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Abstract— Sensor-based Human Activity Recognition (HAR) re-

quires the acquisition of Channel State Information(CSI) data with

time series based on sensors to predict human behavior. Many ke s e
existing approaches are based on wearable sensors and cameras, ' S N v
which increase the burden and privacy issues for patients. Self- —_— & A
powered sensors are capable of non-contact collection of time

series data generated by human activity while ensuring their own Activiies
stable operation. In this paper, we propose a deep learning-based
framework for contactless real-time activity detection of humans us-
ing self-powered sensors, which is called Multilayer Bi-directional ; M
Long Short-Term Memory (MBLSTM). The collected WIFI CSI data B AV A W
are fed into our proposed network model, which is then used J\/ =valtval
to learn representative features of both sides from the original
continuous CSI measurements. And the attention model is used to
assign different weights to the learned features, and finally activity
recognition is performed. Experimental results show that our proposed method achieves an accuracy of more than
96% for the recognition of six activities in multiple rounds of testing, outperforming other benchmark methods used
for comparison.
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[. INTRODUCTION

N recent years, thanks to the rapid development of IoT

technology, we can get a lot of useful information from
different types of sensors in IoT. This information can help IoT
technology to be applied in smart cities, smart farms, medical
and health services, etc. The application of IoT sensors in the
livestock industry can help practitioners reduce costs and in-
crease efficiency [1]. 3D sound source localization using fiber
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optic sensors [2]. IoT technologies are also gradually entering
our daily life and can identify human daily activities. Human
activity recognition is also receiving increasing attention for
research in the field of health detection. For example, we need
to understand the health status of elderly people and need to
monitor their daily activities [3] over time for fall detection [4]
and identification of some diseases that the elderly are prone
to, such as Parkinson’s [5].

To identify various human activities, many methods have
been used in previous work. Cameras [6]-[9], wearable sensors
[10], [11], and RFID [12]-[14]have been used for activity
recognition. Camera-based systems have the advantage of
being able to detect minor human movements. However, these
systems face severe problems such as object blocking and
privacy issues. Because of the great recognition accuracy,
wearable sensors are also useful in human activity recognition
[15]. Wearable sensor-based ones, on the other hand, need
the use of additional devices for action recognition, which
is both uncomfortable and ineffective. The mobile phone
is another popular sensor for recognizing human activity.
Smartphones may be considered electricity sensing platforms
for human activity recognition since different sensors, such as
accelerometers, gyroscopes, and barometers, are incorporated
in phones. If the user forgets to carry their smartphone,



activity recognition will be turned off. Simultaneously, the
operation of the sensors in the phone will be affected by
its battery capacity. The usage of WiFi devices for human
activity recognition has also been successful currently [16]-
[19]. WiFi provides new research directions for universal, non-
visual human activity recognition due to its universality, low
cost, and contactless operation. Use self-powered sensors to
obtain stable and continuous WIFI signal information.

The basic point of using WiFi to recognize activities is that
human motion influences the nearby WiFi signal, and that
WiFi signals reflected by different activities exhibit different
characteristics. Received Signal Strength (RSS), which is most
widely practiced in the field of indoor positioning research
[20], [21], is the most extensively utilized signal for WiFi.
Although it can be used to recognize the human activity, it
has disadvantages because of noise and unsteady RSS data.
Distinguishing different human actions is mainly a matter of
analyzing the pattern of the signal, CSI. The most advanced
work showed pretty decent recognition accuracy while using
a clean WiFi channel in the experiment. However, in the real
world, WiFi channels are less than clean. Nowadays, wireless
signals abound in indoor places such as homes, offices, and
supermarkets, and there are numerous private Access Points
(APs). Because most systems now utilize stationary WiFi
channels for action recognition and CSI acquisition, their per-
formance is extremely vulnerable to co-channel interference,
which can significantly decrease the quality of the receiver
and distort the extracted recognition features. When classifying
activities, traditional classification models utilized in present
systems are highly influenced by such distortions. Recently,
with the rapid development of deep learning techniques, the
method of automatically learning activity features in CSI using
deep learning has provided a completely new way of thinking
for human activity recognition. [22]. There is also experience
in combining machine learning and sensors in previous work.
For example, fiber optic tactile sensors combined with machine
learning algorithms for surface roughness recognition [23].

