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Abstract—With the rapid development of mobile computing,
mobile edge computing has increasingly become an essential
means to meet the computing power requirements of intelligent
networked vehicles. However, users with high mobility and
coupled dynamics are rarely considered in the edge computing
paradigms. In this paper, we studied a UAV-assisted mobile edge
computing system with multi-platoon vehicles. Our paper aims to
maximize the system’s weighted global energy efficiency, which
can flexibly adjust each vehicle’s energy consumption according
to user preferences and system needs. In particular, we design
a controller for platooning vehicles based on a two-dimensional
path-following model and Frenet frames, and model the coupled
characteristics of air-to-ground communications and onboard
computation. Furthermore, due to the non-convexity of the
objective function and constraints of the optimization problem,
we propose an optimization algorithm based on the sequential
quadratic programming method. The simulation results show
that the proposed method significantly surpasses conventional
schemes.

Index Terms—Unmanned aerial vehicle, mobile edge comput-
ing, energy efficiency, vehicle platooning.

I. INTRODUCTION

A. Background

W ITH the development of V2X communication tech-
nologies and the applications of AI-based algorithms,

intelligent and networked platooning vehicles are increasingly
becoming an essential means to improve road utilization
efficiency and alleviate congestion [1]. Therefore, they are
considered to be a critical part of the future intelligent au-
tonomous transportation systems. However, vehicle informa-
tion exchange, which is necessary for stable and efficient
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control of vehicle platoons, requires the assistance of a high-
stability and low-latency network. Furthermore, considering
the intelligent autonomous driving assistance of a platoon,
there is a contradiction between the requirements of the
computation-intensive, delay-sensitive tasks and limited com-
putation resources of vehicles. Applications ranging from
advanced driving assistance services such as multi-source
heterogeneous data fusion, perception of the surrounding traf-
fic conditions, and driving decision-making to in-car enter-
tainment services like virtual reality video games urgently
need assistance from external computing platforms [2]–[4].
Therefore, advanced communication and auxiliary computing
technology will greatly promote the realization of intelligent
autonomous transport systems.

Currently, existing connected vehicles’ communication de-
vices and networking capabilities are insufficient to meet
the aforementioned requirements. Fortunately, the vision of
Beyond-5G/6G provides us with a spacial wireless network
alternative, including terrestrial, air-to-ground (A2G), or spa-
cial networking. When facing specific scenarios, such as
disaster relief situations or destroyed area connectivity, the
A2G network is an encouraging and reliable means. Mobile
edge computing (MEC) is a promising paradigm to provide
computing resources [5]–[7], and the users can place it on un-
manned aerial vehicles (UAVs) to enhance the implementabil-
ity [8]–[10]. Thus, UAVs equipped with MEC capability play
a role as network infrastructure providers. The UAVs and
platooning vehicles can form A2G vehicular network systems
to provide computation and communication services to users.
Users can offload their computationally-intensive tasks to the
MEC servers, which dramatically shortens the calculation time
and improves users’ quality of experience. Therefore, it is
relevant to investigate further the MEC resources’ management
and the A2G network cooperation.

Although the UAV-to-vehicles communication and com-
putation system is regarded as a practical idea to promote
the application of intelligent autonomous transport systems
[11], [12], there are some challenges to be settled because
of the constrained resources and complex dynamics of two-
dimensional platooning vehicles. Specifically, the connected
vehicles work as task providers for the flying MEC node
and terminal users of A2G cooperative networks in the MEC
system, whose high mobility and mutually influenced two-
dimensional dynamics are coupled into the communication
channel. As a result, the system is more complex and costly to
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solve. Another challenge is the limited onboard energy of the
UAV, and the operating time of the UAV is severely restricted
by the energy it carries. Thus the limited energy needs to be
well scheduled by optimizing communication and computation
resources to improve the energy efficiency of MEC service to
guarantee the quality of service (QoS) of the UAV-enabled
MEC system.

B. Related Works and Motivation

Mobile edge computing with the implement of unmanned
aerial vehicle networks has been widely investigated from
the perspective of resource scheduling and UAV trajectory
design [6], [13]–[17]. For example, [14], [15] have studied the
scenario that UAVs equipped with MEC servers provide edge
computing services to fixed users. Further, the maximization
of the system-wide computation rate [14] and communication
energy consumption [15] are constructed as objective of the
resource allocation problems, respectively, through the joint
optimization of the system’s communication and computing
resources and the trajectory of the UAV. Differently, in [16],
Zhang et al. have considered mobile users in UAV-assisted
MEC systems, which are defined as pedestrians with a pre-
determined trajectory and low mobility. In [13], Liu et al.
have further considered one-dimensional connected vehicle
platoons, and jointly scheduled transmission power, commu-
nication and computation time allocation scheme to maximize
computing rate. A modified SQP algorithm is applied to
efficiently solve the non-convex problem. The offloading ratio
of users’ computing tasks and trajectory of the UAV are
jointly optimized to maximize a linear function that includes
calculation delay and energy consumption in [16]. Besides,
users with high mobility like connected vehicles are intro-
duced in UAV-aided vehicular networks in [17]. And the
communication resources such as transmission power and time
allocation scheme are optimized to the system’s overall energy
efficiency [17]. However, to face the big wave of intelligent
connected vehicles [18], [19], the two-dimensional dynamic
characteristics of intelligent vehicle platoons and their impact
on G2A communication channels and onboard computing need
to be jointly investigated.

The resource scheduling of swarm of intelligent connected
vehicles have been extensively studied as a promising ap-
proach to improve road safety and traffic efficiency [20]–[24].
In [20], Peng et al. jointly optimize the computing resources,
spectrum allocation and vehicles’ cache amount through a
multi-agent deep deterministic policy gradient (MADDPG)-
based method, where the number of offloaded tasks is con-
structed as the system objective. In [21], Mei et al. have
scheduled the radio resource allocation in LTE-V2V network
in order to minimize vehicle platoon’s tracking error. In [22],
Hegde et al. have scheduled 3GPP radio and vehicle mobility
management to improve vehicular networks’ QoS. Differently,
in [24], Hegde et al. optimized time and subchannel allocation
scheme to improve the QoS of vehicular networks based on
sidelink group scheduling and mobility for platoons. In [23],
radio resource management is considered to maximize a holis-
tic reward function for the group’s collective success based

on multi-agent reinforcement learning (MARL) approach. In
these representative works [21]–[23], resource scheduling in
vehicular networks has been extensively researched to enhance
the vehicle platooning strategy’s effectiveness and reliability
or vehicular network quality, while the computing ability of
the vehicle platoon is often assumed to be sufficient. These
scenarios are not practical when the vehicles need to han-
dle computation-intensive, delay-sensitive tasks. Thus, mobile
edge computing (MEC) needs to be introduced to assist vehicle
platoon in computing, and the impact of vehicle mobility on
communication and computation resource allocation need to
be jointly considered.

Constrained by the limited battery energy and QoS require-
ments, a performance metric named computation efficiency is
defined as the objective of the resource allocation problem
of UAV-enabled mobile edge computing systems. The authors
in [25] and [26] have defined computation efficiency as the
computed data (bit) divided by the energy consumed by the
computation process (Joule). In [25], Sun et al. have jointly
optimized the transmission power, communication time and
MEC frequency to maximize computation efficiency with the
help of iterative and gradient descent methods. In [26], Zhou et
al have also aimed at optimizing the energy harvesting time,
the local computing frequency, the offloading time, and the
power to maximize the computation efficiency. In addition to
computation efficiency, energy efficiency is mostly defined as
the ratio of offloaded data to the system’s energy consumption
[27]. In [27], Li et al. have maximized the energy efficiency of
the UAV and jointly optimized the offloading of the computing
task and the UAV trajectory based on the Dinkelbach algorithm
and the successive convex approximation (SCA) technique.
In [28], Wu et al. have proposed a three-layer computation
offloading strategy combining the UAV position optimization
and the Long Short-Term Memory (LSTM)-based task predic-
tion algorithms to maximize the energy efficiency of the UAV-
enabled MEC system. However, existing works [17], [25]–[30]
mostly take the direct addition of computed data (bit) and
energy consumption as the component of objective function,
while it is necessary to consider environmental factors or user
preferences in the optimization objective for actual application
scenarios.

