
Cooperative Computation Offloading in
Blockchain-Based Vehicular Edge Computing

Networks
Ping Lang, Daxin Tian, Senior Member, IEEE, Xuting Duan, Jianshan Zhou, Zhengguo Sheng, Senior Member,

IEEE, and Victor C.M. Leung, Life Fellow, IEEE

Abstract—As a novel computing paradigm, multiaccess edge
computing (MEC) migrates computing and storage capabilities
to edge nodes of the network to meet the requirements of
executing computationally intensive or delay-sensitive tasks on
intelligent vehicles. In addition, MEC fills the gap between cloud
computing and terminals in vehicular networks. In the MEC
system, to reduce the load on MEC servers with large-scale
vehicle deployment and promote the efficient use of network re-
sources, vehicles can also transfer tasks to neighboring resource-
rich vehicles using cooperative computation offloading. However,
cooperative computation offloading between vehicles faces the
challenges of security and insufficient information about the
server vehicle. Therefore, this paper proposes using blockchain
technology to achieve efficient data sharing between vehicles and
service providers (i.e., server vehicles) and ensure the security
of computation offloading between vehicles. First, we design a
secure data sharing architecture in blockchain-based vehicular
edge computing networks. Then, a new consensus mechanism
in this architecture is proposed to improve the efficiency of data
sharing and prevent malicious attacks. Furthermore, we present a
cooperative offloading decision-making method using an offload-
ing game, and the Nash equilibrium of the offloading strategy is
achieved using this method. The results of numerical experiments
demonstrate the superior performance of the proposed method.

Index Terms—Vehicular edge computing, cooperative compu-
tation offloading, data sharing, blockchain, game theory

I. INTRODUCTION

ADvancements in automated driving technology and intel-
ligent transportation systems have led to a proliferation

of applications for safety assurance, efficiency enhancement,
and entertainment [1]–[6]. In contrast to traditional vehicles,
in which people observe the environment and perform dy-
namic driving tasks with manual control, intelligent vehi-

This research was supported in part by the National Natural Science
Foundation of China under Grant No.62061130221, Grant No.U20A20155
and Grant No.62173012, in part by the Beijing Municipal Natural Science
Foundation under Grant No.L191001, in part by the Zhuoyue Program of
Beihang University (Postdoctoral Fellowship), and in part by the China Post-
doctoral Science Foundation under Grant No.2020M680299. (Corresponding
author: Daxin Tian.)

Ping Lang, Daxin Tian, Xuting Duan and Jianshan Zhou are with the Beijing
Advanced Innovation Center for Big Data and Brain Computing, Beijing Key
Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Con-
trol, School of Transportation Science and Engineering, Beihang University,
Beijing 100191, China (e-mail: langping@buaa.edu.cn; dtian@buaa.edu.cn;
duanxuting@buaa.edu.cn; jianshanzhou@foxmail.com).

Zhengguo Sheng is with the Department of Engineering and Design,
University of Sussex, Richmond 3A09, U.K. (e-mail: z.sheng@sussex.ac.uk).

Victor C.M. Leung is with the Department of Electrical and Computer
Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4,
Canada (e-mail: vleung@ece.ubc.ca).

cles achieve intelligent environment perception by deploying
various sensors such as cameras and LiDARs, and assist in
driving or even achieve autonomous driving by performing
computationally intensive and delay-sensitive tasks. To meet
the requirements of these computationally intensive and delay-
sensitive applications, more computing and storage resources
must be deployed on vehicles, which increases the cost of
deploying autonomous vehicles [7]. In addition, it is difficult
to provide sufficient onboard resources due to the limited
physical space on vehicles.

To facilitate the efficient and stable execution of onboard ap-
plications, researchers have developed a new architecture and
corresponding technology called multiaccess edge computing
(MEC) [8], [9], formerly known as mobile edge computing
[10]. MEC helps vehicles achieve real-time data processing
by employing the computing capabilities of the edge of the
network. Therefore, a vehicle can offload difficult computing
tasks to the MEC server to meet the delay demands of
advanced onboard applications [11]. Compared with cloud
computing, MEC can significantly reduce the transmission
delay of data and ensure real-time processing of the data in
vehicles or other terminals.

However, constrained by limited computing resources, the
local capabilities of MEC servers may also be insufficient with
the large-scale deployment of intelligent vehicles [12], [13]. A
motivating example is as follows. During high traffic volumes
(e.g., traffic jams or rush hours), many intelligent vehicles
offload their computation tasks to a single roadside MEC
server covering this area, which will cause the computation
requirements to exceed the computation capacity of that server.
As a result of competition between multiple vehicles for
limited resources, the quality of service for applications will
not be guaranteed [14]. That is, the computing tasks of vehicles
will be completed beyond the maximum time they can tolerate,
causing a large number of delay-sensitive applications to not
be executed properly. A case in point is augmented reality or
virtual reality applications, such as cloud gaming in vehicles,
which have critical delay requirements and involve heavy
computation when the resolution and frame rate increase.
These cloud gaming applications require extensive processing
for rendering, which can be performed on the network or
device side. The 3rd Generation Partnership Project (3GPP)
has specified performance requirements for cloud gaming (e.g.,
bandwidth and latency) and introduced split rendering archi-
tecture that allows rendering tasks to be performed flexibly

2

Fig. 1. Cooperative computation offloading in vehicular edge computing
networks.

on different entities [15], [16]. For example, some rendering
tasks can be performed on the host vehicle, while other tasks
can be performed on edge servers or on other vehicles when
the edge servers are overloaded.

Therefore, in addition to offloading computing tasks to the
MEC server, vehicles can also offload them to neighboring
vehicles, which have redundant computing and storage re-
sources, to reduce the burden on the MEC server [17], [18].
As illustrated in Fig. 1, in this scenario, the user vehicle can
offload its onboard computing tasks to the MEC server or to
neighboring vehicles according to the resource usage of the
edge server and the number of neighboring service providers.
This cooperative computation offloading effectively reduces
the load on the MEC server, which helps to promote the
efficient use of resources in the network and reduce waste
caused by idle computing resources.

However, no methods have been developed for vehicles to
accurately determine the computing capacity and trajectory
of service providers for cooperative computation offloading.
Transmission security and vehicle privacy are also difficult to
guarantee in computation offloading between vehicles [19],
[20]. Since computation offloading of vehicles often involves
private data such as their trajectory, driving status, and sur-
rounding environment, vehicles need to be sure that their
offloading destination is a trusted service provider before
computation offloading. In cooperative computation offload-
ing, the server vehicle provides computation services for
the surrounding vehicles as a service provider autonomously,
which makes it difficult to guarantee the trustworthiness of
its information. Once malicious nodes appear in the server
vehicles, the privacy of user vehicles will be disclosed, which
jeopardizes the information security and even the driving
safety of vehicles and drivers. Therefore, it is necessary to
construct a secure and tamper-proof sharing architecture of
service provider information to ensure the trustworthiness of
server vehicles.

Recently, blockchain technology has attracted a great deal
of attention in vehicular networks in both academia and
industry [21]–[23]. As a decentralized data storage technology,
blockchain is characterized by distributed processing, multi-

party consensus, and tamper-proof features [24], [25]. It can
achieve secure synchronization and sharing of data between
multiple parties and guarantee the credibility of information
[26]–[28]. By integrating blockchain technology into vehic-
ular edge computing networks, an efficient and secure data
sharing mechanism can be established among MEC servers
to supply information on neighboring service providers to
user vehicles, which can significantly improve the cooperation
and security of the system. Specifically, facing the previously
mentioned security challenges, the blockchain-based secure
information sharing mechanism can verify the identity of the
server vehicle and ensure the trustworthiness of its service
capabilities through the blockchain nodes. Moreover, attacks
by malicious nodes can be identified and prevented by the
consensus mechanism in the blockchain. In addition, the
immutability of data in blockchain ensures the traceability of
service information and thus the attacker can be traced after a
malicious attack occurs.

To avoid the competition for the roadside server resources,
vehicles can offload tasks to neighboring resource-rich vehi-
cles (i.e., server vehicles or service providers) with redundant
computing resources for execution, thereby reducing the use
of roadside resources. Note that both user vehicles and server
vehicles in this paper are intelligent vehicles, in which user
vehicles are low-cost intelligent vehicles that deploy lim-
ited computing resources, and server vehicles are advanced
autonomous vehicles with redundant computing resources.
Therefore, the server vehicle can provide computing services
to the user vehicle by cooperative computation offloading.
With the addition of resource-rich vehicles as edge servers,
this study faces the challenges of both trusted information
sharing of server vehicles and policy evaluation for task
offloading to server vehicles and roadside servers. In the
existing studies of the cooperative computation offloading,
the server vehicles are assumed to be trusted nodes and their
service capabilities and trajectories have been accessed by the
user vehicles. However, in practice, there is a lack of a trusted
sharing mechanism for the information of server vehicles. In
addition, the existing studies of blockchain-based data sharing
in vehicular edge computing networks have not addressed the
sharing mechanism for the information of service providers.
Therefore, different from the existing studies, we propose a
novel blockchain-based data sharing architecture for vehicular
MEC networks to provide accurate information on server
vehicles for cooperative computation offloading. Note that in
terms of blockchain-based sharing methods and consensus
mechanisms, this paper focuses on novel applications of
blockchain technology in cooperative computation offloading,
rather than proposing new algorithms in the blockchain field.
In addition, we model the offloading decision process of each
user vehicle using game theory to achieve an equilibrium of
offloading strategies in the region. The major contributions of
this paper are summarized as follows:

• We propose a secure information sharing mechanism
between user vehicles and service providers and a cooper-
ative computing method for vehicles based on blockchain
technology to ensure security and access to accurate

3

information.
• In the blockchain-based data sharing architecture, we

propose a consensus mechanism that combines Proof
of Service [29] and Practical Byzantine Fault Tolerance
(PBFT) [30] to achieve data synchronization between
MEC networks and prevent malicious attacks.

