictive control (MPC)
[26], [27]. Nevertheless, the computational efficiency of a
constrained optimization model, particularly a nonlinear con-
strained optimization, remains to be a significant challenge
in the online MPC implementation due to the complexity in
the optimal control formulation of a vehicle platoon. Even
though some remarkable advances have been recently achieved
in robust MPC theory such as the representative works based
on the invariant tube construction or the worst-case optimiza-
tion [28]–[30], these robust MPC approaches have to face
the increased computational complexity resulting from either
solving dramatically high-dimensional LMIs or addressing a
sequence of robust positively invariant (RPI) sets.

Besides, to robustly deal with the mismatched nonlinear-
ity and uncertain disturbances, many other studies resort to
the sliding mode control theory [31]–[34]. For example, in
[31], a decentralized sliding-mode control approach has been
proposed by combining a nonlinear disturbance observer with
the first-order sliding mode control. The design conditions
on the controller and the observer gains for guaranteeing
the robust stability are obtained by matrix transformation
and decomposition, which inevitably involves the complex
computation. In [32], the sliding mode control is applied
to realize the distributed control of vehicles approaching a
traffic signal intersection. But it does not explicitly account for
the external unknown disturbances in the vehicle dynamics.
In [33], a distributed sliding mode control model has been
developed based on a topologically structured function. The
authors define the combined tracking error incorporated in the
sliding mode dynamics in terms of the longitudinal position
and velocity deviations from their desired counterparts [33].
Similarly, [34] also defines a distributed sliding mode surface
by combining both the position and velocity tracking errors
and adopts an exponential reaching law to design a distributed
adaptive sliding mode controller for a vehicle platoon subject
to the external unknown disturbances. Some linear matrix
inequality conditions need to be solved to determine an
appropriate pole placement of the sliding motion dynamics

[34]. From the above works, it is witnessed that classic
sliding mode control approaches can provide high-accuracy
tracking performance and favorable robustness to the external
disturbances for a disturbed vehicle platoon. However, the
aforementioned control approaches based on classic sliding
modes are limited in two aspects: on one side, their control
variables need to appear in the first-order time derivative of
the tracking error, which cannot incorporate the lower-layer
dynamics (e.g., the acceleration variation) of the vehicles; on
the other side, the first-order sliding modes has only one
relative degree, and although the sliding mode variable is
continuous, its time derivative may be discontinuous. As a
consequence, the classic sliding mode control approaches may
heavily experience the so-called chattering effect, i.e., the
high-frequency control switching.

The sliding mode control methodology can also be inte-
grated with some other mechanisms, such as the upper-layer
trajectory optimization [35], the prescribed tracking strategy
[36], the nonzero-initial spacing error transformation [37],
and the bidirectional information interaction strategy [38], to
enhance its platoon control performance. In [39], the authors
propose a distributed integral sliding mode controller for
cooperative braking of vehicles in a platoon. However, in these
works [35]–[39], the lower-layer tracking error dynamics,
such as the time derivative of the longitudinal acceleration,
has not been taken into consideration in the design of their
sliding mode surfaces. Besides, the perturbation reconstruction
has not been explored in their sliding-mode control loop.
In some other works like [40], [41], the integration of a
nonlinear disturbance observer from [42]–[44] and an integral
sliding mode controller is shown to be powerful to achieve
the control robustness. The integral sliding mode controller
with a observer can use the perturbation reconstruction to
compensate the external disturbances. However, in these works
[40], [41], the conventional double-integrator vehicle model
(i.e., a second-order kinematic model) is adopted such that it
cannot incorporate the lower-layer vehicle dynamics into the
control design. Additionally, their observer’s gains need to be
carefully selected, while the explicit design conditions for their
observer’s gains remain to be theoretically unexplored.

B. Motivation and Contribution

Even though a wide variety of state feedback/feedforward-
based linear control designs have been developed and analyzed
in the current literature, the finite-time convergence of the ve-
hicles’ tracking errors, low-complexity gain design conditions,
and theoretically-guaranteed strong robustness remain to be
explored in vehicle platooning subject to the external unknown
disturbances. In particular, even though traditional first-order
sliding mode control approaches can provide robust and high-
accuracy control solutions under the external disturbances,
they may face the chattering effect in high-frequency control
switching. To bridge the gap, we are motivated by the higher-
order sliding modes [45]–[49].

Specifically, in this paper, we propose a decentralized robust
platoon control approach based on the super-twisting second-
order sliding mode (SOSM). Nonetheless, we do not apply the
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existing super-twisting SOSM for vehicle platooning directly,
which essentially differentiates our work to the existing liter-
ature [35]–[41]. Instead, we propose a super-twisting SOSM-
based disturbance observer (SOSMDO) to reconstruct the
uncertain system perturbation term and use the estimated
term in the feedback control loop to compensate the effect
of the external uncertainties in real-time. This idea yields a
novel platoon controller using the super-twisting SOSMDO,
which can robustly and asymptotically stabilize the platooning
equilibrium in the presence of external unknown disturbances.
Additionally, the proposed control approach only needs to
appropriately configure a few gain parameters. The sufficient
stability conditions of low computational complexity have also
been theoretically derived by using the Lyapunov approach.
More importantly, the proposed control approach extends, for
the first time, the classic sliding mode surface design of only
one relative degree in the platoon control context like [31]–
[34] to a higher-order formulation for robust vehicle platoon-
ing and theoretically guarantees the finite-time convergence
of the compensated sliding-mode dynamics subject to any
unknown but bounded disturbances. The contributions of our
paper are summarized as follows.

i) For the scenario of longitudinal vehicle platooning in
the presence of external uncertain but bounded disturbances,
we first propose a decentralized super-twisting SOSM platoon
controller to maneuver a platoon of vehicles in order to track
a reference velocity profile while maintaining a desired inter-
vehicle spacing. By using the Lyapunov approach, we also
prove the finite-convergence of the designed controller and
its robustness to the external disturbances, and derive the
sufficient stability conditions for the controller’s gains.

ii) To address the issue about the practical implementa-
tion of the platoon control in requiring information on the
perturbation term, we further propose a nonlinear disturbance
observer by leveraging the formulation of the super-twisting
SOSM, termed a super-twisting SOSMDO. Using the proposed
observer, we are able to reconstruct the disturbance and use its
estimation in the feedback loop to compensate the disturbance
effect so as to improve the closed-loop adaptability.

iii) With the super-twisting SOSMDO, we design another
decentralized platoon controller that is driven by the com-
pensated sliding mode dynamics. It is proved that the new
controller can robustly guarantee the asymptotic convergence
of the vehicle platoon subject to the external disturbances.
Some sufficient stability conditions are also derived for both
the controller’s and the observer’s gains.

