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Abstract—Unmanned aerial vehicles (UAVs) play a significant
role in various 5G or Beyond-5G (B5G)-enabled Internet-of-
Things (IoT) applications. However, the UAV performance in an
air-ground cooperative network is significantly affected by its mo-
bility and air-to-ground (A2G) communication and computation
behaviors. In this paper, a UAV-oriented computation offloading
system is investigated, where the UAV desires to complete its
onboard computation demands with the assistance of a ground
edge-computing infrastructure, i.e., a road-side unit (RSU). The
objective is to maximize the energy efficiency of the UAV.
Specifically, a non-convex constrained optimal control problem
is formulated to optimize the overall energy efficiency of UAV
by jointly considering the coupled effects of UAV’s longitudinal
mobility, A2G communication, and computation dynamics. To
address the coupled complexity and non-convexity of the original
problem, a primal decomposition approach is developed to
transform the problem into a convex subproblem and a primary
problem, and then a closed-form optimal transmission power
control is derived by solving the subproblem, which is dependent
on mobility information. By embedding the closed-form optimal
power control into the primary problem, a gradient projection-
based iterative algorithm is proposed to obtain a joint optimal
solution for both the longitudinal acceleration control and the
power control, the feasibility and convergence of which is also
theoretically proven. Extensive simulations have been conducted
to validate the effectiveness of the proposed method in terms of
constraint satisfaction and convergence speed, and comparative
results also demonstrate that it can outperform other benchmark
methods in terms of global energy efficiency.

Index Terms—Air-ground cooperative networks, computation
offloading, unmanned air vehicles (UAVs), trajectory optimiza-
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I. INTRODUCTION

THE integration of unmanned aerial vehicles (UAVs) and
advanced information and communications technologies

(ICTs) has spawned a wide variety of applications ranging
from remote sensing to disaster rescue [1], [2]. Generally,
UAVs can form an aerial subnetwork and help the ground net-
work (e.g., vehicular networks) through air-to-ground (A2G)
communications, which motivates a novel networking archi-
tecture termed “Air-Ground Cooperative Networks” or “Air-
Ground Integrated Networks” [3]. In the envisioned beyond
5G (B5G) or sixth-generation mobile networks (6G), UAVs
are also considered as a key role to coordinate with Low
Earth Orbit (LEO) and geostationary (GEO) satellites-based
systems, which can create a space-air-ground integrated net-
work (SAGIN) [4], [5]. Such an architecture enables seamless
and flexible communication coverage, information services,
and many other emerging Internet-of-Things (IoT) applications
such as urban computing.

In addition, mobile edge computing (MEC) is currently
considered as an emerging paradigm to support latency-critical
and computation-intensive applications in B5G/6G, which
can provide the computing resources at network edges to
resource-hungry mobile users in close proximity to the edges
[6]–[9]. Hence, many researchers are engaged in designing
novel cooperation architectures, protocols, and algorithms for
MEC-enabled communication and networking systems, such
as low-latency fog-radio access network architectures [10],
cooperative fog computing methods [11], and user’s coopera-
tive communication and computation approaches [12]. These
conventional works mainly consider the optimization design of
communication and computing in ground mobility scenarios.
In the visions of B5G/6G, UAVs can also be equipped with
computing and storage resources such that they are treated as
flying MEC nodes to provide on-demand communication and
computing supports for IoT applications. Thus, it is critical
to investigate the air-ground cooperation of flying UAVs and
ground infrastructure in both communication and computation.

Despite of many potential appealing opportunities provided
by UAVs, there are some significant challenges to be addressed
for the practical implementation of the air-ground cooperative
network and the space-air-ground integrated network such as
the dynamic nature of wireless links due to the high mobility,
communication and computation resource constraints. More
importantly, the UAV’s mobility, computation offloading, and
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communication power control are inherently coupled in a
MEC-enabled air-ground cooperative network, which makes
the system design even more complex. Energy consumption
is one of the most important factors related to the mobility,
communication and computation of UAVs. Without proper
joint optimization design, the limited energy resources carried
by a UAV can neither efficiently support itself to collect
and process its computation tasks nor prolong its service
lifetime. Therefore, it is of great significance to enhance the
overall energy efficiency of UAVs from the perspective of joint
optimization design, meanwhile maintaining the system relia-
bility to process various applications on the energy resource-
constrained flying platforms.