• To help user vehicles make correct computation offload-
ing decisions, we propose an offloading game model for
cooperative computation offloading scenarios, in which
user vehicles can select roadside MEC servers or neigh-
boring resource-rich vehicles with different probabilities
to execute applications and achieve Nash equilibrium.
The performance of the proposed game method is evalu-
ated by experimental comparison.

The remainder of this paper is organized as follows. Section
II discusses related studies, while Section III presents the
secure information sharing mechanism between user vehi-
cles and service providers with a consensus mechanism in
blockchain-based vehicular edge computing networks. Section
IV presents the design of the offloading game method in
cooperative computation offloading scenarios and describes the
Nash equilibrium with a distributed solution. Section V pro-
vides the performance analysis of the proposed algorithm and
the comparison with other computation offloading methods.
Finally, Section VI concludes the paper.

II. RELATED WORK

Computation offloading is a key research topic in MEC and
mobile cloud computing, and there is a large amount of liter-
ature on computation offloading problems for vehicular MEC
networks. Zhao et al. [31] researched the problem of com-
putation offloading and resource allocation for cloud-assisted
vehicular MEC, where the offloaded tasks could be executed
on roadside MEC servers or migrated to cloud computing
servers using roadside units. They proposed a collaborative op-
timization scheme for this problem and developed a distributed
method to obtain the best optimization results. Ke et al. [32]
modeled task computation offloading in an unstable environ-
ment with a varying channel state and available bandwidth to
minimize the energy consumption, allocated bandwidth, and
transmission delay. They then proposed a deep-reinforcement-
learning-based adaptive computation offloading method to
solve this problem and achieve the optimal offloading action.
To reduce the overhead of MEC servers and improve the
performance of computation offloading, Dai et al. [33] jointly
modeled the offloading of vehicles and load balancing of
roadside MEC servers and proposed a joint algorithm for
server selection and offloading. Similarly, in our previous
study [14], we proposed a computation offloading game for a
large number of vehicles to reduce the computational burden
on roadside MEC servers. We also designed a distributed best-
response algorithm to guarantee the uniqueness of the Nash
equilibrium converged by the offloading strategies of vehicles,
thus achieving efficient and stable computation offloading.

As reported by the 5G Automotive Association (5GAA)
[17], vehicles can migrate tasks to neighboring resource-rich
vehicles for execution as well as offload them to roadside

servers. Sun et al. [34] considered vehicle-to-vehicle (V2V)
task offloading in a dynamic and uncertain vehicular wireless
environment and proposed a distributed adaptive learning-
based offloading method to optimize the delay in computation
offloading. To relieve the workload of cloudlet nodes and im-
prove resource utilization of vehicular fog computing, Yadav
et al. [35] proposed a dynamic computation offloading solution
to achieve energy-latency tradeoff and effective resource allo-
cation in V2V offloading. They provided a heuristic method
as the resource allocation solution and minimized the energy
consumption and offloading latency. However, existing studies
on V2V offloading assume that information on the service
provider can be obtained by simple communication, which
exposes vehicles to security and privacy risks while preventing
them from effectively obtaining the service provider data.

As a decentralized and trusted storage approach, blockchain
can facilitate data sharing and ensure the security and im-
mutability of information. Thus, its applications in MEC and
vehicular networks have been widely studied in the literature.
Yang et al. [24] summarized various studies on integrated
blockchain and MEC systems and provided a clear descrip-
tion of the complementarity of blockchain and MEC. They
provided typical architectures of the integrated system and
discussed the functions of computation, storage, and network
in this system. To ensure the security and privacy of data
storage and sharing in an integrated platform of MEC and ve-
hicular networks, Kang et al. [26] established an efficient data
storage and sharing mechanism using blockchain and its smart
contracts. In the information sharing scheme, they developed a
logic-based evaluation mechanism to select secure information
providers and ensure the credibility of the shared information.
In another study, Zhang et al. [36] designed a hierarchical
software-defined vehicular network with blockchain and used
a dueling deep reinforcement learning (DRL) method to im-
prove the throughput of this integrated system. Fu et al. [37]
investigated efficient and secure machine learning methods
for connected autonomous vehicles and designed a collective
learning framework with blockchain to achieve the distributed
training and sharing of machine learning models for connected
autonomous vehicles. In this architecture, blockchain was used
to protect the integrity of the shared models and to prevent
malicious node attacks. To enhance the capability of onboard
positioning and support autonomous driving, Li et al. [38]
proposed a positioning error evolution sharing architecture
using blockchain. They also proposed a deep-learning-based
positioning correction method as a shared model to improve
the applicability of the framework.

Some studies have also combined blockchain with compu-
tation offloading to improve the security of the latter. Guo
et al. [39] designed a computation offloading architecture
in blockchain-based MEC networks to verify and audit the
execution results of tasks using smart contracts in blockchain
systems. In this architecture, the authors considered the vari-
ables of resource allocation, block size, and block number and
presented a DRL-based method to optimize the latency and
throughput of the joint system. Qiu et al. [40] also provided
a computation offloading solution using DRL to offload the
mining and data processing applications of mobile terminals

4

to the MEC server in blockchain-empowered MEC networks.
To ensure the security and privacy of relay-based computation
offloading, Feng et al. [41] designed a relay-based offloading
framework in blockchain-enabled MEC networks and opti-
mized the throughput and computation rate of this integrated
system using the asynchronous advantage actor-critic (A3C)
algorithm. For a vehicular network, Zheng et al. [42] reused
the hierarchical distributed software-defined architecture in
[36] and proposed a secure access method with smart contracts
to construct a trusted computation offloading framework in
integrated edge-cloud networks. They also designed a DRL-
based offloading solution to achieve a tradeoff between latency
and energy consumption in computation offloading.

Blockchain can thus ensure secure sharing of information
in computation offloading to prevent attacks by malicious
nodes. However, to the best of our knowledge, existing studies
have focused on the sharing of sensing data, autonomous
driving learning models, positioning errors, and computation
offloading applications on audit, mining, and access control
in a combined blockchain-based MEC system while ignoring
the information sharing requirements of service providers
in cooperative computation offloading. In this paper, we
propose an information sharing architecture and consensus
mechanism for service providers based on blockchain in
cooperative computation offloading to provide secure and
accurate offloading service information for user vehicles. The
proposed blockchain-based data sharing is a new application
of blockchain in cooperative computation offloading to ensure
the shared information of server vehicles is consistency and
tamper-proof. Based on the shared information, we propose a
cooperative offloading game model that allows user vehicles
to make optimal offloading decisions.

III. BLOCKCHAIN-BASED DATA SHARING

A. Scenario Overview

In this study, we assume that user vehicles drive within
the coverage area of the roadside MEC server (also called
the edge node), and that there are server vehicles around
the user vehicles that can provide computing services, which
are also called resource-rich vehicles or service providers.
A blockchain system is deployed on each roadside MEC
server, and the MEC servers can achieve data sharing and
synchronization using blockchain.

When a user vehicle vi is faced with a computing task
that cannot be completed in the required time, the vehicle
must decide whether to send the task to the roadside server
or service provider. To make an accurate decision regarding
computation offloading, the user vehicle must obtain the ser-
vice capacity information of the neighboring server vehicles.
In this scenario, to expand the transmission range of service
capacities on server vehicles and prevent attacks by malicious
nodes, we adopt blockchain to share the information of idle
server vehicles to user vehicles to provide a basis for their
decision to computation offloading.

Fig. 2. Data sharing between user vehicles and service providers in
blockchain-based vehicular edge computing networks.

B. Secure Data Sharing Scheme for Cooperative Computation
Offloading

As mentioned above, in vehicular edge computing networks,
each roadside MEC server shares the information of the server
vehicle with the blockchain and broadcasts this information
to vehicles within its coverage area. Note that user vehicles
do not store all the received data, but filter the server vehi-
cles with matching trajectories as potential service providers
during data receiving to avoid excessive data storage. Then,
the user vehicle that requires computation offloading makes
a game decision according to the received information of
the neighboring server vehicles and roadside MEC servers.
Finally, the task can be migrated to the roadside MEC server
or a server vehicle to ensure the secure and stable execution
of the onboard application. The service provider data sharing
scheme is designed as illustrated in Fig. 2 and described below.