The advantage of long short-term memory (LSTM) net-
works to automatically learn meaningful features and en-
code data is widely used in deep learning. The traditional
LSTM only handles the forward continuous CSI data, which
means that the backward CSI data are not used effectively
in training. Future CSI data, we believe, will be important
for recognizing human activities. Furthermore, typical LSTM
sequence properties may contribute differently to the human
activity recognition challenge. The learnt characteristics, on
the other hand, make an equivalent contribution to the final
identification of human actions in the classic LSTM tech-
nique. We provide a multilayer bidirectional LSTM based
on WiFi CSI data for human activity recognition in this
research paper. Stacking LSTM hidden layers gives more
depth to the model and more accurate descriptions obtained as
a deep learning technique, while increasing the depth of the
network, improving the efficiency of training, and obtaining
higher accuracy. An MBLSTM network consisting of multiple
forward and backward LSTM layers can handle both forward
and backward continuous CSI measurements. Furthermore,
the attention mechanism can give more weight to more
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Fig. 1. Basic framework of WiFi-based activity recognition system.

essential characteristics and time steps, resulting in higher
generalization for human activity detection. The effectiveness
of the proposed personnel activity detection algorithm based
on wireless channel state information measurement is verified
by real experiments. The results are compared to several
published benchmark approaches.

In this paper, the major contribution of our work is that we
establish a framework called MBLSTM to recognize human
activities. The following is a detailed description:

1) We designed an MBLSTM network to collect WiFi CSI
data for autonomous feature extraction and selection
using self-powered sensors. Use self-powered sensors
to continuously and steadily collect WIFI time series
information under different activities, and match this
different information with different activities.

2) Continuous CSI data in both forward and reverse di-
rections are processed by layering several Bi-directional
Long Short-Term Memory (BLSTM) networks. The
MBLSTM can simultaneously consider the information
of different past and future actions in CSI data, thus
bringing richer information reference for feature learn-
ing, and using it can also speed up the convergence
process of the training dataset.

3) The MBLSTM network uses an attention model to learn
the relevance between activity features and time series.
For final personnel activity recognition, more main
features and time series are assigned greater weights,
resulting in improved recognition performance.

The rest of the paper is organized as follows. Section 2
reviews some state-of-the-art work on using WiFi signals
to identify human activities, and Section 3 describes the
channel sensing model and the MBLSTM network, as well as
the proposed approach. Section 4 describes the experimental
setup and data. Then, this section shows and analyzes the
experimental results. Finally, Section 5 summarizes this work.

[I. RELATED WORK

As illustrated in Fig. 1, a conventional WiFi-based activity
recognition system is composed of three parts.

1) Filtering and monitoring channel status. Human activity
is detected using a self-powered sensor. The human
body activity affects the WiFi signal, and this pair of
signals can be observed. Therefore, the first step of
the activity recognition system is to collect the original
signal and denoise it to reveal the changes caused by
human activity.



2) Extraction of Features. The CSI data from this denoising
step is still not directly usable, and the next task is to
discover and extract features from the existing behav-
ioral data that are initially compatible with the technical
requirements. At present, the signal feature extraction
method contains the following three kinds: the time
domain analysis method, the frequency domain analysis
method ,and the combined method of time-frequency
analysis.

3) Training and Recognition. After getting the feature
dataset, the first operation is to distinguish the dataset
into training set and test set, and choosing the proper
division ratio is a key part to ensure the effect of behav-
ior recognition.The next step is to select the appropriate
classification algorithm to train and test the data.