The remainder of this paper is organized as follows. In
Section II, the vehicle model with the lower-layer dynamics
in the presence of external disturbances is introduced and the
decentralized platoon control problem is formulated. Next,
we propose a decentralized robust controller based on the
super-twisting SOSM for vehicle platooning in Section III.
A nonlinear disturbance observer in the super-twisting SOSM
format is proposed and the super-twisting SOSMDO-based
platoon controller is designed as well in Section IV. Section V
presents the simulation results that validate the performance of
the proposed robust control approach for vehicle platooning.
Section VI concludes this work and states the future work.
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Fig. 1. The application scenario of longitudinal vehicle platooning and our
robust platoon control framework.

II. PROBLEM FORMULATION

Consider a longitudinal platoon of automatically controlled
vehicles that can exchange their real-time state and control
information via vehicle-to-vehicle (V2V) communications.
The number of platooning vehicles is denoted by (N + 1),
i.e., including one virtual leader and N actual followers as
shown in Figure 1. As shown in Figure 1, our platoon control
is considered to be implemented in a decentralized manner
by following a preceding-follower information topology. Let
IN := {1, 2, . . . , N} denote the set of the following vehicles
and IN+1 := {0, 1, . . . , N} the set of the entire platooning
vehicles. For each vehicle i ∈ IN+1, its longitudinal position,
velocity, acceleration, and control input at time t ∈ R≥0

are denoted by pi(t), vi(t), ai(t), and ui(t), respectively. As
suggested by current studies [12], [15], [26], [50], the vehicle
dynamics can be characterized by combining both the upper-
level and the lower-level kinematics and dynamics parameters,
which is approximately modeled by

ṗi(t) = vi(t),

v̇i(t) = ai(t),

ȧi(t) = − 1
τ ai(t) + κ

τ ui(t), ∀i ∈ IN ,
(1)

where τ denotes the actuation time lag for the vehicle to
achieve the requested acceleration, while κ is the ratio of the
requested acceleration that can be realized by the vehicle. The
three-order approximation model (1) allows for incorporating
the nonlinear effects of aerodynamic drag, engine and trans-
mission dynamics, road condition, and some others [18], [51].
Thus, it has been widely adopted as a vehicle model for the
controller design in current literature. However, due to the fact
that there inherently exist some certain modeling errors (i.e.,
the mismatched model uncertainties), parametric measurement
noises (i.e., sensor information uncertainties), and external
uncertain disturbances, the model (1) may fail in capturing the
actual dynamics of the vehicle in reality. Therefore, we intro-
duce a lumped uncertainty term as ωi(t), which is a column
vector and represents the coupled effect of the aforementioned
modeling errors and external disturbances on the longitudinal
position, velocity, and acceleration dynamics, respectively. The
lumped disturbance term can also represent the mismatched



4

model uncertainties resulting from potential communication
delays, data packet losses, and some other unknown system
response lags [31]. Then, we extend (1) to a more general
model allowing for the external disturbances as the following
state-space form

ẋi(t) = Axi(t) +Bui(t) +Cωi(t), ∀i ∈ IN , (2)

where xi(t) := [pi(t), vi(t), ai(t)]
T is the state variable, C is

a known real matrix with compatible dimension, and

A :=

0 1 0
0 0 1
0 0 − 1

τ

 , B :=

0
0
κ
τ

 . (3)

It is noted that the whole term Cωi(t) represents the effect
of the external disturbances. The coefficient matrix C is used
to denote the scaling factor and linear transformation on the
elements of ωi(t), which is of 3×nωi(t) size where nωi(t) is
the row number of the disturbance vector ωi(t). In practice,
the lumped disturbance term ωi(t), i ∈ IN , as well as its
firs-order time derivative, ω̇i(t), is usually bounded as

sup
t∈R≥0

‖ωi(t)‖∞ ≤ ηi,

sup
t∈R≥0

‖ω̇i(t)‖∞ ≤ ∆ηi,
(4)

where ηi and ∆ηi are some upper bounds known for i ∈ IN .
Given (2), the problem of cooperative platooning of the

connected and automated vehicles can be realized by a con-
stant time-headway spacing policy that is formulated as a
second-order consensus problem. To be specific, the platoon-
ing vehicles need to maintain a desired inter-vehicle time
headway ∆t and track a desired velocity vtarget of the platoon.
Mathematically, the objective of our control design is to drive
the longitudinal positions and velocities of all the platooning
vehicles toward the desired steady state as follows lim

t→∞
|pi−1(t)−∆tvi(t)− li−1 − pi(t)| = 0,

lim
t→∞

|vi−1(t)− vi(t)| = 0,
(5)

for all i ∈ IN , where li denotes the length of the vehicle i.
It is remarked that the trajectory profile (p0(t), v0(t)) of the
virtual leading vehicle is assumed to be known and treated
as the reference signal for its followers. Moreover, another
goal of our work is to guarantee the stability, especially the
finite-time convergence and robustness, of the platoon under
the designed control subject to external uncertain disturbances.

III. DECENTRALIZED ROBUST CONTROLLER DESIGN

To design a decentralized controller for each platooning
vehicle i ∈ IN , the real-time longitudinal position and velocity
profiles of a platooning vehicle i − 1 can be treated as a
reference signal for its immediate follower i. Such a reference
signal is considered to be fed backward from i − 1 to i via
V2V communications as shown in Figure 1. For the sake of
convenience, we denote the reference position profile for each
follower i ∈ IN by pi,target(t) := pi−1(t)−∆tvi−1(t)− li−1.
To realize tracking of the desired position and velocity, we de-
fine the linearly weighted combination of both the position and

velocity tracking errors, e1,i(t), and its first-order derivative,
e2,i(t), for any i ∈ IN , as follows{

e1,i(t) = pi,target(t)− pi(t) + b1,i (vtarget − vi(t))
e2,i(t) = vtarget − vi(t) + b2,i (atarget − ai(t))

(6)

where b1,i and b2,i denote the positive coefficients weighing
the influence of the velocity tracking error and that of its
derivative on the entire sliding surface, respectively. In (6),
since the constant time headway spacing policy is adopted,
the reference acceleration atarget at the equilibrium state is
indeed set to atarget = v̇target = 0.

According to the control objective represented by (5), we
exploit the super-twisting SOSM theory and introduce a sliding
mode surface, denoted by a variable si(t), for each i ∈ IN .
Specifically, si(t) can be designed as follows [45]–[47]

si(t) = cie1,i(t) + e2,i(t), i ∈ IN , (7)

where ci is a positive coefficient weighing the influence of
the first-order tracking error on the sliding mode surface. It is
remarked here that the design of our sliding mode surface
based on (6) and (7) is quite different from the existing
studies [31]–[41] in the field of the sliding mode control-
based vehicle platooning. Our sliding mode surface in (6) and
(7) incorporates the high-order characteristics and allows for
the lower-layer vehicle dynamics in (1), i.e., the time-varying
longitudinal acceleration.