Step 1: The server vehicle uploads its service capacity to the
roadside MEC server. Within the range of the area covered
by the MEC server MECm, the server vehicle vj , which
has redundant computing resources, determines its service
capacity, such as the computing resources resourcej , service
period periodj , planned trajectory trajectoryj , and initial
price priceinitj . Then, vj establishes a communication link
with MECm and sends data regarding the service capacity
to MECm after encryption, attaching the certificate of the
vehicle and the signature of the message as

vj → MECm : EKpu
MECm

(
timestamp||DataPseus

j

||CertPseus
j
||SignPseus

j

(
DataPseus

j

))
,

where Kpu
MECm

is the public key of MECm, Pseus
j is

the current pseudonym used by vehicle j, CertPseus
j

and
SignPseus

j
are the corresponding certificate and signature,

respectively, and

DataPseus
j
= EKpr

Pseus
j

(timestamp||resourcej

||trajectoryj ||priceinitj ||periodj
) (1)

5

is the data of the service capacity of vj encrypted by its
private key. Specifically, the form of the service capability
data uploaded by the server vehicle vj in (1) consists of the
time of data generation, the computing resources, the travel
trajectory, the desired initial service price, and the service price
of vj . These contents are further encrypted by the private key
Kpr

Pseus
j

of vj to form the service capability data uploaded
by vj . Note that since the vehicle periodically broadcasts its
status containing the certificate and public key via vehicle-
to-everything (V2X) communication [43], [44] in vehicular
networks, we assume that both the vehicle and the roadside
MEC server have obtained each other’s public keys before data
sharing.

Step 2: The roadside MEC server collects the vehicle service
capacity information. After receiving the encrypted message
sent by vj , MECm decrypts the message with its private key
to obtain the service capacity provided by vj , and verifies the
signature of vj . Then, MECm identifies the service capacity
information and stores it as a service capacity record in the
form of a transaction record as

record = (timestamp||recordID||provider||resource
||trajectory||price||period||quality) ,

(2)
where recordID is the index of the service capacity record,
provider is the service provider, and resource, trajectory,
and period are the computing resources, trajectory, and service
duration, respectively, that the server vehicle can provide for
the service. In addition, quality ∈ [0, 1] is the evaluation of
the service quality provided by the user vehicle: the higher
the value, the higher the evaluation. In (2), we represent
the service capability of the server vehicle in the form of a
transaction record stored in the blockchain. Specifically, the
previously mentioned data generation time, the index of the
record, and the serial number, the computing resources, the
travel trajectory, the service price, the service period and the
service quality of the service vehicle together form the service
capability record. The MEC server uses the smart contract
feature [45] of blockchain to dynamically price the computing
services with the quality of service as

price = priceinit · quality. (3)

Step 3: The MEC server adds the service capacity record of
the server vehicle to the blockchain. As illustrated in Fig. 3,
the MEC server (i.e., blockchain node for data sharing) uses a
consensus mechanism combining Proof of Service and PBFT
to share the records of the service capacity within a certain
time period and ensure the security of the data to prevent
malicious attacks. It is worth to noting that we use a limited
number of MEC servers instead of vehicles as blockchain
nodes to improve the efficiency of consensus to avoid the
inefficiency of the consensus mechanism caused by excessive
blockchain nodes. The specific processes are as follows.

1) Broadcast: The MEC server (e.g., MECm) broadcasts
the service capacity information obtained in Step 2 in the
blockchain network (i.e., network composed of all edge

Fig. 3. Consensus mechanism for data sharing between user vehicles and
service providers.

computing nodes). Then, each node collects the service
capacity records sent by other nodes and stores them.

2) Select: After a certain time t, a primary node (leader) is
selected in the blockchain system to organize the recently
generated service capacity records into a block and add
this block to the current chain through a consensus
mechanism between all MEC servers. Then, the latest
block can be shared in the system. Here the leader is
selected with the Proof of Service mechanism; that is,
based on the current computing capacity of each node,
the node with more redundant computing resources is
selected as the primary node to generate the block. To
avoid the server with strong computing power being
the only leader, the p nodes with redundant computing
resources are selected as the primary node in turn to
generate new blocks. When all p nodes have become
proposers, the server with redundant computing resources
will be reselected and proceed to the next round.

3) Pre-prepare: Each node determines whether it is the
primary node. If it is the selected leader, it broadcasts
its generated block and its verification results as a pre-
prepare message to other MEC servers in the blockchain
network.

4) Prepare: After receiving the pre-prepare message, all
MEC servers verify the authenticity of the leader and
the validity of the content in the block. Then, they
broadcast the verification results in the network as prepare
messages.

5) Commit: After receiving the prepare messages sent by
other nodes, each MEC server uses the messages along
with its own verification result to make a decision and
vote on whether the block is generated successfully. If
the total number of valid results exceeds 2f (f can be
interpreted as the maximum number of virulent servers
that can be tolerated), the MEC server broadcasts the
commit message to all other nodes in the blockchain
network to indicate its voting result.

6) Reply: After receiving the commit messages sent by other
nodes, each MEC server uses the messages along with its
own voting result to make a decision. If the number of
votes in favor of the generated block exceeds 2f + 1
(including the vote of the node itself), it is considered
that the blockchain system has reached a consensus on
the generation of the block, and the consensus result is

6

sent to the leader.
7) Store: The primary node receives the consensus result of

each MEC server and sends the latest block to all MEC
servers in the system for data sharing and storage.

Step 4: The roadside MEC server sends the service capacity
information of the block to the vehicle within its coverage
area. After completing data sharing with the blockchain, the
roadside MEC server (e.g., MECl) parses the latest service
capacity record in the block and sends the parsed record to
user vehicles in its communication coverage (e.g., vehicle vi)
with encrypted transmission, namely

MECl → vi : EKpu
Pseus

i

(timestamp||DataMECl

||CertMECl
||SignMECl

(DataMECl
)) ,

where

DataMECl
= EKpr

MECl
(timestamp||record1

||record2|| · · · ||recordz) .
(4)

After receiving the record sent by MECl, user vehicle vi de-
crypts the data with its private key and verifies the signature of
MECl. Then, vi uses the parsed data of the latest neighboring
server vehicles and the data of service chain introduced in Step
6 to verify whether there is a server vehicle that can complete
the V2V computation offloading; this help to make subsequent
computation offloading decisions.

Step 5: The user vehicle makes an offloading decision based
on the service capacity of the MEC server and the neighboring
server vehicles. The user vehicle vi that requires offloading
determines the code codei, the input data datai of the task
to be computed, and the deadline deadlinei for the task. If
there is no server vehicle that can provide computing resources
around vi, the vehicle sends its task directly to the MEC server.
If there is more than one server vehicle around it, vi selects the
server vehicle vj that is closest to its trajectory and performs
the computation offloading decision process proposed in the
Section IV. To more clearly describe the secure data sharing
mechanism for cooperative computation offloading, we assume
that vi decides to send its task to vehicle vj as

vi → vj : EKpu
Pseus

j

(
timestamp||RequestPseus

i

||CertPseus
i
||SignPseus

i

(
RequestPseus

i

))
,

where

RequestPseus
i

= EKpr
Pseus

i

(timestamp||codei||datai||deadlinei) .
(5)

Step 6: The server vehicle uploads the information of
ongoing service, and the MEC server updates the service
chain. Since the computing resources of the server vehicles
are significantly less than those of the roadside servers, we
consider that each server vehicle can only provide computing
services to one user vehicle simultaneously. With the proposed
service capability chain, roadside edge servers share the ser-
vice capability information of server vehicles and provide it
to user vehicles, but the dynamically changing service status
of offloading cannot be captured in the chain. Therefore,
we add a service chain to share the service information of

occupied server vehicles so that user vehicles can determine
the available server vehicles for offloading decisions. If user
vehicle vi has selected a server vehicle to which to offload the
computation task, the server vehicle also generates the current
service information and uploads it to the nearby MEC server
when it starts to execute the computation task. Similar to the
operation in Steps 1-4, the MEC server packages different
service information to form a block. Through the consensus
mechanism, this service block is added to the service chain
parallel to the service capacity chain mentioned above, and
the service information of the current service provider is
shared through the service chain to assist user vehicles in the
computation offloading decision. Since the specific consensus
processes of ongoing service information sharing are the same
as those of the service capacity sharing, this step only provides
the format of the service record as follows:

service = (timestamp||serviceID||provider
||requester||duration) ,

(6)

where serviceID is the index of the service record, requester
is the specific requester of the service, and duration is the
estimated duration of the service.

Step 7: The user vehicle evaluates the quality of the service,
and the MEC server dynamically prices the service based
on the evaluation. After obtaining the execution results from
vehicle vj , user vehicle vi evaluates its quality of service
using a subjective logic framework. Specifically, the user
vehicle uses three trust variables (i.e. the belief, distrust, and
uncertainty of vi to vj) to evaluate the quality of service.
Then, the user vehicle sends the evaluation results to the
roadside MEC server to complete the entire offloading process
of the task. To avoid malicious evaluations, user vehicles
need to provide the corresponding basis while uploading
evaluations. The edge server verifies data such as computing
results, trajectory consistency, and connection stability against
suspicious evaluations in the evaluation management. After
confirming the evaluations are reasonable, the MEC server
updates the corresponding service capacity record of provider
vj and uploads the data when the next block is generated
so that the computing service is dynamically priced by the
smart contract on the chain. In addition, the edge server
maintains the reputation of user vehicles within its service
area. If users frequently submit malicious evaluations, their
reputation value will be reduced, resulting in a lower weight
of their evaluations.

C. Security Analysis

1) Service Information Spoofing of Malicious Vehicles: In
cooperative computation offloading, malicious service vehicles
may provide false service information to trick user vehicles
into offloading data to them and thus obtain the privacy of user
vehicles. In the proposed blockchain-based sharing architec-
ture, the MEC server prevents access of unauthorized service
vehicles by verifying the certificates. If the service vehicle
does not provide effective service and violates privacy, the user
vehicle can give a minimal service rating and thus prevent the
service vehicle from being selected as an offloading destination

7

by other user vehicles [46]. Meanwhile, the immutability and
traceability of the service information in the blockchain-based
system ensure the accurate identification of malicious service
vehicles [26].