C. Contributions

It can be seen from the related works mentioned above that
few researches have focused on the resource scheduling of
UAV-assisted MEC system with vehicles in a two-dimensional
multi-lane platoon as end users. And user’s preferences in en-
ergy consumption is rarely considered in system performance
metric. Towards this end, this paper investigates a new UAV-
assisted MEC system for multi-platoon mobile users, aiming
to maximize a weighted energy efficiency of MEC service
as performance metric. Specifically, a UAV acts as an MEC
node and multi-platoon vehicles are mobile terminal users
in the MEC system, in which the characteristics of vehicle
dynamics are integrated into G2A communication channel.
In order to reflect user preferences and system requirements
on energy consumption in system performance metric, we
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adjust the energy component of the system energy efficiency.
Communication resources are optimized to maximize it. The
main contributions of this paper are summarized as follows:

• We formulate a UAV-enabled MEC network system
for multi-platoon vehicles. First, we establish a two-
dimensional stable vehicle formation steering model by
simulating the driving behavior of human drivers. Then,
its effect on G2A communication and task offloading
is integrated into the system model. Furthermore, we
introduce the Frenet coordinate system to reduce the
complexity of vehicle formation control.

• A form of weighted global energy efficiency is formulated
as the objective function to combine user preference into
system metric. An iterative interior-point-based algorithm
is proposed to decompose the original problem into a
series of subproblems to efficiently solve the original
optimization problem. We further derive a two-type sub-
algorithm, which uses the BFGS algorithm to solve con-
vex subproblems and employ the SQP-based algorithm
to deal with non-convex subproblems.

• The convergence of the proposed algorithm is discussed.
A series of simulation experiments have been conducted
to explore the influence of multi-platoon dynamic char-
acteristics and other parameters on system performance.
The results demonstrate that the proposed algorithm out-
performs a group of benchmark schemes, which applies
to the case when the number of multi-platoon vehicles,
time slots, and other simulation parameters change.

The rest of this paper is organized as follows. We formulate
the UAV-enabled MEC system model and the energy efficiency
maximization problem in Section II. In Section III, an algo-
rithm for the non-convex problem is proposed. Section IV
shows the simulation results to evaluate the performance of
the proposed algorithm, and Section V concludes our paper
and outlines the future work.

II. SYSTEM MODEL

As shown in Fig. 1, a UAV-aided system is formulated, in
which a UAV equipped with MEC server provides computation
and communication services to turning platooning vehicles.
The platooning vehicle nodes, for example, the ground user
nodes, are denoted by V (m), where m ranges from 1 to M ,
and M represents the number of vehicles. The UAV is denoted
by U , and in our model, the number of UAV remains 1. For
convenience of exposition, we discretize the finite passing
time T into N equal-time slots, i.e., T = N · τ , and n
is the time slots index (0 ≤ n ≤ N , n is an integer).
According to existing literature [14], [31], [32], in order
to eliminate mutual interference among wireless offloading
processes of multi-user communication, we adopt the Time
Division Multiple Access (TDMA) protocol in our paper. The
interaction time interval between vehicle m (1 ≤ m ≤ M)
and the UAV during the nth (1 ≤ n ≤ N) time slot,
is denoted by tm[n](0 ≤ tm[n] ≤ τ). Further, for the
interaction time for each vehicle tm[n], we divide it into
three parts, which would be processed by turn, that is, the
computation offloading time tom[n] of vehicle m, the task
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Fig. 1: A typical application scenario of the UAV-MEC as-
sisted turning formation vehicles system. The total service time
of each vehicle is the sum of communication and calculation
times.

computing time tcm[n] of the UAV, and the results downloading
time tdm[n]. We also established a 3D Cartesian coordinate
system, thus the location coordinates of vehicles and UAV at
time slot n can be denoted by qv [n] = [x [n] , y [n] , z [n]] and
qu [n] = [x [n] , y [n] , z [n]], while the vehicles’ height remains
0 and the UAV’s flight altitude is fixed to H (H > 0). Because
the flight height span of UAV is relatively small compared with
horizontal distance, thus the impact of height change on the
G2A communication channel and resource scheduling can be
ignored and the height of UAV can be simplified as a fixed
value according to existing literature [14], [27], [33]. In the
next part, we formulate the system model in terms of mobility,
communication, computation, and energy efficiency.

A. Mobility Model

Existing literature [27], [34], [35] focuses on optimizing
the problem with low user mobility. Nevertheless, the original
considerations seem impractical when it comes to vehicle
users, and another literature assumes the vehicles move along
a straight line [13]. Our research considers vehicle turning
scenarios with platooning vehicles, which is widespread in
the applications of intelligent vehicle control technology and
ADAS.

Moreover, to imitate the driving behavior of real drivers, the
acceleration of a specific vehicle depends on the difference be-
tween the predetermined desired position and speed difference
and the position and speed difference of this vehicle’s preced-
ing vehicle. Therefore, while establishing a driver model, we
have introduced Frenet to simplify the control process.

Frenet is a coordinate system that takes the centerline of
the road as the X axis and the normal road as the Y axis
[36]. Thus, for intelligent vehicle platooning scenarios, vertical
motion can be ignored and simplified as plane motion. In
this scenario, the Frenet coordinate system refers to the curve
tangent vector T, and the normal vector N constitutes a right-
handed rectangular coordinate system that moves along the
reference curve. Thus, the (s, l) in the Frenet coordinate
system can be transformed to (x, y) in the Cartesian coordinate
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Fig. 2: A Schematic diagram of conversion between Frenet
coordinates and Cartesian coordinates.

system as follows:

xm[n] =xr⃗
m[n]− lm[n] sin θr⃗m[n];

ym[n] =yr⃗m[n] + lm[n] cos θr⃗m[n];

θm[n] = tan−1 (
l′m[n]

1− kr⃗m[n]lm[n]
) + θr⃗m[n];

vm[n] =
√

[ṡm[n](1− kr⃗m[n]lm[n])]2 + (ṡm[n]l′m[n])2;

am[n] =s̈m[n]
1− kr⃗m[n]lm[n]

cos (θm[n]− θr⃗m[n])
+ [l′m[n](km[n]

1− kr⃗m[n]lm[n]

cos (θm[n]− θr⃗m[n])
− kr⃗m[n])− (kr⃗m

′
[n]

lm[n] + kr⃗m[n]l′m[n])]
ṡm[n]

2

cos (θm[n]− θr⃗m[n])
;

km[n] =
cos (θm[n]− θr⃗m[n])

1− kr⃗m[n]lm[n]

{[
l′′m[n] +

(
kr⃗m

′
[n]

lm[n] + kr⃗m[n]l′m[n]
)] cos2 (θm[n]− θr⃗m[n])

1− kr⃗m[n]lm[n]

+kr⃗m[n]
}
.

(1)
As shown in Fig. 2, s and l are the tangential and normal

coordinates of the vehicle in the Frenet coordinate system
[36]. Likewise, xr⃗ and yr⃗ are the corresponding Cartesian
horizontal and vertical axes of the matching point at the
reference line, and θr⃗ is its direction angle at that point. The
variable kr⃗ is the curvature of the matching point, and kr⃗

′
is its

derivative to the Frenet normal coordinate. The corresponding
parameters of the actual vehicle position are x, y, θ and k.
The variables v and a are the velocity and acceleration of
the target vehicle. The symbol l′ denotes the derivative of the
Frenet normal axis to its tangential axis, and l′′ represents the
second derivative of the normal axis to the tangential axis of
the Frenet coordinate system. The first and second derivatives
of the Frenet tangential coordinate with respect to time are
designated as ṡ and s̈.