To proceed, we combine (2) and (7) to further obtain

ṡi(t) = ϕ (t,xi(t),ωi(t))−Kiui(t), i ∈ IN , (8)

where ϕ (t,xi(t),ωi(t)) is given as

ϕ (t,xi(t),ωi(t)) =ki,1xi(t) + ki,2ωi(t) + ciṗi,target(t)
(9)

and

Ki =
b2,iκ

τ
. (10)

In (9), ki,1, ki,2, i ∈ IN , are row vectors given as follows

ki,1 = −
[
0 ci

(
cib1,i + 1− b2,i

τ

)]
,

ki,2 = −
[
ciC1 + (cib1,i + 1)C2 + b2,iC3

]
,

(11)

where Cl denotes the l-th row vector of C, l = 1, 2, 3.
Remark that the state xi(t) is bounded in an actual ap-

plication scenario, and the lumped external disturbance ωi(t)
and its time derivative ω̇i(t) are also bounded. Due to the
boundedness in the system state and the disturbance dynam-
ics, there exist some positive constants θ∗i > 0 such that
ϕ (t,xi(t),ωi(t)) in (9) can be bounded as [45], [46], [49]

|ϕ (t,xi(t),ωi(t))| ≤ θ∗i |si(t)|
1
2 , i ∈ IN . (12)

Therefore, there also exist some certain positive θi ∈ (0, θ∗i ]
such that ϕ (t,xi(t),ωi(t)) satisfies, according to the interme-
diate value theorem,

ϕ (t,xi(t),ωi(t)) = θi |si(t)|
1
2 sign (si(t)) , i ∈ IN . (13)
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Recalling (5), the platoon control boils down to stabilizing
the dynamics of the sliding mode surface in (8), and more
importantly, guaranteeing that the sliding mode variable si(t)
in (7) can converge to the origin in finite time. To achieve
this goal, we design a control law based on the super-twisting
SOSM theory as follows [48], [49]

ui(t) = αi |si(t)|
1
2 sign (si(t)) + βi

∫ t

0

sign (si(σ)) dσ (14)

for each i ∈ IN , and choose the control gains αi and βi by
following the constraints{

αi >
θi
Ki
,

βi >
Kiα

2
i (θi−Kiαi)

4(Kiαi−2θi)
.

(15)

For the designs in (14) and (15), we have the following result.
Theorem 1: For any i ∈ IN , suppose that the disturbance

term ϕ (t,xi(t),ωi(t)) is bounded as (12). Given that the
control law ui(t) follows (14) with the gains αi and βi
satisfying (15), the sliding mode variable si(t) in (7) following
the dynamics in (8) can converge to the origin in finite time.

Proof: We let s1,i(t) := si(t), Kα,i := Kiαi, and
Kβ,i := Kiβi for the sake of notation simplicity. Additionally,
we also introduce an auxiliary variable s2,i(t) that captures
the switching dynamics of the sign of si(t), i.e., s2,i(t) =

−
∫ t

0
Kβ,isign (s1,i(σ)) dσ. Substituting the control law (14)

into (8) can yield
ṡ1,i(t) =−Kα,i |s1,i(t)|

1
2 sign (s1,i(t)) + s2,i(t)

+ ϕ (t,xi(t),ωi(t)) ,

ṡ2,i(t) = −Kβ,isign (s1,i(t)) .

(16)

Using the transformation approach presented in [45]–[49],
we introduce an auxiliary state variable as

ξi(t) =

[
|s1,i(t)|

1
2 sign (s1,i(t)) ,

−Kβ,i

∫ t
0

sign (s1,i(σ)) dσ

]
, i ∈ IN . (17)

Based on (17), a candidate Lyapunov function for analyzing
the system convergence and stability can be formulated as

Vi (ξi(t)) = 2Kβ,i |s1,i(t)|+
1

2
s2

2,i(t)

+
1

2

(
Kα,i |s1,i(t)|

1
2 sign (s1,i(t))− s2,i(t)

)2

= ξT
i (t)P (Kα,i,Kβ,i) ξi(t), i ∈ IN ,

(18)

where the matrix P (Kα,i,Kβ,i) depends on the gains Kα,i

and Kβ,i as follows

P (Kα,i,Kβ,i) =
1

2

[
4Kβ,i +K2

α,i −Kα,i

−Kα,i 2

]
. (19)

Besides, for any i ∈ IN , the time derivative of the new state
variable ξi(t) is

ξ̇i(t) =
1

|ξ1,i(t)|

[−Kα,iξ1,i(t)+ξ2,i(t)+ϕ(t,xi(t),ωi(t))
2

−Kβ,iξ1,i(t)

]
, (20)

where ξ1,i(t) and ξ2,i(t) are the first and the second elements
of the column state vector ξi(t), respectively, and |ξ1,i(t)| is

|ξ1,i(t)| = |s1,i(t)|
1
2 . Using (20), the dynamics in (16) can be

rearranged as the compact form

ξ̇i(t) =
1

|ξ1,i(t)|
[Q (Kα,i,Kβ,i) ξi(t) +ϕi] , (21)

where we define

Q (Kα,i,Kβ,i) =
1

2

[
−Kα,i 1
−2Kβ,i 0

]
,

ϕi =
1

2

[
ϕ (t,xi(t),ωi(t))

0

]
.

(22)

Recalling ϕ (t,xi(t),ωi(t)) = θiξ1,i(t) in (13), ϕi can be
decomposed as ϕi = Λiξi(t), where Λi is given by

Λi =
1

2

[
θi 0
0 0

]
. (23)

Hence, based on (18) and (21), we obtain the time derivative
of the Lyapunov function Vi(t) (ξi(t)) as follows

V̇i (ξi(t)) =
1

|ξ1,i(t)|
ξT
i (t)

(
QT
iP i + P iQi

)
ξi(t)

+
2

|ξ1,i(t)|
ξT
i (t)P iΛiξi(t)

= − 1

|ξ1,i(t)|
ξT
i (t)Φiξi(t), i ∈ IN ,

, (24)

where Qi := Q (Kα,i,Kβ,i) and P i := P (Kα,i,Kβ,i) for
the sake of simplicity. The matrix Φi is given as follows

Φi = −
(
QT
iP i + P iQi

)
− 2P iΛi

=
Kα,i

2

[
K2
α,i + 2Kβ,i − θi

(
Kα,i +

4Kβ,i
Kα,i

)
−Kα,i

− (Kα,i − θi) 1

]
.

(25)

To ensure that the time derivative of the Lyapunov function
is strictly negative definite, i.e., V̇i (ξi(t)) < 0, we need Φi >
0. That is, the matrix Φi needs to strictly satisfy the positive
definiteness, the sufficient condition of which can be{

Kα,i > θi,

Kβ,i >
K2
α,i(θi−Kα,i)

4(Kα,i−2θi)
,

(26)

which immediately results in the design constraints given in
(15). Therefore, with the gains in (15), the trajectory of the
sliding mode variable in (7) following the dynamics in (8) can
converge to the origin in finite time.