2) Malicious Evaluation of User Vehicles: In the proposed
sharing scheme of service vehicle information, the evaluation
of the service quality by user vehicles affects the pricing of the
service, so user vehicles have an incentive to give malicious
evaluations intentionally. To avoid malicious evaluations, user
vehicles need to provide the corresponding evidence while
uploading evaluations. The MEC server verifies data such
as computing results, trajectory consistency, and connection
stability for suspicious evaluations, and updates the service
quality after confirming that the evaluations are reasonable.
In addition, the MEC servers can maintain the reputation of
user vehicles within their service area, and if users frequently
submit malicious evaluations, their reputation value will be
reduced, resulting in a lower weight of their evaluations.

3) Fake Block Generation and Majority Attack of MEC
Servers: In the proposed data sharing scheme, the roadside
MEC servers are responsible for generating blocks and sharing
them within the region. If a malicious MEC server generates a
fake block, the PBFT-based consensus mechanism can identify
the error in the block and avoid adding it to the blockchain
in case the number of malicious servers does not exceed
one-third. Meanwhile, the proposed shared architecture can
prevent the majority attack or 51% attack because mining-
based consensus is not used [47]. In addition, the cyclic
selection of block generators avoids the manipulation of the
blockchain system by nodes with high computational power.

4) Data Tampering of MEC Servers: The proposed sharing
scheme of service vehicle information uses blockchain to
share data among different MEC servers. Each block on the
blockchain contains a hash digest of the previous block, so
blockchain nodes can only read existing blocks or add new
blocks, and cannot modify the contents of blocks on the chain,
which ensures data immutability and prevents data tampering
[46]–[48].

IV. COOPERATIVE COMPUTATION OFFLOADING USING
GAME THEORY

Based on the trusted sharing scheme designed in the pre-
vious section, user vehicles can obtain information about the
surrounding service vehicles. In this way, each user vehicle
can choose to offload its tasks to the roadside MEC server
or the surrounding service vehicles for execution. To ensure
efficient computation offloading of user vehicles, the main
problem in this paper is how to achieve the distributed optimal
offloading decision in the blockchain-based vehicular edge
computing network. Therefore, we propose a game-based
cooperative computation offloading decision method and prove
the existence of equilibrium in this section.

A. Cooperative Computation Offloading Model

As mentioned in the last section, when user vehicle vi
matches with a nearby server vehicle according to the trajec-
tory of the server vehicle from the received shared data, it must

decide whether to execute its task on the MEC server or the
server vehicle based on the utility and overhead of the service,
such as the price, task execution latency, and quality of service.
To better characterize the utility and cost of cooperative com-
putation offloading, we present specific models of application,
communication, and computation. Based on these models, we
propose a game model for cooperative computation offloading
and design a payoff function for user vehicles.

In cooperative computation offloading, the user vehicle
sends the code, input data, and deadline of the task to the MEC
server or server vehicle. Therefore, the application model of
the user vehicle vi that requires computation offloading can be
expressed as a triple (Li, αi, ti,max), where Li is the input data
size of the application to be offloaded, αi is the computational
complexity, and ti,max is the maximum tolerable execution
time. The computational complexity refers to the required
central processing unit (CPU) cycles to handle 1-bit data in
the application, which is related to the code of that task. ti,max

is the maximum execution time of the offloaded computation
that is useful for user vehicle vi. If the task is completed
within ti,max, vi attains the expected utility; conversely, it
is penalized accordingly. A quantitative expression of the
expected utility is provided in the next subsection. In practical
systems, the values of these parameters vary with different
tasks. For example, in the task of point cloud based object
detection, Li is the input data size of LiDAR point clouds per
frame, αi is the complexity of the object detection algorithm
(i.e., the number of CPU cycles required to process each bit
of data), and ti,max is the processing interval of the adjacent
frames.

For simplicity and without loss of generality, we consider
that the communication model for computation offloading is
a block flat Rayleigh fading channel with path loss exponent
θ and fading coefficient hi of user vehicle vi. For all user
vehicles, the length of the block is greater than ti,max.
Therefore, the uplink and downlink data rates between vi and
the MEC server can be expressed as

RU
i,E = Wi log2

(
1 +

Pid
−θ
i,E |hi|2

N0

)
, (7)

RD
i,E = Wi log2

(
1 +

PEd
−θ
i,E |hi|2

N0

)
, (8)

where Wi and di,E are the bandwidth and distance between
the user vehicle and MEC server, respectively, N0 is the white
Gaussian noise power, and Pi and PE are the transmission
power of the user vehicle and MEC server, respectively. It
is worth noting that the noise power N0 is dependent of
the bandwidth, but since the bandwidth of V2V and vehicle-
to-infrastructure (V2I) communication is fixed (10 MHz in
China), we determine the noise power here with a fixed
bandwidth [34], [49]. It is worth noting that we consider V2V
and V2I communication implemented with LTE-V2X [43],
[44], which achieves data transmission through the multiple
access approach of orthogonal frequency-division multiplexing
(OFDM). Referring to [11], [34], [50], we use the same
bandwidth and channel gain to evaluate the computation

8

offloading delay, which also fits the practical application of
LTE-V2X (fixed bandwidth for V2I and V2V communication).
In addition, the offloading decision method proposed in this
paper evaluates the utility of computation offloading based on
the relative delay, which is also applicable to the environment
with different bandwidths and channel gains in the uplink
and downlink. Similar to [11] and [34], in the downlink
transmission we consider roadside units transmitting data
with fixed power, which is also consistent with the practical
application of LTE-V2X communication. Meanwhile, since
the power allocation does not affect the game-based decision
methodology, the offloading decision method proposed in this
paper is also applicable to the transmission environment with
dynamic power.

Similarly, the data transmission rates of the offloading
request and returned result between the user vehicle vi and
server vehicle vj can be expressed as

Rreq
i,V = Wi log2

(
1 +

Pid
−θ
i,V |hi|2

N0

)
, (9)

Rres
i,V = Wi log2

(
1 +

Pjd
−θ
i,V |hi|2

N0

)
, (10)

where di,V is the distance between vi and vj , and Pj is the
transmission power of the server vehicle. As mentioned earlier,
the bandwidth and channel gain of the links for offloading
requests and returned results in V2V communication are also
the same, and the decision method proposed in this paper
is applicable to communication environments with different
bandwidths and channel gains.

In the computation model, we use the CPU frequency to
represent the computational capability of the server vehicle
and MEC server. Combining this with the computational
complexity and the data size of the task being offloaded, we
can obtain the expected time for the task to execute at the
node and evaluate the utility of computation offloading with
this latency. Therefore, the processing time of the task on the
MEC server is

τi,E =
αiLi

fE
, (11)

where fE is the CPU frequency of the MEC server. Similarly,
with the CPU frequency fj of server vehicle vj , the execution
time on vj can be expressed as

τi,V =
αiLi

fj
. (12)

In this way, the total latency of computation offloading on the
MEC server and server vehicle sides can be expressed as

ti,E = tUi,E + τi,E + tDi,E

=
βU
i Li

Wi log2

(
1 +

Pid
−θ
i,E |hi|2

N0

) +
αiLi

fE

+
βD
i Li

Wi log2

(
1 +

PEd
−θ
i,E |hi|2

N0

) ,

(13)

ti,V = treqi,V + τi,V + tresi,V

=
βreq
i Li

Wi log2

(
1 +

Pid
−θ
i,V |hi|2

N0

) +
αiLi

fj

+
βres
i Li

Wi log2

(
1 +

Pjd
−θ
i,V |hi|2

N0

) ,

(14)

where βU
i and βreq

i are the uplink-cost in vehicle-to-MEC
(V2M) offloading and request-cost in V2V offloading, respec-
tively, βD

i is the joint factor for the downlink-cost and the
output-input data ratio on in V2M offloading, and βres

i is the
joint factor for result return-cost and the output-input data ratio
in V2V offloading.

Based on these offloading latencies, the user vehicle can
quantify the utility of both V2M and V2V offloading, and
decide whether to migrate the task to the MEC server or server
vehicle. Next, we use the latencies to construct a game of
cooperative computation offloading to guide the decision of
user vehicles.

B. Cooperative Computation Offloading Game

We obtain the latencies incurred by offloading tasks from
the user vehicle to different destinations with the applica-
tion, communication, and computation models of cooperative
computation offloading. Combining these latencies with the
maximum execution time of the tasks, the utility of offloading
computation to different destinations can be evaluated. In this
section, we establish the interaction of user vehicles using
game theory in cooperative computation offloading, and derive
the utility and overhead of offloading to construct a distributed
solution with the goal of optimizing the latencies of all user
vehicles.

The game model of cooperative computation offloading
can be expressed as G =

{
N , (pi)i∈N , (ui)i∈N

}
[5], where

N = {1, 2, . . . , N} denotes the set of all user vehicles in the
coverage area of MEC servers, and pi ∈ [0, 1] is the mixed
offloading strategy of user vehicle vi that combines the two
pure strategies of V2M and V2V offloading. If pi is close
to 1, vi migrates the task to the MEC server with a high
probability. ui is the payoff that vi can obtain from this game
with the payoff function ui (p). The payoff function consists
of both the utility and the cost of computation offloading,
thus evaluating the benefit and overhead of strategy pi in
cooperative computation offloading. In this game model, we
derive a specific payoff function based on the latency of
computation offloading and the competition of multiple user
vehicles for the MEC server.