A specific platooning vehicle generates its acceleration by
evaluating the speed difference, position difference between

y
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Fig. 3: Platooning vehicles under different coordinate system.
(a) the Cartesian coordinate system. (b) the Frenet coordinate
system.

the vehicle ahead, and the expected speed difference and
position difference, thereby maintaining the vehicles’ forma-
tion and stability. From Fig. 3, the Frenet coordinate system
transforms the two-dimensional motion into one-dimensional,
which simplifies the control process related to the heading
angle θ. The platooning vehicles studied in this paper do not
change lanes during the driving process, because according to
most countries’ traffic safety regulations (for example, China),
vehicles are not allowed to change lanes when turning in the
area of sharp turn or tunnels to avoid accidents.

The vehicles adopt a leader-follower strategy in a formation,
in which the speed v0 and acceleration a0 of the leader vehicle
have been predetermined. Let the acceleration of follower m
in slot n be am [n]. It can be determined with expected speed
vem [n], expected △e

m[n − 1] and actual △m[n − 1] position
differences, and actual velocity vm [n− 1] as follows:

am[n] = k1 (v
e
m [n]− vm [n− 1]) , (2)

where vem [n] can be determined as follows:

vem [n] = vm [n− 1] + k2△e
m[n− 1]−△m[n− 1]. (3)

The parameters k1 and k2 in the above formula are the control
gain parameters.

It is widely assumed that in different time slots [4], [13], the
vehicles movement can be simplified to a uniform acceleration
movement. Hence, its motion equation can be expressed as
follows:vm [n] =vm [n− 1] + am [n] τ,

xm [n] =xm [n− 1] + vm [n− 1] τ +
1

2
am[n]τ2.

(4)

B. Communication Model

According to the existing literature [13], [27], [33], [35],
as the altitude of UAV is much higher than that of vehicles,
Since the LoS (line of sight) channel of the UAV communi-
cation links are much more predominant than other channel
impairments, and it is considered deployed in an open envi-
ronment, thus the UAV-to-ground communication channel can
be considered as an LoS channel. And the Doppler frequency
shift caused by mobility is assumed to be compensated at the
receivers [27], [33], [37].

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 02,2022 at 09:29:21 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3155608, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, NOVEMBER XX 5

The channel remains unchanged for a finite flying time.
Thus the channel power gain between the UAV and the ground
vehicle nodes can be expressed as follows:

gm [n] =
g0

H2 + ∥qv[n]− qu[n]∥2
, (5)

where g0 indicates the channel power gain at a reference
distance d0 = 1 m.

Suppose the available communication bandwidth is B, and
the power used by the vehicle for upstream offloading at slot
n is Pm[n], the bytes of data transmitted upstream Rm [n] can
be expressed according to Shannon’s formula as:

Rm[n] = Blog2(
Pm [n] gm[n]

N0
+ 1), (6)

The communication energy consumption of vehicles is
represented with the function Eo

m [n]:

Eo
m [n] = Pm [n] tom[n], (7)

where N0 is the noise power, and tom [n] denotes the data
transmission time of vehicle node m at slot n.

To ensure users’ QoS, the total offloading data rate in
time slot n shall not be lower than the allowed minimum
transmission data bits R

¯
[n]:

M∑
m=1

Rm [n] ≥ R
¯
[n] . (8)

C. Computation Model

Our paper assumes that the drone node employs the binary
computation mode, that is, each computation task has to be
executed as a whole. For example, when the task is highly
integrated or relatively simple, its correlated data cannot be
partitioned and has to be performed as a whole [6]. And the
UAV carries out all the task calculations using a constant CPU
cycle f . Letting C denotes the CPU frequency needed for
computation process per bit, the UAV’s computational time m
in slot n, tcm [n] can be formulated as follows:

tcm [n] =
Rm[n]tom[n]C

f
. (9)

Its consumed energy is represented by Ec
m [n] according to

existing literature [4], [15], [30]:

Ec
m [n] = λf3tcm[n], (10)

where λ is the effective capacitance coefficient of the UAV’s
processor chip.

Since the downlink transmission process is ignored, the
constraint of tom [n] and tcm [n] can be proposed as follows:

M∑
m=1

(tcm [n] + tom [n]) ≤ τ. (11)

D. Energy Efficiency Optimization Model

Because of the limited energy available to the unmanned
aerial vehicle, the UAV’s consumed energy in the computation
process should meet the following energy constraints, given as:

M∑
m=1

N∑
n=1

λf3tcm[n] ≤ Ẽ, (12)

where Ẽ is the maximum energy stored in the UAV’s battery.
Each vehicle’s total energy consumption (including commu-

nication energy consumption and computing energy consump-
tion) Eveh

m can be formulated as:

Eveh
m (tcm [n] , Pm [n]) =

N∑
n=1

Ec
m [n] +

N∑
n=1

Eo
m [n] . (13)

The total offloaded data Rveh
m of vehicle m is expressed as:

Rveh
m (tom [n] , Pm [n]) =

N∑
n=1

tom[n]Rm[n]. (14)

Therefore, the energy efficiency EEveh
m of vehicle m can

be formulated as follows:

EEveh
m (tom [n] , tcm [n] , Pm [n] , η)

=
Rveh

m (tom [n] , Pm [n])

E′veh
m (tcm [n] , Pm [n] , η)

=

∑N
n=1 t

o
m[n]Rm[n]∑N

n=1 E
c
m [n] + η

∑N
n=1 E

o
m [n]

,

(15)

where η is the weight factor of the energy consumption of
vehicle nodes, and E′veh

m is the adjusted communication and
computation energy, which can be adjusted to address the
preference of energy consumption according to the practical
system.

In addition to the weight parameter η for communication
energy consumption, a weight vector Weiveh for vehicle
platoon is designed to show the preferences for the energy
efficiency of different vehicles.

Weiveh = [Wei1,Wei2, ...,WeiM ], (16)

where the sum of all elements of Weiveh remains 1. In the
experiments of this paper, when the number of vehicles is
greater than 1, the weight of the leading vehicle are kept
constant (when the number of vehicles is 1, the weight matrix
is 1), and the remaining weights would be assigned to the
following vehicles.

The energy efficiency vector of vehicle platoon is repre-
sented by EEveh.

EEveh = [EEveh
1 , EEveh

2 , ..., EEveh
M ], (17)

thus the energy efficiency of the vehicle platoon can be
expressed as follows:

EEsys (t
o
m [n] , tcm [n] , Pm [n] , η) = WeivehEEveh. (18)

In this UAV-enabled MEC system, we jointly optimized the
data transmission time and transmission power to maximize
the total energy efficiency. The objective function is given as
EEsys(x), where x is a vector that represents the variables,
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including communication power Pm and time tom to be
optimized. The problem can be framed as P1:

P1 : max
x

: EEsys(x) (19a)

s.t.(8), (9), (11), (12), (19b)
0 ≤ Pm [n] ≤ Pmax, (19c)
0 ≤ tom [n] , tcm [n] ≤ τ, (19d)
m = 1, . . . ,M ; n = 1, . . . , N, (19e)

where Pmax is the maximum transmission power of vehicle
nodes. (8) denotes the QoS constraint, which is used to ensure
the minimum computing requirements for vehicle platoon in
each time slot. Limited to battery capacity, the computation
energy consumption of the UAV should be lower than a
specific boundary, which is expressed by the constraint (12).
The expressions (19c) and (19d) are the boundary constraints
of the transmission power, and the transmission time and
computation time, respectively.

The above problem is highly non-convex due to the strong
coupling between variables and the complexity of the objective
function. It would be somewhat costly to solve the above
problem directly. Therefore, an efficient algorithm is proposed
to solve P1, proven to converge to the local optimum.

III. JOINT OPTIMIZATION METHOD

In this section, we first rearrange problem P1’s equality and
inequality constraints and turn it into a simplified form P2.
Then, based on the interior-point algorithm, we transform the
expanded problem into a series of approximate optimization
subproblems and apply two optimization sub-algorithms to
solve them based on their convexity or non-convexity.