It is remarked here that a suitable parameter θi involved in
(26) is not unique and not exactly known in advance. Never-
theless, in practice, in order to determine proper controller’s
gains based on (26) in the controller design stage, we can
resort to simulation-based techniques and empirical analysis to
incrementally adjust the values of the controller’s gains or the
parameter θi. The simulation-based tuning approach is of low
complexity since the super-twisting SOSM controller needs
only a small number of hyperparameters as shown in (26).

Let Vi(si(t)) also denote Vi(ξi(t)) in (18) where si(t) :=
[s1,i(t), s2,i(t)]

T is the state vector of (16) for all i ∈ IN , and
λmax(·) and λmin(·) denote the maximum and the minimum
eigenvalues of an input matrix, respectively. Based on Theo-
rem 1 and adopting the analysis logic in [45], [47], [49], we
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can also obtain the following theoretical result that provides
an upper bound on the finite convergence time.

Corollary 1: For any i ∈ IN , given that the control law ui(t)
follows (14) with the gains αi and βi satisfying (15), and si(0)
is an initial state for (16), the time for the convergence of the
sliding mode variable si(t) in (7) following the dynamics in
(8) to the origin is smaller than Ti (si(0)), where Ti (si(0))
is given as followsT (si(0)) =

2V
1
2
i (si(0))

λ(P i,Φi)
,

λ (P i,Φi) = (λmin(P i))
1
2 λmin(Φi)

λmax(P i)
.

(27)

Proof: According to (18), it always holds that

λmin (P i) ‖ξi(t)‖
2
2 ≤ Vi (si(t)) ≤ λmax (P i) ‖ξi(t)‖

2
2 (28)

for all i ∈ IN . Recalling (17), we can also have ‖ξi(t)‖
2
2 =

|s1,i(t)| + s2
2,i(t), which indicates |s1,i(t)| ≤ ‖ξi(t)‖

2
2. Sub-

stituting (28) into this result can further yield

|s1,i(t)|
1
2 = |ξ1,i(t)| ≤

V
1
2
i (si(t))

(λmin (P i))
1
2

. (29)

Besides, according to (24) and (28), it also holds that

V̇i(si(t)) ≤ −
1

|ξ1,i(t)|
λmin (Φi) ‖ξi(t)‖

2
2

≤ − 1

|ξ1,i(t)|
λmin (Φi)

Vi(si(t))

λmax (P i)

(30)

for all i ∈ IN . Combining (29) and (30) can lead to

V̇i(si(t)) ≤ −λ (P i,Φi)V
1
2
i (s(t)), i ∈ IN . (31)

Note that for any i ∈ IN , the following differential equation
with an initial condition Vi(0) ≥ 0

V̇i(t) = −λ (P i,Φi)V
1
2
i (t) (32)

has a solution as

Vi(t) =

(
V

1
2
i (0)− λ (P i,Φi) t

2

)2

. (33)

Given Vi(0) ≥ Vi(si(0)), it always holds that Vi(t) ≥
Vi(si(t)). Therefore, Vi(si(t)) along with si(t) can converge
to zero at most after 2V

1
2
i (si(0))/λ (P i,Φi) units of time.

IV. NONLINEAR DISTURBANCE OBSERVER-BASED
CONTROL DESIGN

We remark that the practical implementation of the proposed
control law (14) based on the super-twisting SOSM theory
requires the prior knowledge on the upper bound of the com-
posite term ϕ (t,xi(t),ωi(t)) which involves the dynamics
of both the state variable xi(t) and the lumped disturbance
ωi(t). However, it is impractical or even impossible to get
the exact information about the dynamics of the disturbance
term ωi(t). Thus, in the following section, motivated by the
nonlinear disturbance observer (NDO) methodology [42]–[44],
we would like to further design a NDO. Also different from
the existing works [39]–[41], we design the NDO in the super-
twisting SOSM format, termed super-twisting SOSMDO. The

super-twisting SOSMDO is exploited to compensate the effect
of the uncertain disturbances in the sliding mode dynamics.

Let ϕi(t) := ϕ (t,xi(t),ωi(t)) for the simplicity of nota-
tions. According to (9), the composite term ϕi(t) can be fur-
ther decomposed into a known dynamics term ϕ∗i (t) that only
involves the system state xi(t) and an unknown disturbance
term ∆ϕi(t) that depends on the disturbance ωi(t), i.e.,

ϕi(t) = ϕ∗i (t) + ∆ϕi(t), i ∈ IN , (34)

where ϕ∗i (t) = ki,1xi(t) + ciṗi,target(t) and ∆ϕi(t) =
ki,2ωi(t). Now, (8) can be re-expressed in the following form

ṡi(t) = ϕ∗i (t) + ∆ϕi(t)−Kiui(t), i ∈ IN . (35)

A. Super-Twisting SOSM-based Disturbance Observation

To reconstruct the disturbance dynamics, we also resort to
the super-twisting SOSM design methodology. To be specific,
we introduce another auxiliary variable gi(t) as follows{

gi(t) = si(t) + hi(t),

ḣi(t) = −ϕ∗i (t) +Kiui(t)− φi(t),
(36)

for all i ∈ IN . By substituting (34) into (36), the time
derivative of gi(t) can be derived as

ġi(t) = ∆ϕi(t)− φi(t), i ∈ IN , (37)

where φi(t) can be treated as the injection term of the
proposed super-twisting SOSM-based disturbance observer
in (37). Recalling that the disturbance ωi(t) and its first-
order and second-order time derivatives are bounded as in
(4), ∆ϕi(t) and its first-order time derivative ∆ϕ̇i(t) are
bounded as well. We let Li be an upper bound of ∆ϕ̇i(t),
i.e., |∆ϕ̇i(t)| ≤ Li. The injection term φi(t) can be written in
the super twisting format with respect to gi(t){

φi(t) = γ1,i |gi(t)|
1
2 sign (gi(t)) + yi(t),

ẏi(t) = γ2,isign (gi(t)) ,
(38)

for all i ∈ IN , where γ1,i and γ2,i are the observer’s
positive gains to be designed. Specifically, using the same logic
presented in Section III and the results in (26), we can have the
similar conditions for both γ1,i and γ2,i, i ∈ IN , as follows.

Theorem 2: For any i ∈ IN , suppose that the disturbance
term ∆ϕi(t) has the time derivative with a Lipschitz’s constant
Li > 0. Given that the estimate φi(t) follows (38) with the
gains γ1,i and γ2,i satisfying

γ1,i >
√
Li,

γ2,i >
γ2

1,i(
√
Li − γ1,i)

4(γ1,i − 2
√
Li)

,
(39)

gi(t) in (36) following the dynamics in (37) can converge to
the origin in finite time.