First, we use the latency of task execution to characterize
the utility of the user vehicle in cooperative computation
offloading. To unify the wide range of fluctuations in latency,
we design a value function to map the task execution time to
a fixed value interval. Intuitively, the lower the latency of the
task execution, the higher the utility to the user vehicle, but
in practice, the user vehicle can benefit from the successful

9

0 20 40 60 80 100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 = 0

 = 0.2

 = 0.4

 = 0.8

 = 1

interval

interval

interval

interval

Fig. 4. Value function for different value factors.

execution of the task as long as the latency of the task does
not exceed its maximum tolerable execution time. Moreover,
the blind pursuit of minimizing the execution latency can also
make user vehicles compete fiercely for edge server resources,
leading to overtime of some tasks with the long waiting time.
Therefore, considering the reciprocity among user vehicles, we
construct this value function in the form of a quadratic function
and use a parameter to dynamically adjust the value versus
latency curve. The specific value function can be expressed as

ri(ti) = 2ti,max (ti + δti,max)− (ti + δti,max)
2
, (15)

where ti ∈ {ti,E , ti,V } is the total latency of V2M offloading
in (13) or V2V offloading in (14), and δ ∈ [0, 1] is defined as
the value factor to regulate the latency of the maximum value
(i.e., the distance between the latency of the apex of the curve
and ti,max). As illustrated in Fig. 4, when δ is large, the task
reaches its maximum value at a lower latency, and, conversely,
the maximum value corresponds to a longer task execution
time. If the task takes longer than ti,max to execute, the vehicle
will not obtain any value from computation offloading.

With the value function, we can use the latencies to ex-
press the expected utility of different computation offloading
strategies as

Ui(p) = pi
ri(ti,E)

ri,max
+ (1− pi)

qjri(ti,V)

ri,max
, (16)

where ri,max = ri ((1− δ) ti,max) is the maximum value
of the task, and qj is the quality of service of vj evaluated
by other user vehicles. The expected utility is composed of
the utility resulting from V2M and V2V offloading together.
The utility of each computation offloading is expressed as the
ratio of the value corresponding to its execution latency to the
maximum value, and the quality of service is also considered
in the utility of V2V offloading. If the quality of service of the
corresponding server vehicle is low, the utility obtained from
computation offloading will be reduced.

Due to the limited MEC servers resources, multiple user ve-
hicles in V2M computation offloading will compete for limited
resources. Thus, the expected cost of cooperative computation
offloading can be computed by considering the competition

for V2M offloading and the price of V2V offloading, which
can be expressed as

Ci(p) = p2i

1−∏
k ̸=i

(1− λkpk)

+ (1− pi)ρj , (17)

where λk denotes the average arrival rate of task in user

vehicle vk, and ρj =
pricej
priceE

denotes the ratio of the price

of V2V offloading to that of V2M offloading. In (17), as
the number of user vehicles and the price increase, the cost
of computation offloading also increases; thus, vehicles must
consider both utility and overhead to make better decisions.

Finally, by integrating (16) and (17), the payoff function for
cooperative computation offloading is given by

ui(p) = Ui(p)− Ci(p)

= pi
ri(ti,E)

ri,max
+ (1− pi)

qjri(ti,V)

ri,max

− p2i

1−∏
k ̸=i

(1− λkpk)

+ (1− pi)ρj .

(18)

In this way, user vehicles can fully account for the effects
of latency, competition, and price in the cooperative computa-
tion offloading game and adjust their computation offloading
probabilities (i.e., mixed strategies) to obtain a higher payoff.
We consider the current strategy to be a Nash equilibrium p∗

if no user vehicle can achieve more payoff by changing its
current strategy, that is, for all pi

ui(p
∗
i ,p∗

−i) ≥ ui(pi,p∗
−i), (19)

where p−i = (p1, ..., pi−1, pi+1, ..., pN) is the vector of mixed
strategies of all user vehicles except vehicle vi [51].

Next, we construct a distributed solution for user vehicles
based on the cooperative computation offloading game and
guarantee the uniqueness of the converged Nash equilibrium
from the strategies of all user vehicles.

C. Distributed Computation Offloading Solution

With blockchain-based data sharing of resource-rich vehi-
cles, we propose a cooperative offloading game to describe
the influence of the capacity of MEC servers and server
vehicles on the computation offloading decision of user vehicle
vi. Following [52], there is definitely a Nash equilibrium of
mixed strategies in the cooperative computation offloading
game proposed in this paper; thus, we must construct an
efficient algorithm to guarantee the convergence of the Nash
equilibrium from the strategies of user vehicles. For the
static game proposed in this paper, we use the best-response
mechanism to perform the offloading decision of user vehicles
and construct a distributed cooperative computation offloading
algorithm for them. To ensure the convergence and uniqueness
of the user vehicle strategies, we also prove that this distributed
computation offloading algorithm allows the strategy of each
vehicle to converge to the unique Nash equilibrium. Since the
user vehicles in the proposed game cannot obtain the strategies
of other vehicles in real time, we express the best response

10

of user vehicle vi based on the previous strategies of other
vehicles as

pi = argmax
pi

ui(p)

=

ri (ti,E) /ri,max − qjri (ti,V) /ri,max + ρj

2
(
1−

∏
k ̸=i (1− λkpk)

)
1

0

,
(20)

where the operator [·]10 limits the result to [0, 1]. Based on
this best-response mechanism in the cooperative computation
offloading game, we can construct the distributed cooperative
computation offloading solution as given in Algorithm 1.

Algorithm 1 Distributed cooperative computation offloading
algorithm for user vehicles

1: Initialization
2: Initialize the offloading requirements (L,α, ti,max) of

tasks of all user vehicles.
3: Initialize the vector p, ρ, and λ of all user vehicles.
4: for all i ∈ {1, ..., N} do
5: Parse the information of server vehicles.
6: if no server vehicles are around vi then
7: vi takes the roadside MEC as the offloading destina-

tion and sends its task.
8: else
9: if the number of server vehicles > 1 then

10: Select the server vehicle vj that is closest to its
trajectory.

11: end if
12: Estimate the data transmission rate with the roadside

MEC server and server vehicle vj based on (7) - (10).
13: Estimate the latencies when the task is offloaded to

the MEC server and vj with (13) and (14), respec-
tively.

14: Generate a random number randi ∈ [0, 1] and obtain
the offloading probability pi with the best-response
updated in (20).

15: if randi > pi then
16: vi offloads its task to server vehicle vj for execu-

tion.
17: Upload the service evaluation to the MEC server

after the offloading task is completed.
18: else
19: vi offloads its task to the roadside MEC for exe-

cution.
20: end if
21: end if
22: end for

In Algorithm 1, each user vehicle vi makes the computation
offloading decision in parallel, so its computational complexity
is mainly reflected in parsing and screening the information
of server vehicles. If each user vehicle can obtain information
of M server vehicles, the computational complexity of data
parsing for vi is O(M). In addition, for each user vehicle,
the computational complexity of both latency estimation and
strategy update is O(1). Thus, for each task, the computational
complexity of Algorithm 1 is O(M). Considering that each

user vehicle needs to perform K independent tasks, the total
complexity of its computation offloading is O(KM).

In this way, within the framework of game theory, user
vehicle vi determines the utility and cost that can be obtained
from its mixed strategy and then calculates the payoff function
of the game. Based on this payoff function, vi adopts the
strategy pi using the best-response method to obtain the
maximum payoff. It can be proved using the contraction
mapping theorem [53] that pi uniquely converges to the Nash
equilibrium p∗i under certain conditions.

Theorem 1. Starting from any initial strategy, the best-
response mechanism in the distributed cooperative computa-
tion offloading algorithm converges to the unique equilibrium
p∗i if ∀i ∈ {1, ..., N},∣∣∣∣ri(ti,E)ri,max

− qjri(ti,V)

ri,max
+ ρj

∣∣∣∣
<

2
[
1−

∏
k′ ̸=i (1− λk′pk′)

]2
∑

k ̸=i λk

∏
l ̸=i,k(1− λlpl)

.

(21)

Proof: Following [14], [54], the convergence and unique-
ness of the Nash equilibrium in best-response updating can be
guaranteed by proving that (20) is a contraction mapping. In
addition, according to the contraction mapping theorem [53],
we only need to prove that a certain norm (here, we use ∥·∥∞)
of the Jacobian matrix of (20) is less than 1.

Therefore, we first derive the norm of best-response updat-
ing. The Jacobian matrix J of best-response updating in (20)
is defined as

Ji,k =
∂psi

∂ps−1
k

, (22)

where ps−1
k denotes the strategy adopted in the previous stage

for each user vehicle except vi. Therefore, the Jacobian matrix
can be derived as

Ji,k =

0, i = k
−λk (ri,E − ri,V + ρj)

∏
l ̸=i,k(1− λlpl)

2
[
1−

∏
k′ ̸=i (1− λ′

kp
′
k)
]2 , i ̸= k ,

(23)
where ri,E =

ri(ti,E)
ri,max

and ri,V =
qjri(ti,V)
ri,max

are defined to
simplify the expression of Ji,k. Therefore,

∥J ∥∞ = max
i∈N

∑
k ̸=i |ri,E − ri,V + ρj |λk

∏
l ̸=i,k(1− λlpl)

2
[
1−

∏
k′ ̸=i (1− λk′pk′)

]2 .