A. Approximate Subproblem Formulation

We use the concept of an external penalty function for
equality constraints and an obstacle function for inequality
constraints to construct a hybrid augmented objective function
whose purpose is to eliminate constraints. We can denote
equalities and inequalities by ci(x) = 0 and c′j(x) ≥ 0,
respectively. Also, we can represent the indexes of equality and
inequality constraints with I and J, noting that the total number
of the constraints is NM and 4NM + 2N + 1, respectively.
Thus, the problem P1 can be simplified. In particular, we
introduce the slack variable zj , j = 1, 2, . . . , 4NM+2N+1,
to make the initial point selection easier and equivalently
transform the problem P1 into P2 [38]:

P2 : min
x

: −EEsys(x)

s.t.


ci(x) = 0, i ∈ I,
c′j(x)− zj = 0, j ∈ J,
zj ≥ 0, j ∈ J.

(20)

Then the mixed augmented objective function φ(x, z, µ) of
the equivalent problem P2 is constructed as follows [39],

µ (µ > 0) is the penalty factor used to construct the augmented
objective function:

P3 : φ(x, z, µ) =− EEsys(x) +
1

2µ

NM∑
i=1

c2i (x)

+
1

2µ

4NM+2N+1∑
j=1

[
c′j (x)− zj

]2
+ u

4NM+2N+1∑
j=1

1

zj
.

(21)

At this point, any (x, z)(xi, zj > 0) can be used as an
appropriate initial point to start the corresponding iterative
algorithm. The penalty function part of the augmented ob-
jective function φ(x, z, µ) is called the barrier function and it
is denoted by φ̄(x, z, µ):

φ̄(x, z, µ) =
1

2µ

NM∑
i=1

c2i (x) +
1

2µ

4NM+2N+1∑
j=1

[
c′j (x)− zj

]2
+ u

4NM+2N+1∑
j=1

1

zj
.

(22)
On this basis, we can use a series of optimization sub-

algorithms to solve the above optimization subproblem.

B. Approximate Subproblem Optimization Algorithms

Two types of optimization algorithms are employed to solve
the approximate subproblems iteratively: the BFGS-Armijo
method and the sequential quadratic programming (SQP)-
based method [40]. The choice depends on the subproblem
convexity. When the approximate subproblem is locally non-
convex, it takes the SQP-based step. Otherwise, it uses the
BFGS-Armijo step.

1) BFGS-Armijo Method: The basic idea of using iterative
algorithms to solve approximate subproblems is to give an
initial point and then generate an iterative sequence according
to a particular iterative rule. The update process of the iteration
point column is as follows:

xk+1 = xk + αkdk, (23)

where xk is the kth iteration point, dk is the kth search
direction, and αk is the kth step size in the direction dk.

Here, we employ the BFGS algorithm to construct the
positive definite Hessian approximation matrix Bk of the
problem’s objective function to obtain the search direction.
And k represents the kth iterative step of the subproblem
P3. Then, an imprecise line-search method is exploited to
determine the appropriate step size. Finally, the Bk can be
obtained through the information of the previous step.

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+

ykyTk
yTk sk

, (24)

where sk is the displacement defined as sk = xk+1 − xk,
and yk is the difference of the gradient between kth step and
(k + 1)th step.
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yk = ∇(x,z)(φ(xk+1, zk+1, µ))−∇(x,z)(φ(xk, zk, µ)). (25)

Feasible search direction dk can be obtained by solving the
following linear equations.

Bkdk = −∇(x,z)(φ(xk, zk, µ)). (26)

Based on (24), we can get the following results.
Lemma 1: Suppose Bk is symmetric positive definite, and

Bk+1 is determined by equation (24), then the necessary and
sufficient condition for Bk+1 to be symmetric positive definite
is yT

k sk > 0.
Proof: The necessity of Lemma 1 is obvious, because

yTk sk = sTk Bk+1sk. If Bk+1 is positive definite, then clearly
there is yTk sk > 0. The sufficiency will be proved in the
following paragraph. Suppose that yT

k sk > 0 and Bk is positive
definite, then according to (24), for any d ∈ Rn and d ̸= 0, it
holds that:

dT Bk+1d = dT Bkd −
(dT Bksk)

2

sTk Bksk
+

(dT yk)
2

yTk sk
. (27)

Because Bk is a symmetric and positive definite matrix, there
is a symmetric positive definite matrix Bk

1
2 . Therefore, Bk can

be expressed as Bk = Bk
1
2 Bk

1
2 . In the following formula, the

Cauchy-Schwartz inequality is used to obtain the results:

(dT Bksk)
2
= [(Bk

1
2 d)T (Bk

1
2 sk)]2

≤ ∥Bk
1
2 d∥2∥Bk

1
2 sk∥2

= (Bk

1
2 d)

T
(Bk

1
2 d)(Bk

1
2 sk)T (Bk

1
2 sk)

= (dT Bkd)(sTk Bksk).

(28)

According to (27) and (28), it can be concluded that
[(Bk

1
2 d)T (Bk

1
2 sk)]2 = ∥Bk

1
2 d∥2∥Bk

1
2 sk∥2, and if there is a

real number τk ̸= 0 that makes Bk
1
2 d = τkBk

1
2 sk, that is,

d = τksk, and vice versa.

dT Bk+1d ≥ dT Bkd − (dT Bkd)(sTk Bksk)
sTk Bksk

+
(dT yk)

2

yT
k sk

=
(dT yk)

2

yTk sk
> 0.

(29)

Therefore, for any d ∈ Rn,d ̸= 0, if yTk sk > 0, then it holds
that dT Bk+1d > 0 which proves Lemma 1.

Given the fact that the Armijo line-search criterion cannot
guarantee yTk sk > 0, the update formula of Bk can be ad-
justed to ensure the symmetric positive definiteness of matrix
sequence Bk when the criterion is adopted. Thus, we can solve
the feasible research direction dk using (24) and (26).

Bk+1 =

{
Bk, yTk sk ≤ 0;

Bk − BksksTk Bk

sTk Bksk
+

ykyTk
yTk sk

, yTk sk > 0.
(30)

According to the Armijo criterion, the appropriate step size
αk can be approximated with the following formula:

αk = βξk , (31)

Algorithm 1: The interior-point-based method for P1
1: Settings:

tolerance error 0 ≤ ε ≪ 1, penalty factor reduction
coefficient ρ ∈ (0, 1), Ẽ, T , N and other factors;

2: Initialization:
initialize point x0 ∈ D0 and penalty factor µ1 > 0;

3: Repeat 1:
transform original problem to subproblem P3 or P4;
initialize the iterative number i = 1;
Repeat 2:

initialize the iterative number k = 1;
obtain xi+1,zi+1 by solving subproblem P3 or P4
for given µi;
if subproblem P3 is convex

initialize tolerance error 0 ≤ δi ≪ 1;
solve subproblem P3 through BFGS-Armijo steps;
update k = k + 1;
if ∥∇φ(xk, zk, µi)∥ ≤ δi

xi+1 = xk, zi+1 = zk;
break;

end
else

initialize tolerance error 0 ≤ δ′i ≪ 1;
solve subproblem P4 through SQP-based steps;
update k = k + 1;
if O(xk, zk, µ) ≤ δ′i

xi+1 = xk and zi+1 = zk;
break;

end
end

end Repeat 2
update µi+1 = ρ · µi and iterative number i = i+ 1;
if µiφ̄ (x, z) ≤ ε

the maximum energy efficiency EEopt
sys is obtained;

break;
end

end Repeat 1
4: Obtain solutions:
P opt
m and topt,om .

β ∈ (0, 1) is a predetermined parameter and ξk is the smallest
non-negative integer that satisfies the following inequalities:

φ
(
(xk, zk, µk) + βξkdk

)
≤ φ (xk, zk, µk) + σβξkyTk dk,

(32)

where σ is a predetermined parameter and σ ∈ (0, 0.5).
2) The SQP-based Method: It takes the SQP-based step

when the approximate subproblem is not locally convex. This
step minimizes a quadratic approximation to the approximate
problem using the trust region method [40], [41].

At this point, we reformulate the problem to the following
form, and µ is the penalty factor and µ > 0:

P4 : min
x,z

: −EEsys(x) + µ

4NM+2N+1∑
j=1

1

zj

s.t.

{
ci(x) = 0, i ∈ I,
c′j(x)− zj = 0, j ∈ J.