Proof: It is recognized that the super-twisting observer for
the disturbance term ∆ϕi(t) in (38) has the same mathematical
structure as that of the super-twisting SOSM controller as
presented in (16). The goal of (38) is to make φi(t) converge to
∆ϕi(t), i.e., driving gi(t), ġi(t)→ 0. Besides, since the distur-
bance term ∆ϕi(t) has a time derivative with the Lipschitz’s



7

constant Li and according to the first-order differentiator
theory based on the sliding mode technique in [52] (see Propo-
sition 2 and Theorem 2 in [52]), |∆ϕi(t)−φi(t)| in (37) can be
bounded as the form |ġi(t)| = |∆ϕi(t)−φi(t)| ≤

√
Li |gi(t)|

1
2

for some certain Li > 0 and i ∈ IN . Thus, using the same
logic of Theorem 1 and according to (26), we can replace the
upper bound constant θi with the upper bound

√
Li to obtain

the sufficient conditions in (39).
Besides, following the logic of Corollary 1, we can also

obtain the following result.
Corollary 2: For any i ∈ IN , given that the estimate φi(t)

follows (38) with the gains γ1,i and γ2,i satisfying (39), and
gi(0) is an initial points for (36), the time for the convergence
of the estimate gi(t) in (36) following the dynamics in (37) to
the origin is smaller than Ti (gi(0)), where Ti (gi(0)) is given
as followsT (gi(0)) =

2V
1
2
i (gi(0))

λ(P i,g,Φi,g) ,

λ (P i,g,Φi,g) =
(λmin(P i,g))

1
2 λmin(Φi,g)

λmax(P i,g) .
(40)

In (40), the matrix P i,g is defined in the same form of (19)
as follows

P i,g = P (γ1,i, γ2,i) =
1

2

[
4γ2,i + γ2

1,i −γ1,i

−γ1,i 2

]
. (41)

The matrix Φi,g is defined like (25), i.e.,

Φi,g = −
(
QT
i,gP i,g + P i,gQi,g

)
− 2P i,gΛi,g, (42)

where Qi,g and Λi,g are formulated in the same form of (22)
and (23), respectively, as follows

Qi,g =
1

2

[
−γ1,i 1
−2γ2,i 0

]
,

Λi,g =
1

2

[√
Li 0
0 0

]
.

(43)

Vi (gi(t)) is the Lyapunov function for the dynamics of gi(t),
which can be given in the similar form of (18).

Proof: The proof logic of Corollary 2 is the same as that
in Corollary 1, which is omitted here.

Theorem 2 as well as Corollary 2 characterizes the con-
vergence condition for gi(t). Moreover, from (39) above, by
letting

√
Li − γ1,i = γ1,i − 2

√
Li, i.e., γ1,i = 1.5

√
Li, the

convergence condition leads to γ2,i > 0.5625Li. Therefore, by
choosing γ1,i = 1.5

√
Li and γ2,i = 2× (0.5625Li) ≈ 1.1Li,

the convergence of ġi(t), ġi(t)→ 0, can always be guaranteed.
Then, an exact estimate of the disturbance ∆ϕi(t), denoted by
∆̂ϕi(t), can be set to

∆̂ϕi(t) = φi(t)→ ∆ϕi(t), i ∈ IN , (44)

where φi(t) is obtained from the super-twisting dynamics (38)
with γ1,i = 1.5

√
Li and γ2,i = 1.1Li. In addition, it should

be remarked that the upper bound parameter Li related to the
first derivative of the disturbance term ∆ϕi(t) can be prop-
erly estimated by empirical analysis or field measurements.
However, in practice, an accurate estimation on the maximum
value of |∆ϕ̇i(t)| (i.e., the tight upper bound) is unnecessary,
since there exist infinite number of positive constants that can
be treated as an upper bound (i.e., the Lipschitz’s constant) as
long as they are larger than the maximum value of |∆ϕ̇i(t)|.

B. Platoon Controller Design based on Super-Twisting SOSM
Disturbance Observer (SOSMDO)

Using the super-twisting SOSM disturbance observer pro-
posed above, we can further design a platoon controller
ui(t) for each vehicle i ∈ IN , which is able to robustly
asymptotically stabilize the sliding-mode variable si(t) in the
presence of an unknown but bounded disturbance ∆ϕi(t),

ui(t) =
1

Ki

(
ϕ∗i (t) + ∆̂ϕi(t) + λisi(t)

)
, i ∈ IN , (45)

where λi > 0 is a positive gain that should be sufficiently
large to obtain a desired convergence rate of si(t).

Theorem 3: For any i ∈ IN , given that the control law ui(t)
follows (45) with a sufficiently large gain λi > 0, si(t) in (7)
following the dynamics in (8) can asymptotically converge to
the origin as time increases.

Proof: By using the super-twisting nonlinear observer
in (38), we can estimate the disturbance term as ∆̂ϕi(t) in
(44). Then, the estimated disturbance ∆̂ϕi(t) is adopted in the
control design in (45) to compensate the unknown disturbance
effect. Thus, by substituting (45) into (35), the sliding-mode
dynamics with the compensated disturbance is reduced to

ṡi(t) = − λi
Ki
si(t), i ∈ IN , (46)

which immediately indicates that si(t) can be driven to asymp-
totically converge si(t)→ 0 as time increases.

We remark that the gain parameter λi should be properly
selected in order to provide a desired convergence rate for
si(t) → 0 in an actual application situation. According to
Theorem 3 above, a good choice is to let λi be one or two
orders of magnitudes larger than Ki. Our proposed robust
control implementation framework for each vehicle i ∈ IN is
shown in Figure 1. Based on Theorem 3 and recalling (7), we
can see that the designed controller ui(t) in (45) can robustly
achieve platooning of the vehicles i ∈ IN by driving both
their position and velocity tracking errors e1,i(t), e2,i(t)→ 0
in the presence of the unknown bounded disturbances ωi(t).

V. PERFORMANCE EVALUATION

A. Parameter Settings

To evaluate the performance of the proposed control design
approach based on the super-twisting SOSMDO in Section
IV, we consider a specific situation where N = 5 vehicles
would like to form a platoon by tracking their individual
reference trajectories determined by a virtual leader. The
vehicle dynamics model is given in (2). For the demonstration
purpose, the external disturbance ωi(t) in (2) is modeled as a
scalar sinusoidal signal as follows

ωi(t) = ηi sin(2πfit), i = 1, 2, . . . , N, (47)

where fi is the perturbation frequency in Hz and ηi is the
perturbation amplitude. The coefficient matrix of ωi(t), Ci, is
specified as Ci = [1, 1, 1]T, which indicates that the unknown
disturbance term ωi(t) will appear in the position, velocity
and acceleration state equations of vehicle i. That is, we
consider that the unknown disturbance will affect not only
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TABLE I
PARAMETER SETTINGS

Vehicle dynamics model
N Platooning vehicle number 5
vtarget Desired steady velocity (km/h) 50
κ Ratio of active control input 90%
τ Actuation time lag for control input (s) 0.1
∆t Constant time headway (s) 1.28