(24)
According to the contraction mapping theorem, if ∥J ∥∞ <

1, then the strategy updating in (20) can converge
to the unique Nash equilibrium. Therefore, if ∀i ∈

N ,

∑
k ̸=i |ri,E − ri,V + ρj |λk

∏
l ̸=i,k(1− λlpl)

2
[
1−

∏
k′ ̸=i (1− λk′pk′)

]2 < 1, that is,

∣∣∣ ri(ti,E)
ri,max

− qjri(ti,V)
ri,max

+ ρj

∣∣∣ <
2
[
1−

∏
k′ ̸=i (1− λk′pk′)

]2
∑

k ̸=i λk

∏
l ̸=i,k(1− λlpl)

,

then the best-response strategy in the distributed cooperative

11

0 10 20 30 40 50

Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ff

lo
a

d
in

g
 P

ro
b

a
b

ili
ty

 p
i

Vehicle 1

Vehicle 2

Vehicle 3

Vehicle 4

Vehicle 5

Vehicle 6

Fig. 5. Convergence of computation offloading probability for user vehicles.

computation offloading algorithm can converge to the unique
Nash equilibrium.

The distributed computation offloading method thus
achieves strategy equilibrium to help user vehicles make better
offloading decisions. In this way, user vehicle vi obtains a
computation offloading strategy p∗i that can achieve Nash
equilibrium in most cases. Based on p∗i , vi can decide whether
to transfer the onboard application task to the roadside MEC
server or neighboring server vehicles to improve the execution
efficiency of the application.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present a series of experiments run in
MATLAB to evaluate the performance of the method proposed
in this paper. Specifically, we demonstrate the convergence of
Algorithm 1 and estimate the effect of different parameters on
the offloading strategy and expected time (latency) consumed
to complete the task of user vehicles. In addition, we compare
the expected latency and payoff of cooperative computation
offloading in different offloading schemes and demonstrate the
performance of the proposed offloading method.

For simplicity and without loss of generality, we assume
that all user vehicles do not have sufficient local resources
to execute their tasks and need to offload these tasks to
MEC servers or resource-rich vehicles for execution. These
tasks share the same application model (L,α, tmax) and other
parameters for user vehicle vi, such as Li = L, αi = α,
ti,max = tmax, Pi = PE = Pj = P , λi = λ, and ρj = ρ.
Furthermore, we assume that each user vehicle in the scenario
is near a resource-rich vehicle that can provide computing
services to meet the requirements of cooperative computation
offloading. The main parameters in the experiments are listed
in Table I.

The convergence of the offloading probability (i.e., strat-
egy) for six user vehicles is presented in Fig. 5. We can
see that the strategies of the user vehicles quickly converge
to a stable value, which demonstrates the convergence and

TABLE I
EXPERIMENTAL PARAMETERS [7], [14], [34], [55]

Notation Definition Value and unit
L Input data size of the applica-

tion
1 Mbits

α Computational complexity of
the application

240 cycles/bit

θ Path loss exponent 2
fj Frequency of the CPU in server

vehicle
1 GHz

fE Frequency of the CPU in MEC
server

5 GHz

Wi Bandwidth of the communica-
tion channel

10 MHz

βU
i Uplink-overhead in V2M of-

floading
1

βD
i Joint factor for downlink-cost

and the output-input data ratio
in V2M offloading

0.05

βreq
i Request-overhead in V2V of-

floading
1

βires Joint factor for result return-
cost and the output-input data
ratio in V2V offloading

0.05

δ Value factor 0.7
λ Average arrival rate of task 0.7
P Transmit power 0.2 W
ρ Ratio of the price of V2V of-

floading to that of V2M offload-
ing

0.7

0 10 20 30 40 50 60 70

Number of Vehicles

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v

er
ag

e
O

ff
lo

ad
in

g
 P

ro
b

ab
il

it
y

 = 0.5, = 0.7

 = 0.7, = 0.7

 = 0.9, = 0.7

 = 0.7, = 0.5

 = 0.7, = 0.9

Fig. 6. Comparison of the average probability of cooperative computation
offloading for different λ and ρ.

uniqueness of the Nash equilibrium under the condition of
Theorem 1, that is, ∀i ∈ N ,

∣∣∣ ri(ti,E)
ri,max

− qjri(ti,V)
ri,max

+ ρj

∣∣∣ <

2
[
1−

∏
k′ ̸=i (1− λk′pk′)

]2
∑

k ̸=i λk

∏
l ̸=i,k(1− λlpl)

. In addition, due to the different

channel environments and communication distances around
each user vehicle, each strategy converge to a different equi-
librium.

Fig. 6 displays the variation of the average probability
of cooperative computation offloading with the number of
vehicles for all user vehicles. Initially, as the number of user
vehicles grows, the offloading probabilities decrease sharply.
Once the number of vehicles is greater than 20, the average

12

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

A
v
e

ra
g

e
 O

ff
lo

a
d

in
g

 P
ro

b
a

b
ili

ty

 = 0.5, = 0.7

 = 0.7, = 0.7

 = 0.9, = 0.7

 = 0.7, = 0.5

 = 0.7, = 0.9

Fig. 7. Average offloading probability versus value factor δ for different λ
and ρ.

0 0.2 0.4 0.6 0.8 1
0.156

0.158

0.16

0.162

0.164

0.166

0.168

0.17

0.172

0.174

E
x
p
e
c
td

 L
a
te

n
c
y
 (

s
)

 = 0.5, = 0.7

 = 0.7, = 0.7

 = 0.9, = 0.7

 = 0.7, = 0.5

 = 0.7, = 0.9

Fig. 8. Expected latency versus value factor δ for different λ and ρ.

offloading probabilities saturate and remain low; that is, user
vehicles prefer to offload tasks to neighboring server vehicles
rather than to the MEC server. This is because overloaded
user vehicles intensify the competition for the MEC server
resources between user vehicles, and vehicles find it difficult
to achieve higher utility from V2M offloading; therefore, they
turn to V2V offloading without competition for resources. In
addition, different task arrival rates λ have no effect on the
saturation value of the average offloading probability for the
same price ratios. This is because an increased number of user
vehicles saturates the MEC server utilization, and a lower λ
only slows down the process of resource saturation without
affecting the saturation strategy.

Fig. 7 and Fig. 8 display the variation in the average offload-
ing probability and the expected latency of 10 user vehicles
with the value factor δ. As expressed in (15) and Fig. 4, δ can
adjust the mapping of the latency to the maximum value. If δ

0 0.2 0.4 0.6 0.8 1

q
j

0.25

0.3

0.35

0.4

0.45

0.5

0.55

O
ff

lo
a

d
in

g
 P

ro
b

a
b

ili
ty

 p
i

 = 0.5, = 0.7

 = 0.7, = 0.7

 = 0.9, = 0.7

 = 0.7, = 0.5

 = 0.7, = 0.9

Fig. 9. Offloading probability versus quality of service qj of the server vehicle
for different λ and ρ.

0 0.2 0.4 0.6 0.8 1

q
j

0.095

0.1

0.105

0.11

0.115

0.12
E

x
p

e
c
td

 L
a

te
n

c
y
 (

s
)

 = 0.5, = 0.7

 = 0.7, = 0.7

 = 0.9, = 0.7

 = 0.7, = 0.5

 = 0.7, = 0.9

Fig. 10. Expected latency versus quality of service qj of the server vehicle
for different λ and ρ.

is large, the user vehicle is more inclined to minimize its own
latency to improve utility. In Fig. 7, as δ alters the value curve,
the average offloading probability gradually increases, thereby
reducing the task execution time through V2M offloading. As
demonstrated in Fig. 8, the increase in offloading probability
leads to a decreasing trend in the expected latency, and each
user vehicle can thus achieve higher utility in the game.

Fig. 9 and Fig. 10 depict the change in the offloading
probability and expected latency of a single user vehicle with
the quality of service qj of its server vehicle while the quality
of service of other vehicles remains constant. In Fig. 9, the
offloading probability of the user vehicle gradually decreases
as qj increases, indicating its preference to perform tasks
through V2V offloading. The change in offloading probability
is more significant at a lower price ratio ρ, which indicates that
low ρ values are more sensitive to changes in qj because the

13

0 5 10 15 20 25

d
i,E

 / d
i,V

0.25

0.3

0.35

0.4

0.45

0.5

O
ff

lo
a

d
in

g
 P

ro
b

a
b

ili
ty

 p
i

 = 0.5, = 0.7

 = 0.7, = 0.7

 = 0.9, = 0.7

 = 0.7, = 0.5

 = 0.7, = 0.9

Fig. 11. Influence of ratio of di,E to di,V on offloading probability for
different λ and ρ.

0 5 10 15 20 25

d
i,E

 / d
i,V

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

E
x
p

e
c
td

 L
a

te
n

c
y
 (

s
)

 = 0.5, = 0.7

 = 0.7, = 0.7

 = 0.9, = 0.7

 = 0.7, = 0.5

 = 0.7, = 0.9

Fig. 12. Influence of ratio of di,E to di,V on expected latency for different
λ and ρ.

user vehicle can achieve higher utility in this case. Similarly,
a reduced offloading probability causes a slight increase in
the expected latency in Fig. 10, and the increase is more
significant at lower ρ values. This is because the increase
in latency is accompanied by a decrease in computation
offloading overhead, and the user vehicle can balance its
payoff by sacrificing some of its latency to reduce its V2M
offloading cost as long as the task is completed on time.