(33)
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Slack variables zj are restricted to positive to keep the interior
iterates of the feasible region. We can use Φ(x) and c(x) to
represent the objective function and the constraints, respec-
tively. The resulting problem can be rewritten as:

P4′ : min
x,z

: Φ(x, z)

s.t. c(x, z) = 0.
(34)

To deal with the non-convexity, we apply the SQP method
to transform the problem P4′ into the following quadratic
problem. A feasible search direction dk at kth step is obtained:

P5 : min
dk

: ∇Φ(xk, zk)
T dk +

1

2
dT
k Wkdk

s.t. Â(xk, zk)
T

dk + c(xk, zk) = 0,
(35)

where Wk is the Hessian of L(xk, zk, λc
k) (the Lagrangian

function of the problem P4′), Â(xk, zk)
T

is the Jacobian of
c(xk, zk) and λc

k are the Lagrange multipliers. ∇Φ(xk, zk) rep-
resents the Jacobi matrix of the objective function. Considering
W may be non-positive definite within the null space of Â,
a trust region constraint is employed [40] (we decompose dk

into [dx
k,dz

k]): [
dx
k

Z−1
k dz

k

]
≤ △k, (36)

where △k is the radius of the trust region, which would be
updated at each iteration and Z = diag[z1, ...zj ].

Furthermore, to ensure the positivity of z, we introduce a
constraint of dz

k:

zk + dz
k ≥ (1− ω)zk. (37)

The parameters ω is less than 1 but close to it. Thus, we can
formulate subproblem P6:

P6 : min
dk

: ∇Φ(xk, zk)
T dk +

1

2
dT
k Wkdk

s.t.


Â(xk, zk)

T
dk + c(xk, zk) = 0,[

dx
k

Z−1
k dz

k

]
≤ △k,

dz
k ≥ −ω · zk.

(38)

However, since the step size that satisfies the linear constraint
may not be in the trust region, we need to solve the subproblem
P6.1 to find a standard step size v [40] that is in the region
and meets the constraints as much as possible.

P6.1 : min
vk

: ∥Â(xk, zk)
T

vk + c(xk, zk)∥

s.t.


[

vx
k

Z−1
k vz

k

]
≤ ϵ△k,

vz
k ≥ −ω · zk,

(39)

where ϵ is the contraction parameter and 0 < ϵ < 1. Then, we
use the found step size to calculate dk (dk = xk+1 − xk) in

P6.2.

P6.2 : min
dk

: ∇Φ(xk, zk)
T dk +

1

2
dT
k Wkdk

s.t.


Â(xk, zk)

T
dk = Â(xk, zk)

T
vk,[

dx
k

Z−1
k dz

k

]
≤ △k,

dz
k ≥ −ω · zk.

(40)

To decide if step dk obtained above should be accepted, we
introduce a merit function ϕ(xk, zk, ζ). The merit function is
defined as follows [40]:

ϕ(xk, zk, ζ) = Φ(xk, zk) + ζ∥c(xk, zk)∥, (41)

where ζ > 0 is a penalty parameter. And if step dk satisfies
the following formula, then the step size dk will be accepted:

△ϕ = Φ(xk + dx
k, zk + dz

k, ζ)− Φ(xk, zk, ζ) ≥ κ, (42)

where κ is the tolerance reduction. Otherwise, we should
decrease the trust region radius △k and the algorithm will
go to P6.1.

Rather than solving subproblem P6 accurately, the algo-
rithm will stop when approximate solution (x̂, ẑ) satisfies
O(x̂, ẑ, µ) ≤ δ′, and δ′ denotes the tolerance error. O(x, z, µ)
measures the optimality conditions of the barrier problem and
is defined as follows [41]:

O(x, z, µ) = max(∥∇(−EEsys(x)) + Ac(x)λc∥∞,

∥Zλc′ − µe∥∞, ∥c(x)∥∞, ∥c′(x) + z)∥∞),
(43)

where e = [1, ...1]T , Z = diag(z1, ..., zj). Ac(x) =
[∇c1(x), ...,∇ci+j(x)] are the matrices of constraint gradients.

C. Convergence Analysis

From the description above, we show the proposed opti-
mization framework of the method in Algorithm 1. Then, the
convergence of the proposed algorithm will be discussed and
proved in the following part.

Lemma 2: Suppose the point sequence {xk, zk} is generated
by Algorithm 1, and each point in it is the global minimum
of the unconstrained subproblem P3, then the augmented
objective function sequence is monotonically decreasing.

Proof: Note that (xk+1, zk+1) is the global minimum
point of φ(x, z, µk+1) or Φ(x, z, µk+1), and µk ≤ µk+1,
Lemma 2 can be proved. We will use φ(x, z, µk+1) to represent
the above two functions in the following part:

φ(xk+1, zk+1, µk+1) = −EEsys(xk+1) +
1

2µk+1

NM∑
i=1

c2i (xk+1)

+
1

2µk+1

4NM+2N+1∑
j=1

[c′j(xk+1)− zj,k+1]
2

+ µk+1

4NM+2N+1∑
j=1

1

zj,k+1

≤− EEsys(xk) +
1

2µk+1

NM∑
i=1

c2i (xk)
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+
1

2µk+1

4NM+2N+1∑
j=1

[c′j(xk)− zj,k]
2

+ µk+1

4NM+2N+1∑
j=1

1

zj,k

≤− EEsys(xk) +
1

2µk

NM∑
i=1

c2i (xk)

+
1

2µk

4NM+2N+1∑
j=1

[c′j(xk)− zj,k]
2

+ µk

4NM+2N+1∑
j=1

1

zj,k

=φ (xk, zk, µk) . (44)

Hence, Lemma 2 is proven.

Based on Lemma 2, the convergence for the proposed
interior-point-based algorithm will be presented through The-
orem 1.

Theorem 1: Suppose there is a global minimum point
(x∗, z∗), and interior-point sequence D0 ̸= Ø, where
(xk, zk, µk) denotes the point set of kth subproblem generated
by Algorithm 1. Assuming (xk, zk) is the global minimum
point of φ(x, z, µk), then µk decreases monotonously, and
eventually approaches 0. Therefore, any cluster point (x̄, z̄)
of (xk, zk) is the global minimum of the problem P2.

Proof: Since there is (xk, zk) ∈ D0 ⊂ D and (x∗, z∗)
is the local minimum point of φ(x, z, µk) on D, that is,
sequence φ(xk, zk, µk) has a lower bound. Therefore, it
can be determined that the limit of φ(xk, zk, µk), that is,
lim
k→∞

φ(xk, zk, µk) exists, and it can be denoted by φ∗.

Our next work is intended to prove φ∗ = −EEsys(x∗).
Since clearly, φ∗ ≥ −EEsys(x∗), what we need to prove is
φ∗ ≤ −EEsys(x∗). For any ε > 0, there exists δ > 0, such
that for any x̄ that satisfies ∥x− x∗∥ ≤ δ, there also exists the
following relation:

−EEsys(x̄)− [−EEsys(x∗)] < ε. (45)

Considering µk monotonously decreases and approaches 0,
there exists a positive k, when it is less than a specific positive
number k0. Therefore, there is:

µkφ̄(x̄, z̄) ≤ ε. (46)

Note that (xk, zk) is the global minimum of φ(x, z, µk).

φ(xk, zk, µk) ≤ φ(x̄, z̄, µk). (47)

Thus, the following expression holds:

φ(xk, zk, µk)−(−EEsys(x∗)) ≤ φ(x̄, z̄, µk)− (−EEsys(x∗))

={−EEsys(x̄)− [−EEsys(x∗)]}+
1

2µk

NM∑
i=1

c2i (x̄)

+
1

2µk

4NM+2N+1∑
j=1

[c′j(x̄)− z̄j ]
2

+ µk

4NM+2N+1∑
j=1

1

z̄j
< ε+ ε = 2ε.