External disturbance
Ci Coefficient matrix of disturbance [1, 1, 1]T

ηi Disturbance amplitude 0.5
fi Disturbance frequency (Hz) 0.1

Sliding-mode variable
ci Weight for the position tracking error µ2i
b1,i Weight for the velocity tracking error 2µi−1

ci
b2,i Weight for the acceleration tracking error 1
µi Positive constant 1.5

Super-twisting SOSM-based platoon controller
αi Control gain 1.5
βi Control gain 0.1

Super-twisting SOSMDO-based platoon controller
γ1,i Control gain 1.5

√
Li

γ2,i Control gain 1.1Li
λi Control gain 5× 102

Li Upper bound of ∆ϕ̇i(t) 2πfiηi |ki,2Ci|

the acceleration profile but also both the position and velocity
profiles of each individual vehicle. Besides, according to (6)
and (7), the sliding-mode variable si(t) can be re-arranged as

si(t) = ci∆pi(t) + (cib1,i + 1)∆vi(t) + b2,i∆ai(t) (48)

for i = 1, 2, . . . , N , where ∆pi(t) = pi,target(t) − pi(t),
∆vi(t) = vtarget − vi(t), and ∆ai(t) = v̇target − v̇i(t).
The coefficients ci, b1,i, and b2,i need to be properly se-
lected to make the corresponding characteristic polynomial
Pi(σ) = b2,iσ

2+(cib1,i+1)σ+ci Hurwitz, where σ is used to
denote the Laplace variable here. Therefore, the eigenvalue of
Pi(σ) = 0 should have a negative real part. In our simulations,
we specify a positive µi > 0 and then let b2,i = 1 while
ci = µ2

i and (cib1,i + 1) = 2µi. In this way, the polynomial
becomes Pi(σ) = (σ + µi)

2, which is always Hurwitz stable.
In addition, from (9) and (34), it is seen that ∆ϕi(t) =

ki,2ωi(t). Hence, given (47), the upper bound of the time-
derivative of ∆ϕi(t), Li, can be determined as Li =
sup∀t |ki,2Ciω̇i(t)| = 2πfiηi |ki,2Ci| in our simulations.
The modeling parameters of the super-twisting SOSM-based
and the super-twisting SOSMDO-based controllers are sum-
marized in Table I. The settings in Table I will be adopted
throughout the simulation experiments unless otherwise stated.

B. Validation of Robustness in Platooning

The robustness of the proposed platoon controllers based
on both the super-twisting SOSM and the super-twisting
SOSMDO is illustrated in Figures 2 to 9. In order to test
the control performance under different dynamics stages of
the platooning vehicles, including an acceleration stage, a
deceleration stage and a stage of stabilization around the
equilibrium velocity, we initialize the vehicles’ longitudinal
velocities and accelerations to zero at the initial time. Besides,
the longitudinal inter-vehicle spacing is randomly generated by
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Fig. 2. The longitudinal positions, velocities, and accelerations of N = 5
platooning vehicles adopting the super-twisting SOSM controller.
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Fig. 3. The longitudinal inter-vehicle spacing of N = 5 platooning vehicles
adopting the super-twisting SOSM controller.

the perturbation of the equilibrium. Figure 2 shows the profiles
of their longitudinal positions, velocities, and accelerations
over time under the super-twisting SOSM platoon controller. It
is seen that all the vehicles increase their velocities during the
first 5 seconds to adjust their inter-spacing and avoid chain
collisions. After about 15 seconds, the vehicles can almost
reach the equilibrium state in which their longitudinal veloci-
ties approximate the desired level and their inter-distances are
almost identical. Figures 3 and 4 detail the profiles of the
inter-vehicle spacing and the velocity deviation between any
two successive vehicles, respectively. It is observed that all
the platooning vehicles can track the reference velocity when
arriving at the equilibrium state, and they are also able to
reach the identical inter-spacing without chain collisions even
under external disturbances. Specifically, from Figure 3, the
averaged absolute error of the vehicles’ inter-spacing is about
0.31 m over the last 5 seconds, while the absolute error of their
velocity differences is about 0.11 m/s on average. Figure 5
illustrates that all the vehicles can behave in the same control
manner when they reach the equilibrium after 15 seconds.

Similarly, as depicted in Figures 6 to 9, the simulation
results also validate the robustness of the super-twisting SOS-
MDO controller in the presence of external disturbances. From
Figure 6, it can be observed that the disturbance observer-
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Fig. 4. The longitudinal velocity deviations of N = 5 platooning vehicles
adopting the super-twisting SOSM controller.
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Fig. 5. The control inputs of N = 5 platooning vehicles adopting the super-
twisting SOSM controller.
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Fig. 6. The longitudinal positions, velocities, and accelerations of N = 5
platooning vehicles adopting the super-twisting SOSMDO-based controller.

based platoon controller can drive the vehicles to achieve
almost the same profile in both the time and spatial domains
when they arrive at the equilibrium state after about 15
seconds. In particular, the averaged absolute error of the
vehicles’ inter-spacing is about 0.27 m over the last 5 seconds
in Figure 7, and the averaged absolute error of their velocity
differences is about 0.10 m/s. When compared to the results of
the super-twisting SOSM platoon controller in Figures 3 to 4,
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Fig. 7. The longitudinal inter-vehicle spacing of N = 5 platooning vehicles
adopting the super-twisting SOSMDO-based controller.
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Fig. 8. The longitudinal velocity deviations of N = 5 platooning vehicles
adopting the super-twisting SOSMDO-based controller.
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Fig. 9. The control inputs of N = 5 platooning vehicles adopting the super-
twisting SOSMDO-based controller.

the averaged inter-vehicle spacing error in the stabilization of
the platooning equilibrium under the super-twisting SOSMDO
platoon controller is reduced by about 13.19%, while the
averaged velocity tracking error is reduced by about 14.01%.
The results confirm that the super-twisting SOSMDO platoon
controller can achieve better platooning performance than the
super-twisting SOSM. As depicted in Figure 9, since the
unknown disturbance is estimated and compensated in the



10

TABLE II
PERFORMANCE COMPARISON UNDER DIFFERENT DISTURBANCE AMPLITUDES.