Due to the common presence of WiFi in everyday life, many
research teams have developed several activity recognition
systems using WiFi signals. Sigg et al. [24] proposed a
wireless human activity recognition system which analyzes
the RSS information of the interfered WiFi signal for activity
recognition. They extracted several important features from
RSS data and used a k-Nearest Neighbor (KNN) classifier to
recognize four daily activities. Abudulaziz et al. [25] designed
an RSS-based gesture recognition system on cell phones. The
system uses deep learning networks for gesture recognition
and achieves high recognition accuracy. Due to multipath and
fading effects, the collection of raw RSS data containing
actions can be unstable and noisy, so the performance of
using RSS to recognize activities with actions is very limited,
even for simple actions. WiFi’s more steady and informative
CSI has received a lot of attention recently. Zhang et al.
investigated the sensitivity of WiFi signals theoretically and
proposed a Fresnel zone method to recognize human activity
using WiFi CSI data [26].

Some special features may need to be carefully designed
using domain knowledge in order to recognize certain actions
using WiFi CSI measurements. When used to recognize other
activities, these features may not perform effectively. For
example, the traditional KNN method, which has a simple
idea, is applicable to multi-classification problems. However,
when the sample distribution is unbalanced, the new sample
will be classified as the dominant sample, so it cannot bet-
ter approximate the actual classification result. Furthermore,
hand-crafted characteristics will gradually lose several of the
implicit qualities that are important for recognizing human
activity. Deep learning is an useful tool for automatically
learning the differentiating features that are used to recognize
human activity.

Deep learning is a type of machine learning method that
uses a deep neural network to classify data. In most cases,
accurate features need to be identified for input to the training
model, and the model classifies and outputs results based on
these features. As a result, well-designed features are essential
for accurate behavior recognition and have a significant affect
on classification accuracy. Some feature extraction, on the
other hand, may depend on empirical experience, lowering
classification accuracy. Deep learning, unlike machine learn-
ing, generally does not require feature extraction stages since

a deep neural network is able to automatically identify and
extract features from training data. Deep learning allows us
a new method to classify data and can deal with enormous
amounts of data. In other words, the most significant advantage
of deep learning is that it does not require pre-processing of
data in order to obtain data features. Meanwhile, deep learning
can automatically compute large-scale unknown parameters
in neural networks through the training process. Usually, the
process of neural network training consumes a lot of prac-
tice, but the results achieved are satisfactory. Deep learning
algorithms are widely applied in various fields, including
picture target identification, natural language processing, video
classification, visual arts and so on [27].

Damodaran et al. [28] used a device-free approach (CSI)
to identify human activities. Wavelet analysis was used for
preprocessing and feature extraction. As a result, they were
able to recognize walking, sitting, standing, and running
activities. High-bandwidth noise was removed using principal
component analysis by Moshiri et al. [29]. The signal was
transformed to the frequency domain using Short Time Fourier
Transform (STFT) and new data was generated using Genera-
tive Adversarial Networks (GAN). The LSTM algorithm was
used for classification. The accuracy was 87.2% using 50%
of the “real” data plus 50% of the synthetic data, and 92.8%
using a set of all “real” data.

Convolutional Neural Network (CNN) is a very popular
deep learning method that automates feature extraction and
can easily handle high-latitude data. However, when the net-
work level is too deep, modifying the parameters using BP
propagation will cause the parameters near the input layer to
change more slowly, and the pooling layer will lose a lot of
valuable information and ignore the local-to-whole correlation.

Since for different activities, CSI measurements are con-
tinuous measurements with temporal information, BLSTM
capable of encoding temporal information is good candidate
for automatic feature learning. BLSTM includes both forward
and backward processes of feature learning. As a result, when
evaluating the current hidden state of the LSTM, BLSTM can
take into account both past and future information, resulting
in richer information features. We propose stacked multilayer
BLSTM networks for human action recognition. Each layer
of the BLSTM neural network automatically learns the input
action features and passes the learned features to the next
layer. At the same time, the feature sequences learned in one
temporal instance may contribute differently to the final human
activity recognition. Furthermore, the significance of channel
state information collected at different time stages may differ.
Therefore, in order to assign different weights to different
action features in the training for the purpose of reducing the
training time and improving the accuracy of the model, we
add an attention mechanism to the proposed network model.