(48)
Let ε approach 0, and taking the limit of the above formula,
it can be deduced that φ∗ ≤ −EEsys(x∗). In view of
φ∗ ≥ −EEsys(x∗), we can conclude that φ∗ = −EEsys(x∗).
Additionally, take the limit of following inequalities:

−EEsys(x∗) ≤ −EEsys(xk) ≤ φ(xk, zk, µk). (49)

We can then obtain lim
k→∞

−EEsys(xk) = −EEsys(x∗) ac-
cording to the Squeeze Theorem. At this point, the proof of
Theorem 1 is completed. Thus, the convergence of Algorithm
1 is easy to deduce according to Theorem 1.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
joint optimization method on energy efficiency by comparing it
to those of several benchmark schemes. The simulation results
showed that the proposed method is significantly better than
the benchmark methods for the above indicators. Some of the
simulation parameters refer to previous works [4] and [13].
The detailed simulation parameters are provided in the next
part.

A. Simulation Settings

In the simulation, the UAV flies around the curve area
and provides computation assistance services for a platoon
of vehicles while they are making a turn. Vehicle platoon is
constructed based on the leader-follower strategy. The leader
vehicle moves along a designated road at a constant velocity of
16.9 m/s, followed by other vehicles according to a particular
design. The initial space headway of vehicles is predetermined
as 15 m. The flight height of the UAV is fixed at H =
10 m, and it flies forth and back between the starting and
ending points within the total time interval. Other parameters
of G2A communication, onboard computation, and energy
consumption are given in Table I.

B. Performance Comparison

In the following part, the performance of our proposed
interior-point-based method, whose results are denoted as
optimal values, is compared with two benchmark methods.
The two benchmark methods are: i) the P-max optimization
scheme, which predetermines the power as the maximum
value and focuses on optimizing the time allocation, ii) the P-
sto optimization scheme, which randomly generates a power
value that satisfies all constraints, and then optimizes the time,
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TABLE I: Simulation Parameters

Parameters Notations Values
Communication bandwidth B 40 MHz
Channel power gain g0 -50 dB
Maximum transmission power of vehicle nodes Pmax 1 W
Noise power N0 -60 dBm
Process density C 103 cycle/bit
Effective switched capability λ 10−28

The height of UAV H 10 m
The number of time slots N 100
Lane width L 3.75 m
Turning radius R 103.75 m
Number of vehicles M 4
Total time interval T 10 s
Edge computation capability f 2 GHz

Fig. 4: The total energy efficiency under different number of
platooning vehicles.

and iii) the T-equ optimization scheme, which generates an
uniform time allocation scheme, then optimizes the power
vector of vehicle platoon.

In order to show the advantages of our proposed method, we
first compare the performance of the four schemes when the
number of vehicles in vehicle formation changes. To simplify
the expression, we mark our proposed method as ”Optvalue”,
the P-max method as ”Pmax-value”, the P-sto method as
”Psto-value”, and the T-equ method as ”Tequ-value”. Fig. 4
shows the energy efficiency curves of the UAV-enabled MEC
system under a different number of platooning vehicles, and
the number of time slots is fixed to 100. As the number
of vehicles increases, the energy efficiency is on an upward
trend. The increase in the number of vehicles reduces the
communication and time resources available to each vehicle,
but also relaxes their throughput constraints (8). Because we
attach a larger weight to the leading vehicle in the platoon in
these experiments, the improvement of its energy efficiency
increases the total weighted energy efficiency. We can also
observe that with the increase of the number of platooning
vehicles, the performance gap between scheme ’Opt’ and
scheme ’T-equ’ becomes larger and larger. The main reason
is that when there are few vehicles, the location distribution
of vehicles is relatively close, thus the allocation of time re-

Fig. 5: Optimal communication power for leading vehicle.

sources is very uniform. Therefore, the time allocation scheme
of the ’Opt’ method is similar to the predetermined uniform
scheme ’T-equ’. When the number of vehicles increases, their
location distribution is more dispersed, which makes the op-
posite situation. Nevertheless, the proposed method achieved
the best performance among the three schemes with varying
vehicles. As a result, the maximum performance improvement
reaches 75.99%.

Fig. 5 shows the optimal communication power, time and
energy efficiency of the leading vehicle under different num-
bers of platooning vehicles. It can be seen that the transmission
power of the leading vehicle rises first and begins to decline
when the number of vehicles is more than 2, and the change of
its energy efficiency (aiming at single vehicle) with the number
of vehicles is just opposite to the transmission power. This is
because when the number of vehicles changes from 1 to 2,
the transmission time of the leading vehicle decreases sharply,
so that the transmission power is increased to meet the QoS
constraints (8). When the number of vehicles further increases,
the decrease of transmission time is very small, while the
constraints of throughput is relaxed due to the addition of
other vehicles, so the transmission power decreases. For the
leading vehicle, we give it a higher weight in the weight
matrix. Therefore, with the increase of the number of vehicles,
the system tends to improve the energy efficiency of the
leading vehicle rather than following vehicles. When the
number of vehicles reaches 2, its energy efficiency decreases
because all the remaining weights are allocated to the single
following vehicle, so that the weight of the following vehicle is
temporarily higher than that of the leading vehicle. In general,
it can be summarized that the construction of weight matrix
has a significant impact on the system performance.

The impact of time slot numbers N on the energy efficiency
is investigated, as shown in Fig. 6. In the process of changing
the number of time slots, the total time interval T remains
unchanged. It can be seen that the energy efficiency of the
three optimization schemes all decreases as the time slots
increases. The main reason is that the increase of the number
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Fig. 6: The total energy efficiency under different number of
time slots.

of time slots shortens the length of each time slot (the total
time interval remains unchanged), thus reducing the time
resources available to the vehicle platoon. In addition, the
increase of time slot numbers also makes the QoS constraint
(8) more stringent, resulting in a smaller feasible region and a
decrease in system performance. Another fact observed is that
the energy efficiency decreases more and more slowly with the
further increase of the number of time slots. This is because
the reduction of time length of each time slot becomes smaller
and smaller with the further increase of the number of time
slots. In general, in the process of the number of time slots’
variation, our proposed method achieves the best performance
among the four schemes, with a maximum improvement of
119.92%.

Considering the close relationship between the vehicle pla-
toon’s geometric characteristics and the allocation of compu-
tation and communication resources, we changed the shape
of the vehicle platoon. In addition to the vehicle platoon,
named the leader shape as shown in Fig. 7(d), there are three
other shapes displayed in Figures 7(a), 7(b) and 7(c) namely
geese, horizontal, and snake shapes, respectively. The first
vehicle formation is the geese. The vehicles travel in a reversed
”V” formation. The second vehicle platoon is a horizontal
formation, where vehicles line up horizontally and run along
the road. The third vehicle platoon is a longitudinal formation
lined up at a specific interval along the middle road.

The impact of the vehicle platoons’ shape on the system
energy efficiency is evaluated as Fig. 8 shows. The above
four formations have the same performance when there is one
vehicle, because in this case, the vehicle’s positions of the four
formations are the same (The Geese shape and Leader shape
have the same performance when the number of vehicles is
2, because these two shapes are also the same at this time.)
And it can be seen that for three shapes of platoons: Geese,
Horizontal and Leader, the change of the number of vehicles
has slight impact on the system performance compared with
the case of Snake shape. In our experiments, the longitudinal

(a) 3 (a) 4 (a) 5 (a) 6

(b) 3 (b) 4 (b) 5 (b) 6

(c) 3 (c) 4 (c) 5 (c) 6

(d) 3 (d) 4 (d) 5 (d) 6

Fig. 7: Four different forms of vehicle formations (number of
vehicles varies from 3 to 6). (a) geese form. (b) horizontal
form. (c) snake form. (d) leader form.

Fig. 8: The total energy efficiency under different forms of
vehicle platoons.

distance of the vehicle is set to 15 m and the width of lane
is set to 3.75 m. Therefore, due to its motion characteristics,
the Snake shape is far more dispersed than the other three
platoons. This makes the overall communication situation
worse, and the communication channels of different vehicles
in the platoon also vary greatly, which makes the space left for
the system to schedule resources much smaller. Besides, there
is little difference in the energy efficiency of the four platoon
shapes above when vehicles are less than 4, with a maximum
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Fig. 9: Total energy efficiency under different forms of vehicle
platoons and different forms of UAV trajectories.

decrease of 13.65%, which can reach 84.04% as the number
of vehicles in the platoon gets bigger.