ηi = 0.2 ηi = 0.4 ηi = 0.6 ηi = 0.8 ηi = 1.0

Method & KPI Avg. |∆p| Avg. |∆v| Avg. |∆p| Avg. |∆v| Avg. |∆p| Avg. |∆v| Avg. |∆p| Avg. |∆v| Avg. |∆p| Avg. |∆v|

ST-SOSMDO 0.2493 0.2328 0.3165 0.2553 0.4248 0.2778 0.5386 0.3002 0.6620 0.3227
ST-SOSM 0.3311 0.3146 0.3643 0.3113 0.4945 0.3138 0.6712 0.3322 0.8805 0.3672
MPC 1.2410 0.2432 2.5212 0.2968 3.8919 0.3564 5.2856 0.4183 6.6924 0.4809

TABLE III
PERFORMANCE COMPARISON UNDER DIFFERENT DISTURBANCE FREQUENCIES.

fi = 0.01 fi = 0.03 fi = 0.05 fi = 0.07 fi = 0.09

Method & KPI Avg. |∆pi| Avg. |∆vi| Avg. |∆pi| Avg. |∆vi| Avg. |∆pi| Avg. |∆vi| Avg. |∆pi| Avg. |∆vi| Avg. |∆pi| Avg. |∆vi|

ST-SOSMDO 0.9984 0.3534 0.7472 0.3219 0.5821 0.3267 0.8474 0.3393 0.7084 0.3212
ST-SOSM 1.2201 0.5216 1.0515 0.5378 0.8621 0.4817 0.9560 0.3950 0.8678 0.3586
MPC 16.5246 1.4798 27.9721 2.0857 15.2665 0.8192 8.4550 0.4618 7.5556 0.5378
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Fig. 10. The different disturbances adopted for the performance comparison.

control signal, the amplitude of the control output by the super-
twisting SOSMDO platoon controller is larger than that in
Figure 5. However, Figure 9 shows that the vehicles under
the super-twisting SOSMDO platoon controller can achieve
the same control profile more quickly and a better tracking
accuracy than the super-twisting SOSM platoon controller.
Besides, from either Figures 3 and 4 or Figures 7 and 8, the
platooning errors are always bounded and sufficiently small.
In summary, the above results confirm that both the designed
platoon controllers can asymptotically and robustly achieve
the stabilization of the platooning equilibrium in finite time,
which is in consistence with Theorems 1 to 3.

C. Performance Comparison

To further demonstrate the advantage of the designed pla-
toon controllers, we also conduct a series of simulations and
compare the performance of both the super-twisting SOSM
and the super-twisting SOSMDO platoon controllers with the
conventional model predictive control (MPC)-based method
under different disturbances. Here, the design parameters for
both the designed platoon controllers use the values in Table
I. To simulate different perturbation patterns, we vary the
amplitude and frequency of the disturbance in (47), ηi and

fi for i = 1, 2, . . . , N . The disturbance term ωi(t) varying
over time is illustrated with different ηi and fi in Figure 10.

In addition, for performance comparison, we also introduce
the following two key performance indicators (KPIs):

i) The average absolute error of the longitudinal inter-
vehicle spacing during the last ∆T seconds, which is denoted
by Avg. |∆p| and can be calculated by

Avg. |∆p| =

1

N

N∑
i=1

∫ Tf
Tf−∆T

|pi−1(t)− vi∆t− li−1 − pi(t)| dt
∆T

,
(49)

where Tf denotes the end time of a simulation period.
ii) The average absolute error of the longitudinal velocity

deviation during the last ∆T seconds, which is denoted by
Avg. |∆v| and is calculated in a similar way as (49)

Avg. |∆v| = 1

N

N∑
i=1

∫ Tf
Tf−∆T

|vi−1(t)− vi(t)| dt
∆T

. (50)

Avg. |∆p| and Avg. |∆v| comprehensively reflect the stabi-
lization performance of the platoon in terms of inter-vehicle
spacing and velocity tracking, respectively. Besides, Avg. |∆p|
is in meters and Avg. |∆v| is in meters per second.

1) Effect of Different Disturbance Amplitudes: In Figures
11 and 12, we set the unknown disturbance frequency as
fi = 0.1 Hz for i = 1, 2, . . . , N and conduct the perfor-
mance comparison under different disturbance amplitudes ηi ∈
{0.2, 0.4, 0.6, 0.8, 1.0}. From Figure 11, it is clear that a larger
disturbance amplitude can lead to a larger convergence error in
the inter-vehicle spacing between any two successive platoon-
ing vehicles. Nevertheless, our designed super-twisting SOSM
and SOSMDO platoon controllers can ensure the convergence
of the inter-vehicle spacing (pi−1(t)− vi(t)∆t− li−1− pi(t))
and stabilize the inter-vehicle spacing around the desired level,
even when increasing the unknown disturbance amplitude. By
comparison, the inter-vehicle spacing under the conventional
MPC cannot stabilize the platooning of the vehicles when
the disturbance amplitude is large. In Figure 11, a larger
disturbance results in a larger perturbation in the inter-vehicle
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Fig. 11. The longitudinal inter-vehicle spacing of N = 5 platooning vehicles adopting different controllers under different disturbance amplitudes.
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Fig. 12. The longitudinal velocity deviations of N = 5 platooning vehicles adopting different controllers under different disturbance amplitudes.

spacing under the conventional MPC, while our controllers
can still achieve the stabilization of the equilibrium state.

Figure 12 also shows the robustness of our designed con-
trollers in terms of velocity tracking. It can be observed that
the velocity difference between any two successive platooning
vehicles at the equilibrium point, (vi−1(t) − vi(t)) for i =
1, 2, . . . , N , is less sensitive to the variation of the disturbance
amplitude, when the vehicles use the super-twisting SOSM
and the super-twisting SOSMDO controllers. However, with
the conventional MPC, the vehicles cannot accurately track
the reference velocity and they will experience a stronger
perturbation in the velocity tracking error between adjacent
vehicles when the unknown disturbance becomes larger. In
Table II, we summarize the KPIs of the compared control

methods under different disturbance amplitudes, in which the
size of the observation time window, ∆T , is set to 10 seconds.
From Table II, it can be seen that our proposed method, ST-
SOSMDO, can achieve the smallest inter-vehicle spacing error
and the smallest velocity tracking error. In particular, when
the disturbance amplitude is relatively large, i.e., ηi = 1.0,
the average absolute error of the inter-vehicle spacing during
the last 10 seconds is only about 0.6620 m under our ST-
SOSMDO method, which is one order of magnitude smaller
than that (about 6.6924 m) under the MPC method. The
average absolute error of the velocity deviation is about
0.3227 m/s under our ST-SOSMDO, which is about 32.90%
lower than that (about 0.4809 m/s) under the MPC. As shown
in Table II, when compared to the ST-SOSM method based
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Fig. 13. The longitudinal inter-vehicle spacing of N = 5 platooning vehicles adopting different controllers under different disturbance frequencies.
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Fig. 14. The longitudinal velocity deviations of N = 5 platooning vehicles adopting different controllers under different disturbance frequencies.

on the second-order sliding mode theory, the ST-SOSMDO
method can achieve better tracking and stabilization perfor-
mance, which reduces the inter-spacing error by about 19.30%
and the velocity tracking error by about 15.44% on average.