1. PROPOSED METHOD
A. System Overview

The proposed MBLSTM framework is shown in Fig. 2.
First, we use a router and a self-powered sensor to collect
CSI signals from WiFi of human actions. Secondly, we input
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Fig. 2. The proposed MBLSTM framework for CSI based human activity recognition.

the processed CSI signals into the MBLSTM framework to
automatically learn the forward and backward features. There
are 200 hidden nodes in the bidirectional LSTM used for
feature learning in this experiment. Since the attention model
has no available prior information, it can only use the features
learned from BLSTM as input to derive an attention matrix
representing the importance of features and time steps. Then,
we use element multiplication to merge the learned features
with the attention matrix to obtain the modified feature matrix
with attention. After that, the feature matrix is flattened into
feature vectors for final classification using the flattened layer.
Finally, the softmax classification layer is used to identify
different activities with the final feature vectors.

B. Channel Sensing Model

WiFi signals are known to fluctuate significantly when
objects move within the region of interest. The Fresnel zone
model is introduced as a result of this to explore how the
WiFi signals on these receiving antennas change as a result of
different activities. Furthermore, we infer potential behavioral
information from such activity-induced signal fluctuations. So
we use the Intel 5300 NIC, a self-powered sensor, to collect
the reflected WiFi information.

In recent years, the Fresnel zone model has been applied
to the research of human action recognition based on wireless
sensing. It refers to the wireless electromagnetic wave in the
transmission process, the formation of the transceiver at both
ends of the transceiver device, the location of the transceiver
device as the focus of the ellipse-shaped area, the area
is the wireless electromagnetic wave intensity concentration
area.One of the most important zones is the first Fresnel
zone, where most of the energy of the wireless signal is
located. If there is an obstacle in this region, it will affect
the wireless signal. The wireless signal will form multiple
propagation paths from the receiver (Rx) to the transmitter
(Tx), and the direct propagation path that passes through
both the transmitter and receiver is called the line-of-sight
path (LoS). When the wireless signal propagation encounters
obstacles due to reflection, scattering, and diffraction generated
by the propagation path is called non-Line-of-Sight (NLoS).

Through the analysis and study of the received signals, the
researchers found the characteristics of the changes brought
by the human body movements on the signal propagation.
And established the relationship between these features and

the mapping of different activities, which built the foundation
for WiFi-based human activity recognition.

The phenomenon that different actions have different effects
on WiFi signals is a major discovery that the Fresnel zone
model can be applied to the field of action recognition.
Specifically, different activities cause significant differences
in the speed of signal dynamic paths. Furthermore, CSI’s
amplitude attenuation and phase change can capture these
specific pattern. It demonstrates the feasibility and application
of using unique CSI variations to effectively and precisely
identify and recognize different human activities.

C. MBLSTM Neural Network

In the case of multilayer stacking, each layer of the BLSTM
neural network is composed of a forward recurrent network
and a backward recurrent network. The combination of the
output results of the forward LSTM and the backward LSTM
of the previous layer is sent to the next layer of the network.
Fig. 3 illustrates the MBLSTM network framework structure.
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The output is determined by the sum of each layer’s positive
and negative computations. Where 515(1)1 and St(z) are the values
of the i-th hidden layer at time t—1 and ¢, respectively.Forward
and backward computations do not share weights, V), U(*)
and W) are the weight matrices of the i-th hidden layer to the
output layer, the input layer to the hidden layer , and the hidden
layer . V') U/(Wand W) are the backward weight matrices
used for the computations. And ¢ is the number of BLSTM
layers, and ¢ = 0,1,2... 00 is the output layer’s value.