Fig. 11 and Fig. 12 display the variation in the offloading
probability and expected latency of a single user vehicle with
a ratio of di,E to di,V while the communication distance of
other vehicles remains constant. In this experiment, we set
the distance di,V between user vehicle vi and server vehicle
vj to 10 m and adjust the distance di,E between vi and the
MEC server to change the ratio of di,E to di,V . As illustrated
in Fig. 11, an increase in the distance of V2M offloading

0 10 20 30 40 50 60 70

Number of Vehicles

0.15

0.2

0.25

0.3

0.35

0.4

E
x
p

e
c
te

d
 L

a
te

n
c
y
 (

s
)

Proposed Method

Random

Offloading to MEC

Offloading to Vehicle

Global Optimization

Fig. 13. Comparison of different solutions in terms of expected latency.

prolongs the transmission time of the application data and
thus reduces the offloading probability of the user vehicle. As
the increase in distance leads to a decrease in the quality of
V2M communication, the expected delay in Fig. 12 gradually
increases. In addition, as the distance of V2M communication
increases, the user vehicle is more willing to execute tasks via
V2V offloading, which reverses the effect of λ and ρ on the
expected latency.

Fig.13 depicts the expected latency of user vehicles for
different numbers of vehicles using different offloading so-
lutions. In this experiment, the completion deadline tmax is
set to 1 s. We can observe that the expected delay of the
proposed method is stable below the completion deadline and
is significantly lower than that of other offloading schemes. It
can be seen that the expected latency of the proposed game
method is the same as the result of the global optimization
solved with global information for large numbers of vehicles.
However, due to changes in path loss and channel fading
caused by different communication distances, the expected
latency of the three non-game solutions is difficult to maintain
at a stable level. Therefore, the proposed game method can
promote efficient computation offloading and ensure the real-
time execution of tasks.

The expected payoffs of different offloading solutions are
compared in Fig. 14. We can see that the game method
proposed in this paper achieves almost the same maximum
payoff as the global optimization method, whereas the other
solutions fail to maintain the obtained payoff at a high level.
This is because the proposed method efficiently obtains the
server vehicle information using blockchain-based data sharing
and evaluates the competition of multiple vehicles for MEC
server resources using a distributed approach. In Fig. 14,
the proposed distributed algorithm achieves an equilibrium
close to the global optimum, demonstrating its performance
advantage.

14

0 10 20 30 40 50 60 70

Number of Vehicles

-0.2

-0.1

0

0.1

0.2

0.3

0.4
E

x
p

e
c
te

d
 P

a
y
o

ff

Proposed Method

Random

Offloading to MEC

Offloading to Vehicle

Global Optimization

Fig. 14. Comparison of different solutions in terms of expected payoff.

VI. CONCLUSION

In this paper, we proposed a data sharing architecture
between user vehicles and service providers for cooperative
computation offloading in blockchain-based vehicular MEC
networks. A consensus mechanism used in blockchain, which
combines Proof of Service and PBFT, is designed in this
architecture to improve the security and efficiency of data
sharing. Furthermore, we proposed a game of cooperative
computation offloading and constructed a method to obtain
offloading strategy equilibrium using the best-response mecha-
nism. The performance evaluation reveals the advantage of the
proposed method in terms of latency. Using the computation
offloading strategy, a user vehicle can determine whether to
transfer its task to the roadside MEC server or a nearby
server vehicle. The proposed method can thus help increase the
security and efficiency of cooperative computation offloading
in blockchain-based vehicular edge computing networks. In
future work, we will also investigate cooperative computation
offloading problem in presence of multiple MEC servers and
server vehicles in a region to provide a more accurate decision
method in vehicular MEC networks.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant No.62061130221,
Grant No.U20A20155 and Grant No.62173012, in part by
the Beijing Municipal Natural Science Foundation under
Grant No.L191001, in part by the Zhuoyue Program of
Beihang University (Postdoctoral Fellowship), and in part
by the China Postdoctoral Science Foundation under Grant
No.2020M680299.

REFERENCES

[1] S. Santini, A. Salvi, A. S. Valente, A. Pescapè, M. Segata, and R. L.
Cigno, “Platooning maneuvers in vehicular networks: a distributed and
consensus-based approach,” IEEE Transactions on Intelligent Vehicles,
vol. 4, no. 1, pp. 59–72, 2019.

[2] J. A. Guerrero-Ibanez, S. Zeadally, and J. Contreras-Castillo, “Inte-
gration challenges of intelligent transportation systems with connected
vehicle, cloud computing, and internet of things technologies,” IEEE
Wireless Communications, vol. 22, no. 6, pp. 122–128, 2015.

[3] S. A. Fayazi and A. Vahidi, “Mixed-integer linear programming for
optimal scheduling of autonomous vehicle intersection crossing,” IEEE
Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 287–299, 2018.

[4] L. Cheng, J. Liu, G. Xu, Z. Zhang, H. Wang, H.-N. Dai, Y. Wu, and
W. Wang, “Sctsc: A semicentralized traffic signal control mode with
attribute-based blockchain in iovs,” IEEE Transactions on Computa-
tional Social Systems, vol. 6, no. 6, pp. 1373–1385, 2019.

[5] H. Zhang, B. Xin, L.-h. Dou, J. Chen, and K. Hirota, “A review
of cooperative path planning of an unmanned aerial vehicle group,”
Frontiers of Information Technology & Electronic Engineering, vol. 21,
no. 12, pp. 1671–1694, 2020.

[6] C. Lin, D. Tian, X. Duan, and J. Zhou, “3d environmental perception
modeling in the simulated autonomous-driving systems,” Complex Sys-
tem Modeling and Simulation, vol. 1, no. 1, pp. 45–54, 2021.

[7] J. Wang, D. Feng, S. Zhang, J. Tang, and T. Q. Quek, “Computation
offloading for mobile edge computing enabled vehicular networks,”
IEEE Access, vol. 7, pp. 62 624–62 632, 2019.

[8] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5g network edge
cloud architecture and orchestration,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[9] W. Yang, W. Liu, X. Wei, Z. Guo, K. Yang, H. Huang, and L. Qi,
“Edgekeeper: a trusted edge computing framework for ubiquitous power
internet of things,” Frontiers of Information Technology & Electronic
Engineering, vol. 22, no. 3, pp. 374–399, 2021.

[10] P.-q. Huang, Y. Wang, and K.-z. Wang, “Energy-efficient trajectory
planning for a multi-uav-assisted mobile edge computing system,”
Frontiers of Information Technology & Electronic Engineering, vol. 21,
no. 12, pp. 1713–1725, 2020.

[11] S. Wang, J. Li, G. Wu, H. Chen, and S. Sun, “Joint optimization of
task offloading and resource allocation based on differential privacy in
vehicular edge computing,” IEEE Transactions on Computational Social
Systems, vol. 9, no. 1, pp. 109–119, 2022.

[12] H. Yu, C. Chang, S. Li, and L. Li, “Cd-db: A data storage model for
cooperative driving,” IEEE Transactions on Intelligent Vehicles, 2022.

[13] S. S. Shinde, A. Bozorgchenani, D. Tarchi, and Q. Ni, “On the design
of federated learning in latency and energy constrained computation
offloading operations in vehicular edge computing systems,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 2, pp. 2041–2057,
2022.

[14] Y. Wang, P. Lang, D. Tian, J. Zhou, X. Duan, Y. Cao, and D. Zhao,
“A game-based computation offloading method in vehicular multiaccess
edge computing networks,” IEEE Internet of Things Journal, vol. 7,
no. 6, pp. 4987–4996, 2020.

[15] 3GPP, “Study on Network Controlled Interactive Service (NCIS) in
the 5G System (5GS),” 3rd Generation Partnership Project (3GPP),
Technical Report (TR) 22.842, Dec 2019.

[16] ——, “Service requirements for the 5G system,” 3rd Generation Part-
nership Project (3GPP), Technical Specification (TS) 22.261, July 2020.

[17] 5GAA, “Toward fully connected vehicles: Edge computing
for advanced automotive communications,” 5G Automotive
Association (5GAA), White Paper, Dec 2017. [Online].
Available: https://5gaa.org/news/toward-fully-connected-vehicles-edge-
computing-for-advanced-automotive-communications/

[18] R. Chattopadhyay and C.-K. Tham, “Joint sensing and processing
resource allocation in vehicular ad-hoc networks,” IEEE Transactions
on Intelligent Vehicles, 2021.

[19] J. Xu, L. Chen, K. Liu, and C. Shen, “Designing security-aware incen-
tives for computation offloading via device-to-device communication,”
IEEE Transactions on Wireless Communications, vol. 17, no. 9, pp.
6053–6066, 2018.

[20] M. Hasan, S. Mohan, T. Shimizu, and H. Lu, “Securing vehicle-
to-everything (v2x) communication platforms,” IEEE Transactions on
Intelligent Vehicles, vol. 5, no. 4, pp. 693–713, 2020.

[21] T. Aste, P. Tasca, and T. Di Matteo, “Blockchain technologies: The
foreseeable impact on society and industry,” Computer, vol. 50, no. 9,
pp. 18–28, 2017.

[22] R. A. Memon, J. P. Li, J. Ahmed, M. I. Nazeer, M. Ismail, and
K. Ali, “Cloud-based vs. blockchain-based iot: a comparative survey
and way forward,” Frontiers of Information Technology & Electronic
Engineering, vol. 21, no. 4, pp. 563–586, 2020.

[23] X. Huang, D. Ye, R. Yu, and L. Shu, “Securing parked vehicle assisted
fog computing with blockchain and optimal smart contract design,”

15

IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 426–441,
2020.