2) Effect of Different Disturbance Frequencies: Figures
13 and 14 compare the control performance under different
disturbance frequencies. In these two figures, we fix the
disturbance amplitude at ηi = 1.0 and vary the frequency
fi ∈ {0.01, 0.03, 0.05, 0.07, 0.09} (Hz) for i = 1, 2, . . . , N .
From Figure 13, we can see that the disturbance with a higher
frequency has a slight influence on the stabilization of the
platooning equilibrium by using our designed controllers. In
contrast, the inter-vehicle spacing of the platoon cannot be
stabilized around the desired level under the conventional

MPC. In particular, with a relatively small disturbance fre-
quency, e.g., fi = 0.01 Hz, the perturbation in the inter-vehicle
spacing is larger under the conventional MPC. This indicates
that the conventional MPC is disturbance-unstable. The main
reason is that the disturbance is monotonously increasing over
the finite time horizon [0, 20] (s) when its frequency is low
(See Figure 10). However, both our super-twisting SOSM and
SOSMDO controllers still guarantee the platooning stability
in the presence of the low-frequency uncertain disturbance.

Besides, Figure 14 demonstrates the profiles of the velocity
differences between adjacent vehicles under different controls.
It is seen that our designed controllers can enable the vehicles
to track the desired velocity with a sufficiently good accuracy
and stabilize the platoon at the equilibrium under different
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Fig. 15. The longitudinal positions and velocities of N = 50 platooning
vehicles adopting the super-twisting SOSMDO-based controller.

Fig. 16. The longitudinal inter-vehicle spacing of N = 50 platooning vehicles
adopting the super-twisting SOSMDO-based controller.

disturbance frequencies. With a low frequency, for instance,
fi = 0.01 Hz or fi = 0.03 Hz, the conventional MPC fails
to stabilize the tracking of the reference velocity. The platoon
with the conventional MPC experiences an obvious pertur-
bation in the velocity tracking. By comparison, the super-
twisting SOSM and SOSMDO platoon controllers can robustly
track the desired velocity and guarantee the stability of the
vehicle platooning at the equilibrium velocity. In Table III, we
additionally provide the KPIs of the compared methods under
different disturbance frequencies. We can observe that our ST-
SOSMDO method achieves the best tracking and stabilization
performance among these compared methods. Our method
can reduce Avg. |∆p| by about 21.86% and Avg. |∆v| by
about 25.82% on average when compared to the ST-SOSM.
Besides, Avg. |∆p| and Avg. |∆v| of our ST-SOSMDO are
about 93.62% and 57.52% lower than the corresponding KPIs
of the MPC method on average, respectively.

3) Effect of Different Platoon Sizes: We additionally con-
duct simulations to show the effect of the platoon size (i.e., the
number of vehicles in the platoon) and thus to further verify
the superior performance of our proposed control method. In
the simulations, in order to simulate more complicated and
heterogeneous disturbances of individual vehicles, we consider

Fig. 17. The longitudinal velocity deviations of N = 50 platooning vehicles
adopting the super-twisting SOSMDO-based controller.

Fig. 18. The average absolute error of the inter-vehicle spacing under different
platooning vehicle numbers.

Fig. 19. The average absolute error of the velocity deviation under different
platooning vehicle numbers.

the following disturbance signal

ωi(t) = ∆ηi + ηi sin(2πfit), (51)

where ∆ηi is a constant disturbance term and ηi sin(2πfit)
is a time-varying disturbance term. For each vehicle i =
1, 2, . . . , N , ∆ηi and ηi are randomly generated within
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[0.1, 1.0], i.e., ∆ηi, ηi ∼ U [0.1, 1.0], while fi is randomly
generated within [1, 10], i.e., fi ∼ U [1, 10]. In this way, the
external disturbance experienced by a vehicle, ωi(t), will be
different from each other in the simulation experiment.

To illustrate the comprehensive performance of our pro-
posed ST-SOSMDO method in a large-scale platooning sce-
nario, we set the vehicle number to N = 50. The initial
velocity of each vehicle is generated by the 20% perturbation
of the desired velocity. The simulation results are given in
Figures 15, 16 and 17. In Figure 15, the position profile of the
platoon shows that all the vehicles can asymptotically reach
their stable platooning trajectories. Figure 15 also demon-
strates that the vehicles can stably track the desired velocity
after an acceleration stage or a deceleration stage. The inter-
vehicle spacing error is shown in Figure 16. It can be seen
that the fluctuation pattern of each vehicle’s curve is different
from each other, since the heterogeneity in the individual
disturbance term is considered in the simulation scenario.
Nevertheless, the inter-vehicle spacing errors of all the vehicles
asymptotically converge to the neighborhood of the zero point
during the last 50 seconds. Similarly, it is observed from
Figure 17 that the vehicles’ velocity deviations have different
fluctuations but can also converge asymptotically.

In the following, we compare the proposed ST-SOSMDO
method with the ST-SOSM method and the conventional MPC
method under different platoon sizes. The vehicle number is
set as N ∈ {5, 10, 15, . . . , 50}. The velocities and positions of
all the vehicles are also initialized by the random perturbation
of the equilibrium state as aforementioned. Figures 18 and
19 demonstrate the simulation results in terms of the KPIs.
From these two figures, it is seen that the inter-vehicle
spacing and velocity tracking errors of the conventional MPC
method are much higher than those of the other two methods.
This fact implies that the conventional MPC fails in stably
controlling the vehicle platoon since it cannot handle the
external uncertain disturbance of each vehicle. In Figure 18,
the inter-vehicle spacing error of our proposed ST-SOSMDO
method under different platoon sizes is about 0.5181 m on
average, which is 10.43% lower than that (0.5784 m) of the
ST-SOSM method. In Figure 19, our ST-SOSMDO method has
the velocity tracking error of about 0.0223 m/s on average,
which is 47.76% lower than that (0.0427 m/s) of the ST-
SOSM method. Moreover, it is also observed that both the
KPIs of the robust control methods are not sensitive to the
variation of the platoon size. That is, increasing the platoon
size does not obviously increase the inter-vehicle spacing and
velocity tracking errors under the ST-SOSMDO and the ST-
SOSM methods. The main reason is that the robust control
methods can benefit from their decentralized implementation.

VI. CONCLUSION AND FUTURE WORK

In this study, we have investigated the longitudinal pla-
tooning control of vehicles in the presence of unknown but
bounded external disturbances. The platooning goal is to drive
the vehicles to track a desired velocity profile meanwhile
keeping a constant space headway for the sake of collision

avoidance. To this end, we have proposed a decentralized
robust control approach with a super-twisting second-order
sliding mode disturbance observer (SOSMDO). We have also
proved the asymptotic stability of the super-twisting SOSMDO
platoon controller and its robustness to the external uncer-
tain disturbances. Extensive simulations have been conducted
and the simulation results have demonstrated that the super-
twisting SOSMDO can improve performance in both the inter-
vehicle spacing and the velocity tracking accuracy when com-
pared to the conventional MPC and the super-twisting SOSM
approach. As our future work, we will extend the proposed
robust platoon control approach to mixed traffic flows, in
which the autonomous vehicles and the human-driven vehi-
cles are considered to cooperate to form a platoon. Besides,
we would also like to consider higher heterogeneity in the
uncertain disturbance reconstruction, and conduct performance
comparison with some other robust methodologies (e.g., the
H-infinity method and gain-scheduled methods) under more
complicated application scenarios.
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