D. Attention Model

The attentional model is developed to be used for image
recognition [30]. The concept was inspired by the human
visual system, which says that during picture recognition,
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Fig. 3. Structure of MBLSTM neural network.

humans always focus on a certain portion of the image and
adjust their attention over time. During the recognition work,
the attention model allows the computer to attend to the area
of interest while blurring other areas. Recently, the atten-
tion models have been used in language processing, proving
that it is clearly effective [31]. For example, in the popular
encoder-decoder method for natural language processing, the
input sentence is encoded as a fixed vector that is translated
throughout the translation process, meaning that at every time
step, all words in the input sentence contribute equally to
the translation.This task of processing sentence translation
is inefficient. When the encoder model is utilized with the
attention model, translations will focus more on the words
that are more relevant to the current translation process at
different time steps. Since the MBLSTM network learns high-
dimensional sequence features, individual features and time
- series may contribute differently to the final recognition
results. We try to use an attention model to intelligently learn
the effects of different actions of features and assign weights
according to their importance.

In the recognition system, there is no usable a priori
information for training. As a result, the attention model, also
known as self-attention, will utilize the sequential features
learned by MBLSTM as input. This attention model is shown
in a simple example here. Given n feature vectors h;,i =
1,2,...,n that can be obtained from the feature learning
network. We build a score function ®(e) to evaluate the
significance of each feature vector by computing the score
s; as follows:

si=® (W"h; +b) )

Where W7 and b are the weight vector and
bias,respectively. Any activation function in a neural
network, such as tanh, relu, or linear, can be used to build

the score function. We can normalize each feature vector’s
score utilising softmax function, that is written as:
esp(si)
>i(si)

The final output feature O of the attention model is the
product of the vector and its normalization score, as follows:

3)

a; = softmax(s;) =

=1

E. Training Proposed Method

To identify the model parameters, the proposed MBLSTM
framework is trained using CSI data with real labels. At
first, all parameters are are randomly given. The CSI data is
then sent into MBLSTM, which uses it to predict the labels.
The category cross-entropy errors are measured and back-
propagated using a gradient-based optimization approach to
adjust the model parameters utilizing the given true labels.
We utilize ADAM [32] to calculate the adaptive learning rate
for each parameter in the optimization process efficiently.

In learning-based systems, overfitting is a typical prob-
lem. To avoid overfitting, we utilize the ADAM optimizer.
It provides adaptive learning rates for various parameters.
Furthermore, the suggested attention method will only choose
a few significant features and time series, decreasing the
possibility of overfitting.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first introduce our experimental settings
in detail and then present the extensive experimental results
that validate the effectiveness of our model.

A. Experiments Settings

We compared the proposed method to several benchmark
CSI-based human activity identification algorithms to evaluate
how effective it is. According to [33], the Random Forests (RF)
model outperforms Support Vector Machines (SVM), Logistic
Regression (LR), and Decision Tree (DT) in WiFi-based
human activity recognition. In [34], Hidden Markov Models
(HMM) have also been found to be useful for recognizing
human activity. As a result, we compared our method to these
two handmade methods. Manual feature extraction is described
in detail in [33]. We also compare it to other deep learning-
based approaches that can learn features automatically, such
as Sparse Autoencoder (SAE) [34], [35] and traditional LSTM
[33]. The SAE algorithm is an unsupervised algorithm that
automatically learns features from unlabeled data and can give
a better feature description than the original data. Validation
sets from the training examples were used to fine-tune the
parameters of all methods. For evaluation, 10-fold cross-
validation has been used. We divided all of the data into 10-
folds at random. Then, we select one fold of data for testing
and the rest for training and finally get 10 times. The average
of all 10 runs determines the final recognition accuracy. The
dataset used for comparison was taken by the authors in [33]
from an office. A router was used as a transmitter and a
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laptop with an Intel 5300 NIC was used as a receiver. The
sampling frequency was 1 kHz, with three antennas and 30
subcarriers, and the size of the original CSI data was 90.
The window size used for data segmentation was a sliding
window of 2s. Transmitters and receivers were separated
by three meters under line-of-sight (LOS) conditions. Each
person performed each activity for 20 seconds during data
collection. Note that the person remains stationary at the
beginning and end of the activity. Six persons were involved
in the data process of collecting, which included six normal
daily activities: Lie down, Fall, Run, Sit down, Stand up and
Walk. Every volunteer performed 20 rounds of each activity,
the resulting dataset was approximately 17 GB in size. All
experiments were performed on a workstation in our lab, using
python to run the code. The workstation is equipped with an
8-core, 16-thread Intel i19-9900 CPU and an NVIDIA GeForce
RTX 2080 GPU.