Finally, to demonstrate the effects of the UAV flights on the
MEC servers’ energy efficiency, we vary the UAV trajectories
among the following three types: i) the polyline trajectory,
the UAV first flies along the X-axis direction and then the
Y-axis direction from the beginning to the end of the lane;
ii) the round trajectory, the UAV travels along the arc-shaped
trajectory corresponding to the path where the lead car is
driving at the height H; iii) the straight round-trip trajectory,
the UAV flies in a straight line from the beginning of the
lane to the end. In Fig. 9, the time slots are fixed to 100,
and the number of vehicles is set to 4. We illustrate the
optimal energy efficiency under different forms of the UAV
trajectories and vehicle platoons in Fig. 9. We can see that
the system’s performance under the round trajectory is better
than the other two cases for all the four types of forms,
while the difference of energy efficiency under the polyline
trajectory and the straight trajectory is relatively small. Since
the communication channel between the drone and the fleet
is the best under the round trajectory due to the distance, its
performance is also the most satisfactory. Another fact can be
observed is that the influence of UAV trajectories also affected
by the mobility characteristics of vehicle platoons. For the
other two types of trajectory other than the round trajectory,
the simulation results based on the configurations show that
the ’Geese’, the ’Horizontal’, and the ’Snake’ shape forms
achieve better performance under the straight trajectory, while
the ’Leader’ shape form achieves better performance under
the polyline trajectory. In Fig. 9, the energy efficiency varied
from 3.01×105 to 1.40×106 (bits/Joule), and the performance
difference can reach up to 281.07% due to the influence of the
drone’s trajectory under the same shape of vehicle platoon.

V. CONCLUSION

In this paper, we have developed a UAV-enabled MEC sys-
tem model for turning platooning vehicles, in which commu-

nication and computation resources are scheduled to maximize
the energy efficiency of MEC service. We have further con-
sidered the coupled dynamics of the two-dimensional vehicle
platoon and its influence on G2A communication channel. To
cope with the coupling variables and the non-convexity of the
problem, we have employed a resource scheduling method
based on the interior-point algorithm and the SQP algorithm,
whose convergence has been discussed. Through simulation
experiment, we have carried out a comparative analysis, and
the results are provided to demonstrate the effectiveness and
superiority of the proposed method. Our work can offer
a promising approach for resource scheduling in the UAV-
assisted MEC system considering coupled dynamics of two-
dimensional vehicle platoon and its influence. In the future, it
will be interesting to introduce reinforcement learning-based
techniques into our scenario.

REFERENCES

[1] Z. Du, C. Wu, T. Yoshinaga, K.-L. A. Yau, Y. Ji, and J. Li, “Federated
learning for vehicular internet of things: Recent advances and open
issues,” IEEE Open Journal of the Computer Society, vol. 1, pp. 45–61,
2020.

[2] A. Eskandarian, C. Wu, and C. Sun, “Research advances and challenges
of autonomous and connected ground vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 2, pp. 683–711, 2021.

[3] J. Gwak, J. Jung, R. Oh, M. Park, M. A. K. Rakhimov, and J. Ahn,
“A review of intelligent self-driving vehicle software research,” KSII
Transactions on Internet and Information Systems (TIIS), vol. 13, no. 11,
pp. 5299–5320, 2019.

[4] J. Zhou, D. Tian, Z. Sheng, X. Duan, and X. Shen, “Joint mobility,
communication and computation optimization for uavs in air-ground
cooperative networks,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 3, pp. 2493–2507, 2021.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[7] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-uav enabled wireless networks,” IEEE Transactions on
Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.

[8] Y. Liu, H.-N. Dai, Q. Wang, M. K. Shukla, and M. Imran, “Unmanned
aerial vehicle for internet of everything: Opportunities and challenges,”
Computer Communications, vol. 155, pp. 66–83, 2020.

[9] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: Opportunities and challenges,” IEEE Com-
munications Magazine, vol. 54, no. 5, pp. 36–42, 2016.

[10] Z. Tan, H. Qu, J. Zhao, S. Zhou, and W. Wang, “Uav-aided edge/fog
computing in smart iot community for social augmented reality,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 4872–4884, 2020.

[11] A. Reiter, B. Prünster, and T. Zefferer, “Hybrid mobile edge computing:
Unleashing the full potential of edge computing in mobile device use
cases,” in 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). IEEE, 2017, pp. 935–944.

[12] Q. Fan, J. Lin, G. Feng, Z. Gao, H. Wang, and Y. Li, “Joint service
caching and computation offloading to maximize system profits in
mobile edge-cloud computing,” in 2020 16th International Conference
on Mobility, Sensing and Networking (MSN). IEEE, 2020, pp. 244–251.

[13] Y. Liu, J. Zhou, D. Tian, Z. Sheng, X. Duan, G. Qu, and V. C. M. Leung,
“Joint communication and computation resource scheduling of a uav-
assisted mobile edge computing system for platooning vehicles,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–16, 2021.

[14] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximiza-
tion in uav-enabled wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp.
1927–1941, 2018.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 02,2022 at 09:29:21 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3155608, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, NOVEMBER XX 13

[15] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a uav-
mounted cloudlet: Optimization of bit allocation and path planning,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp. 2049–
2063, 2017.

[16] L. Zhang, Z.-Y. Zhang, L. Min, C. Tang, H.-Y. Zhang, Y.-H. Wang, and
P. Cai, “Task offloading and trajectory control for uav-assisted mobile
edge computing using deep reinforcement learning,” IEEE Access, vol. 9,
pp. 53 708–53 719, 2021.

[17] S. Zhang, J. Zhou, D. Tian, Z. Sheng, X. Duan, and V. C. Leung, “Robust
cooperative communication optimization for multi-uav-aided vehicular
networks,” IEEE Wireless Communications Letters, vol. 10, no. 4, pp.
780–784, 2020.

[18] D. Yang, K. Jiang, D. Zhao, C. Yu, Z. Cao, S. Xie, Z. Xiao, X. Jiao,
S. Wang, and K. Zhang, “Intelligent and connected vehicles: Current
status and future perspectives,” Science China Technological Sciences,
vol. 61, no. 10, pp. 1446–1471, 2018.

[19] Y. Liu and X. Fang, “Big wave of the intelligent connected vehicles,”
China Communications, vol. 13, no. 2, pp. 27–41, 2016.

[20] H. Peng and X. Shen, “Multi-agent reinforcement learning based re-
source management in mec- and uav-assisted vehicular networks,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 131–
141, 2021.

[21] J. Mei, K. Zheng, L. Zhao, L. Lei, and X. Wang, “Joint radio resource
allocation and control for vehicle platooning in lte-v2v network,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12 218–
12 230, 2018.

[22] S. Hegde, O. Blume, R. Shrivastava, and H. Bakker, “Enhanced resource
scheduling for platooning in 5g v2x systems,” in 2019 IEEE 2nd 5G
World Forum (5GWF), 2019, pp. 108–113.

[23] M. Parvini, M. R. Javan, N. Mokari, B. A. Arand, and E. A. Jorswieck,
“Aoi aware radio resource management of autonomous platoons via
multi agent reinforcement learning,” in 2021 17th International Sym-
posium on Wireless Communication Systems (ISWCS), 2021, pp. 1–6.

[24] S. Hegde, L. Shi, N. J. Hernndez Marcano, R. Shrivastava, O. Blume,
and R. H. Jacobsen, “Sidelink group resource scheduling for platoons
in cellular vehicle-to-vehicle communications,” in 2021 IEEE 93rd
Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1–5.

[25] H. Sun, F. Zhou, and R. Q. Hu, “Joint offloading and computation
energy efficiency maximization in a mobile edge computing system,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 3052–
3056, 2019.

[26] F. Zhou, H. Sun, Z. Chu, and R. Q. Hu, “Computation efficiency
maximization for wireless-powered mobile edge computing,” in 2018
IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–
6.

[27] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-
efficient uav-assisted mobile edge computing: Resource allocation and
trajectory optimization,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 3, pp. 3424–3438, 2020.

[28] G. Wu, Y. Miao, Y. Zhang, and A. Barnawi, “Energy efficient for uav-
enabled mobile edge computing networks: Intelligent task prediction and
offloading,” Computer Communications, vol. 150, pp. 556–562, 2020.