[24] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain
and edge computing systems: A survey, some research issues and
challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2,
pp. 1508–1532, 2019.

[25] D. Xu, W. Shi, W. Zhai, and Z. Tian, “Multi-candidate voting model
based on blockchain,” IEEE/CAA Journal of Automatica Sinica, vol. 8,
no. 12, pp. 1891–1900, 2021.

[26] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang,
“Blockchain for secure and efficient data sharing in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4660–4670, 2019.

[27] X. Xu, Q. Liu, X. Zhang, J. Zhang, L. Qi, and W. Dou, “A blockchain-
powered crowdsourcing method with privacy preservation in mobile
environment,” IEEE Transactions on Computational Social Systems,
vol. 6, no. 6, pp. 1407–1419, 2019.

[28] S. K. Dwivedi, R. Amin, and S. Vollala, “Blockchain-based secured ipfs-
enable event storage technique with authentication protocol in vanet,”
IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 12, pp. 1913–1922,
2021.

[29] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for iot,” IEEE Access,
vol. 6, pp. 115–124, 2017.

[30] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[31] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 7944–7956, 2019.

[32] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for mec in heteroge-
neous vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 7, pp. 7916–7929, 2020.

[33] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4377–4387, June 2019.

[34] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive
learning-based task offloading for vehicular edge computing systems,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3061–
3074, 2019.

[35] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-
latency tradeoff for dynamic computation offloading in vehicular fog
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12,
pp. 14 198–14 211, 2020.

[36] D. Zhang, F. R. Yu, and R. Yang, “Blockchain-based distributed
software-defined vehicular networks: A dueling deep Q -learning ap-
proach,” IEEE Transactions on Cognitive Communications and Network-
ing, vol. 5, no. 4, pp. 1086–1100, 2019.

[37] Y. Fu, F. R. Yu, C. Li, T. H. Luan, and Y. Zhang, “Vehicular blockchain-
based collective learning for connected and autonomous vehicles,” IEEE
Wireless Communications, vol. 27, no. 2, pp. 197–203, 2020.

[38] C. Li, Y. Fu, F. R. Yu, T. H. Luan, and Y. Zhang, “Vehicle position
correction: A vehicular blockchain networks-based gps error sharing
framework,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 2, pp. 898–912, 2020.

[39] F. Guo, F. R. Yu, H. Zhang, H. Ji, M. Liu, and V. C. Leung, “Adaptive
resource allocation in future wireless networks with blockchain and mo-
bile edge computing,” IEEE Transactions on Wireless Communications,
vol. 19, no. 3, pp. 1689–1703, 2019.

[40] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 8050–8062, 2019.

[41] J. Feng, F. R. Yu, Q. Pei, X. Chu, J. Du, and L. Zhu, “Cooperative
computation offloading and resource allocation for blockchain-enabled
mobile-edge computing: A deep reinforcement learning approach,” IEEE
Internet of Things Journal, vol. 7, no. 7, pp. 6214–6228, 2019.

[42] X. Zheng, M. Li, Y. Chen, J. Guo, M. Alam, and W. Hu, “Blockchain-
based secure computation offloading in vehicular networks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp.
4073–4087, 2021.

[43] S. Chen, J. Hu, Y. Shi, and L. Zhao, “Lte-v: A td-lte-based v2x solution
for future vehicular network,” IEEE Internet of Things journal, vol. 3,
no. 6, pp. 997–1005, 2016.

[44] S. Chen, J. Hu, Y. Shi, L. Zhao, and W. Li, “A vision of c-v2x:
Technologies, field testing, and challenges with chinese development,”
IEEE Internet of Things Journal, vol. 7, no. 5, pp. 3872–3881, 2020.

[45] S. Dustdar, P. Fernández, J. M. Garcı́a, and A. Ruiz-Cortés, “Elastic
smart contracts in blockchains,” IEEE/CAA Journal of Automatica
Sinica, vol. 8, no. 12, pp. 1901–1912, 2021.

[46] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. Leung, “Blockchain-based
decentralized trust management in vehicular networks,” IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 1495–1505, 2019.

[47] W. Li, M. Nejad, and R. Zhang, “A blockchain-based architecture for
traffic signal control systems,” in 2019 IEEE International Congress on
Internet of Things (ICIOT). IEEE, 2019, pp. 33–40.

[48] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial internet of things,”
IEEE transactions on industrial informatics, vol. 14, no. 8, pp. 3690–
3700, 2018.

[49] A. Bansal, N. Agrawal, and K. Singh, “Rate-splitting multiple access
for uav-based ris-enabled interference-limited vehicular communication
system,” IEEE Transactions on Intelligent Vehicles, 2022.

[50] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[51] S. Tadelis, “Game theory : an introduction,” Economics Books, vol. 1,
2012.

[52] D. Fudenberg and J. Tirole, “Game theory,” Cambridge, Massachusetts,
1991.

[53] R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, tensor analysis,
and applications. Springer-Verlag, 1988.

[54] J.-W. Lee, A. Tang, J. Huang, M. Chiang, and A. R. Calderbank,
“Reverse-engineering mac: A non-cooperative game model,” IEEE Jour-
nal on Selected Areas in Communications, vol. 25, no. 6, pp. 1135–1147,
2007.

[55] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, 2014.

Ping Lang received the B.Eng. and M.Sc. degrees in
computer science from Jilin University, Changchun,
China, in 2016 and 2019, respectively. He is cur-
rently pursuing the Ph.D. degree with the School
of Transportation Science and Engineering, Beihang
University, Beijing, China. His research interests
include vehicular networks, edge computing, and
intelligent transportation systems.

Daxin Tian (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer science
from Jilin University, Changchun, China, in 2002,
2005, and 2007, respectively. He is currently a pro-
fessor in the School of Transportation Science and
Engineering, Beihang University, Beijing, China.
He is an IEEE Intelligent Transportation Systems
Society Member and an IEEE Vehicular Technol-
ogy Society Member. His current research interests
include mobile computing, intelligent transportation
systems, vehicular ad hoc networks, and swarm

intelligent.

16

Xuting Duan received the Ph.D. degree in Traffic
Information Engineering and Control from Beihang
University, Beijing, China. He is currently an as-
sistant professor with the School of Transportation
Science and Engineering, Beihang University. His
current research interests include vehicular ad hoc
networks, cooperative vehicle infrastructure system
and internet of vehicles.

Jianshan Zhou received the B.Sc., M.Sc., and
Ph.D. degrees in traffic information engineering and
control from Beihang University, Beijing, China, in
2013, 2016, and 2020, respectively. From 2017 to
2018, he was a Visiting Research Fellow with the
School of Informatics and Engineering, University
of Sussex, Brighton, U.K. He is currently a Post-
doctoral Research Fellow supported by the Zhuoyue
Program of Beihang University and the National
Postdoctoral Program for Innovative Talents, and is
or was the Technical Program Session Chair with

the IEEE EDGE 2020, the TPC member with the IEEE VTC2021-Fall track,
the session organizer with ICAUS 2022 and IEEE ICUS 2022, and the
Youth Editorial Board Member of the Unmanned Systems Technology. He
is the author or coauthor of more than 20 international scientific publications.
His research interests include the modeling and optimization of vehicular
communication networks and air–ground cooperative networks, the analysis
and control of connected autonomous vehicles, and intelligent transportation
systems.

Zhengguo Sheng (Senior Member, IEEE) received
the B.Sc. degree from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2006, and the M.S. and Ph.D. degrees from
Imperial College London, London, U.K., in 2007
and 2011, respectively. He is currently a Reader with
the University of Sussex, Brighton, U.K. Previously,
he was with UBC, Vancouver, BC, Canada, as a
Research Associate and with Orange Labs as a
Senior Researcher. He has more than 120 publi-
cations. His research interests cover IoT, vehicular

communications, and cloud/edge computing.

Victor C.M. Leung (Life Fellow, IEEE) is a Dis-
tinguished Professor of Computer Science and Soft-
ware Engineering at Shenzhen University, China. He
is also an Emeritus Professor of Electrical and Com-
puter Engineering and Director of the Laboratory for
Wireless Networks and Mobile Systems at the Uni-
versity of British Columbia (UBC), Canada. His re-
search is in the broad areas of wireless networks and
mobile systems, and he has published widely in these
areas. Dr. Leung is serving on the editorial boards
of the IEEE Transactions on Green Communications

and Networking, IEEE Transactions on Cloud Computing, IEEE Transactions
on Computational Social Systems, IEEE Access, IEEE Network, and several
other journals. He received the 1977 APEBC Gold Medal, 1977-1981 NSERC
Postgraduate Scholarships, IEEE Vancouver Section Centennial Award, 2011
UBC Killam Research Prize, 2017 Canadian Award for Telecommunica-
tions Research, 2018 IEEE TCGCC Distinguished Technical Achievement
Recognition Award, and 2018 ACM MSWiM Reginald Fessenden Award. He
coauthored papers that won the 2017 IEEE ComSoc Fred W. Ellersick Prize,
2017 IEEE Systems Journal Best Paper Award, 2018 IEEE CSIM Best Journal
Paper Award, and 2019 IEEE TCGCC Best Journal Paper Award. He is a Life
Fellow of IEEE, and a Fellow of the Royal Society of Canada (Academy of
Science), Canadian Academy of Engineering, and Engineering Institute of
Canada. He is named in the current Clarivate Analytics list of Highly Cited
Researchers.