We compare the trend of accuracy and loss of BLSTM
networks with the different number of layers in the training
dataset. Fig. 4 shows that the LSTM and BLSTM networks
converge more slowly, with accuracy barely reaching 90% at
the 60th round of training. The multilayer BLSTM network,
on the other hand, converges quickly, with accuracy exceeding
90% at about 10 rounds of training, approaching 100% at
close to 20 rounds, and preserving stability in accuracy during
subsequent training.
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Fig. 6. Recognition accuracy of each activity with different number of
hidden nodes.

TABLE |
TRAINING AND VALIDATION TIME FOR DIFFERENT NUMBER OF HIDDEN
NODES
S Nodes| 551 100 | 150 | 200 | 250 | 300 | 350 | 400
Training(s) | 245.85 | 349.14|545.11|785.69 | 880.83 | 1043.76| 1238.80 | 1444 24
Validation(s) | 7.63 | 7.46 | 7.04 | 7.64 | 721 | 724 | 786 | 835
TABLE II
THE TRAINING AND TESTING TIME FOR DIFFERENT METHODS
Time RE HMM | SAE | LSTM | MBLSTM
Training(s) | 531 | 0.024 | 158.16 | 49323 1551.14
Testing(s) 0.008 0.17 0.19 3.54 8.72

Although the training converges faster as the number of
BLSTM layers increases, it is not better to have more layers.
As the number of layers increases, the network structure
becomes increasingly large, which means that more and
more computational resources will be used, and more time
will be consumed in training. As shown in Fig. 5, we run
experiments using 200 hidden nodes. The results show that
the more complex the network structure is, the time for
training increases significantly. It is obvious that, with the
same number of training rounds, the overall training accuracy
does not improve much after increasing the BLSTM network
to 3 layers, which are close to 100%, indicating that the
limit has been approached. However, the training time spent
by each network differs greatly. Considering all factors, we
choose the 3-layer BLSTM network as the network model for
this experiment in order to minimize the computer resources
consumed while ensuring high accuracy.

Impact of the Number of Hidden Nodes: We find that the
number of LSTM hidden nodes has a large impact on the
experimental results. As a result, we performed a second
experiment to see how this parameter affected the accuracy
of activity recognition. The results of the experiment are
shown in Fig. 6. When using 50 hidden nodes, the recognition
accuracy was low for actions, especially for the two activities
”Sit down” and “’Stand up”, which we guess are too similar.
When the number of hidden nodes is raised, the recognition
performance of each activity is improved, and after the number
reaches 300, the accuracy tends to be stable. As shown in
Table. I, we use a 3-layer BLSTM network, and in the same
30 rounds of training, the more hidden nodes, the longer the
training time, and we choose to use 200 hidden nodes in the
MBLSTM.
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Fig. 7. The confusion matrix of all benchmarks and proposed MBLSTM methods on the dataset.