[29] Y. Pan, X. Da, H. Hu, L. Ni, R. Xu, and H. Zhang, “Efficient design
optimisation for uav-enabled mobile edge computing in cognitive radio
networks,” IET Communications, vol. 14, no. 15, pp. 2509–2515, 2020.

[30] X. Zhang, Y. Zhong, P. Liu, F. Zhou, and Y. Wang, “Resource allo-
cation for a uav-enabled mobile-edge computing system: Computation
efficiency maximization,” IEEE Access, vol. 7, pp. 113 345–113 354,
2019.

[31] Y. Liu, K. Xiong, Q. Ni, P. Fan, and K. B. Letaief, “Uav-assisted wireless
powered cooperative mobile edge computing: Joint offloading, cpu
control, and trajectory optimization,” IEEE Internet of Things Journal,
vol. 7, no. 4, pp. 2777–2790, 2020.

[32] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177–4190, 2018.

[33] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading
and trajectory design for uav-enabled mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1879–1892, 2018.

[34] C. Xu, D. Li, Q. Chen, M. Liu, and K. Meng, “Joint trajectory and
transmission optimization for energy efficient uav enabled elaa network,”
Ad Hoc Networks, vol. 116, pp. 102 466–102 478, 2021.

[35] Z. Wang, M. Wen, S. Dang, L. Yu, and Y. Wang, “Trajectory design
and resource allocation for uav energy minimization in a rotary-wing
uav-enabled wpcn,” Alexandria Engineering Journal, vol. 60, no. 1, pp.
1787–1796, 2021.

[36] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frent frame,” in 2010 IEEE
International Conference on Robotics and Automation, 2010, pp. 987–
993.

[37] J. Ji, K. Zhu, C. Yi, and D. Niyato, “Energy consumption minimization
in uav-assisted mobile-edge computing systems: Joint resource alloca-
tion and trajectory design,” IEEE Internet of Things Journal, vol. 8,
no. 10, pp. 8570–8584, 2021.

[38] J. Gondzio, “Interior point methods 25 years later,” European Journal
of Operational Research, vol. 218, no. 3, pp. 587–601, 2012.

[39] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[40] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based
on interior point techniques for nonlinear programming,” Mathematical
programming, vol. 89, no. 1, pp. 149–185, 2000.

[41] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm
for large-scale nonlinear programming,” Siam Journal on Optimization,
vol. 9, no. 4, pp. 877–900, 1999.

Xuting Duan received the Ph.D. degree from the
School of Transportation Science and Engineering,
Beihang University, Beijing, China. He is currently
an assistant professor with the School of Transporta-
tion Science and Engineering, Beihang University.
His current research interests are focused on con-
nected and autonomous vehicles, vehicular ad-hoc
networks, and vehicular localization.

Yukang Zhou received the B.S. degree from the
School of Transportation Science and Engineering,
Beihang University, Beijing, China. He is currently
working towards the M.Sc. degree with the School
of Transportation Science and Engineering, Beihang
University. His current research interests include
connected vehicles and aerial-ground cooperative
networks.

Daxin Tian [M’13-SM’16] received his Ph.D. de-
gree in computer application technology from Jilin
University, Changchun, China. He is currently a
University Professor with the School of Transporta-
tion Science and Engineering, Beihang University,
Beijing, China. His research is focused on intelli-
gent transportation systems, autonomous connected
vehicles, swarm intelligence, and mobile computing.
He was awarded the Changjiang Scholars Program
(Young Scholar) of Ministry of Education of China
in 2017, the National Science Fund for Distinguished

Young Scholars in 2018, and the Distinguished Young Investigator of China
Frontiers of Engineering in 2018. He is also a senior member of the IEEE
and served as the Technical Program Committee member/Chair/Co-Chair for
several international conferences including EAI 2018, ICTIS 2019, IEEE
ICUS 2019, IEEE HMWC 2020, GRAPH-HOC 2020, etc.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 02,2022 at 09:29:21 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3155608, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, NOVEMBER XX 14

Jianshan Zhou received the B.Sc.,M.Sc., and Ph.D.
degrees in traffic information engineering and con-
trol from Beihang University, Beijing, China, in
2013, 2016 and 2020, respectively. From 2017 to
2018, he was a Visiting Research Fellow with the
School of Informatics and Engineering, University
of Sussex, Brighton, U.K. He is currently a Post-
doctoral Research Fellow supported by the Zhuoyue
Program of Beihang University, and is or was the
Technical Program Session Chair with the IEEE
EDGE 2020 and the Youth Editorial Board Member

of the Unmanned Systems Technology. He is the author or coauthor of
more than 20 international scientific publications. His research interests
include the modeling and optimization of vehicular communication networks
and air-round cooperative networks, the analysis and control of connected
autonomous vehicles, and intelligent transportation systems. He was the
recipient of the First Prize in the Science and Technology Award from the
China Intelligent Transportation Systems Association in 2017, the First Prize
in the Innovation and Development Award from the China Association of
Productivity Promotion Centers in 2020, the National Scholarships in 2017
and 2019, the Outstanding Top-Ten Ph.D. Candidate Prize from Beihang
University in 2018, and the Outstanding China-SAE Doctoral Dissertation
Award in 2020.

Zhengguo Sheng [SM’18] received the B.Sc. de-
gree from the University of Electronic Science and
Technology of China, Chengdu, China, in 2006,
and the M.S. and Ph.D. degrees from Imperial
College London, London, U.K., in 2007 and 2011,
respectively. He is currently a Senior Lecturer with
the University of Sussex, Brighton, U.K. Previously,
he was with UBC, Vancouver, BC, Canada, as a
Research Associate and with Orange Labs, Santa
Monica, CA, USA, as a Senior Researcher. He has
more than 100 publications. His research interests

cover IoT, vehicular communications, and cloud/edge computing.

Xuemin (Sherman) Shen [M’97-M’02-’09] re-
ceived the Ph.D. degree in electrical engineering
from Rutgers University, New Brunswick, NJ, USA,
in 1990. He is currently a University Professor
with the Department of Electrical and Computer
Engineering, University of Waterloo, Canada. His
research focuses on network resource management,
wireless network security, Internet of Things, 5G and
beyond, and vehicular ad hoc and sensor networks.
Dr. Shen is a registered Professional Engineer of
Ontario, Canada, an Engineering Institute of Canada

Fellow, a Canadian Academy of Engineering Fellow, a Royal Society of
Canada Fellow, a Chinese Academy of Engineering Foreign Member, and
a Distinguished Lecturer of the IEEE Vehicular Technology Society and
Communications Society.

Dr. Shen received the R.A. Fessenden Award in 2019 from IEEE, Canada,
Award of Merit from the Federation of Chinese Canadian Professionals
(Ontario) in 2019, James Evans Avant Garde Award in 2018 from the IEEE
Vehicular Technology Society, Joseph LoCicero Award in 2015 and Education
Award in 2017 from the IEEE Communications Society, and Technical
Recognition Award from Wireless Communications Technical Committee
(2019) and AHSN Technical Committee (2013). He has also received the
Excellent Graduate Supervision Award in 2006 from the University of Water-
loo and the Premier’s Research Excellence Award (PREA) in 2003 from the
Province of Ontario, Canada. He served as the Technical Program Committee
Chair/Co-Chair for IEEE Globecom’16, IEEE Infocom’14, IEEE VTC’10
Fall, IEEE Globecom’07, and the Chair for the IEEE Communications Society
Technical Committee on Wireless Communications. Dr. Shen is the elected
IEEE Communications Society Vice President for Technical & Educational
Activities, Vice President for Publications, Member-at-Large on the Board of
Governors, Chair of the Distinguished Lecturer Selection Committee, Member
of IEEE ComSoc Fellow Selection Committee. He was/is the Editor-in-Chief
of the IEEE IoT JOURNAL, IEEE Network, IET Communications, and Peer-
to-Peer Networking and Applications.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 02,2022 at 09:29:21 UTC from IEEE Xplore.  Restrictions apply. 