Time Complexity: Deep learning-based approaches’ time
complexity is a common issue. We compared the training time
and testing time of some methods using the same dataset.
The Table. II shows the training time and testing time for all
methods. It can be clearly seen that algorithms using deep
learning methods have much longer training times than a
typical machine learning algorithm. The proposed MBLSTM
consumes the longest training time of all methods using deep
learning. All of the approaches have short testing times, ac-
cording to the Table. II. The proposed MBLSTM, for example,
has a testing time of 8.72 seconds for 420 test samples. This
signifies that each sample will be tested for 0.0208 seconds.
The window size for data segmentation is 4 seconds for each
case. We believe that our proposed MBLSTM approach, which
is based on WiFi CSI, may be utilized for real-time personnel
activity recognition.

B. Experimental Results

Fig. 7 shows the confusion matrix of all benchmarks and
proposed MBLSTM methods on the dataset. Activity recog-
nition algorithms that need manual feature extraction, such
as RF and HMM, perform the poorest. The HMM algorithm
performs significantly better than the RF algorithm. Unlike
RF and HMM manual feature extraction, SAE algorithms
using deep learning methods have better performance. This
demonstrates the effectiveness of using the SAE method for
automatic feature learning. The LSTM network outperforms
the SAE method because it incorporates the temporal factors
in the CSI sequences into feature learning. Due to the inclusion
of the attention model and the structure of the multilayer
bidirectional LSTM in our proposed method, our MBLSTM
method achieves excellent recognition results in recognizing
six daily activities. Accuracy of 96% and above for all six daily

activities recognition, which is sufficient for most recognition
situations.

The accuracy of recognition varies greatly depending on the
activity. Higher physical activities, such as “Fall”, ”"Walk” and
”Run” show greater recognition performance. This is due to
the fact that these activities have a large impact on the features
of the collected CSI data. It is also evident that most methods
have relatively low accuracy for recognizing the activity of ”’Sit
down”. This might be because this activity has the same effect
on CSI features as the “Lie down” and “’Stand up” activities.
It’s worth noting that the RF method’s recognition accuracy
with hand-made features is much lower than 50%. The “Fall”
activity is the most important of these six, especially for the
elderly [36]. The proposed MBLSTM approach can recognize
”Fall” activities with 99% accuracy, which will be useful in a
wide variety of medical applications. The extended training
period of the deep learning-based approach is one of its
drawbacks. However, this time-consuming procedure only has
to be completed once. It’s worth noting that deep learning-
based methods can be tested online quickly enough for most
real-time applications.

V. CONCLUSION

In this paper, we use self-powered sensors to collect WiFi
time series information and propose a multilayer BLSTM
network for extracting WiFi signal feature information used for
human activity recognition by improving the traditional LSTM
model. In both directions, the BLSTM network can learn
important sequential features from original WiFi CSI data.
The multilayer BLSTM network can enhance the accuracy
by accelerating convergence during training. We evaluated the
method in real environments and compared it to a variety
of benchmark methods, such as , Random Forest , Hidden



Markov Models, sparse autoencoders and traditional LSTM.
The proposed MBLSTM for WiFi CSI-based personnel ac-
tivity recognition has demonstrated higher performance in
experiments. Although our method has a high recognition rate
for single-person activities, there is still a big room for im-
provement in multi-person activities. For future work, we hope
to improve the accuracy of multi-person activity recognition
and the compatibility of the system with different environ-
ments. In [37], the authors used an inertial measurement device
to calculate acceleration. This inspired our proposed method
helps to recognize the type of body movement. In case of a
car accident, it can help to determine the posture of the injured

person.
ABBREVIATION LIST
B-LSTM Bi-directional Long Short-Term Memory
MBLSTM | Multilayer Bi-directional Long Short-Term Memory
CSI Channel State Information
HAR Human Activity Recognition
RSS Received Signal Strengt
APs Access Points
KNN k-Nearest Neighbor
STFT Short Time Fourier Transform
GAN Generative Adversarial Networks
CNN Convolutional Neural Network
RF Random Forest
SVM Support Vector Machine
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