A. Motivation

UAVs can be combined with MEC technology to optimize
their onboard resources. In both academia and industry, many
research efforts are currently devoted to developing energy-
efficient systems for UAV-assisted MEC systems [13]–[33].
Specifically, in many studies such as [15]–[17], [19], [27],
UAVs are employed as mobile cloudlets to serve ground end-
users by sharing their onboard computing resources. In the
above works, UAVs are treated as service providers in the
MEC scenario. However, due to the size and load constraints,
the energy resource carried by a flying UAV is quite lim-
ited and also its operation lifetime heavily depends on the
efficiency of resource utilization. The UAV-mounted cloudlet
needs to be properly designed so as to guarantee the system
practicability. UAVs can also have their own intensive com-
putation demands, especially when they are used as airspace
sensors to collect and process a large volume of sensing data,
such as aerial images and video streams. Hence, UAVs, as IoT
nodes, face the challenge arising from onboard applications
that require massive storage and computing capacities. In this
case, UAVs are resource-hungry service requesters rather than
resource-rich service providers.

Inspired by the flexible mobility and low-cost commer-
cialization of UAVs, many researchers have also dedicated
themselves to developing novel deployment and mobility
solutions for various UAVs-assisted communication systems
[34]–[36]. For example, Chou et al. have proposed an energy-
aware 3D deployment algorithm for a small cell-mounted
UAV swarm [34]. In [35], an intelligent reflecting surface
(IRS) optimization model is developed to the mean signal-
to-interference-plus-noise ratio (SINR) of an air-ground com-
munication network while mitigating inter-cell interferences.
In [36], Chen et al. propose a unified consensus model by
combining distributed energy minimization, grey prediction,
and a dynamic spanning tree algorithm to achieve the robust
deployment of a large-scale UAV swarm. The above works
mainly focus on UAVs-oriented deployment and mobility
optimization, while the issue of joint optimization of air-
ground communication, computation scheduling, and UAVs’
mobility remains to be explored at full length.

Specifically, UAVs need not only appropriately schedule the
offloading of its computation demands but also autonomously
adapt its motion under a certain control constraint set. The

overall energy-efficient performance of UAVs inherently de-
pends on the complex and coupled effects of mobility, com-
munication and computation, which poses an important chal-
lenge on the optimization design. On one side, the suc-
cessful offloading rate between UAVs and Road-Side Units
(RSUs) relies on the performance of the A2G communication,
meanwhile the computation partition of the UAV should also
take into account its local computation performance. On the
other side, the motion of the UAV will affect the time-
varying relative distance between the UAV and a RSU, which
further influences the dynamics of A2G communication. The
mobility, communication and computation of the UAV account
for most of its energy consumption, and thus should be
optimally controlled from a global perspective. Therefore, in
this paper, we investigate how UAVs and ground infrastructure
can process the computation demands in a cooperative manner,
and propose a novel UAV-oriented energy-efficient system via
joint optimization. In our considered situation, a flying UAV
is enabled to adaptively and dynamically offload the whole
or partial computation demands to a ground edge-computing
provider, i.e., a RSU, through A2G communication to optimize
the efficiency of its limited energy resources. Meanwhile, the
UAV is also required to complete its flight mission such as
target tracking and ground traffic detection, i.e., satisfying a
set of mobility control constraints.

B. Main Contributions

Towards this end, we investigate the air-ground cooperative
networking scenario and propose a joint mobility, communi-
cation and computation optimization method for a UAV to
maximize its overall energy efficiency. To be specific, we
formulate different models with respect to the UAV’s longitu-
dinal motion, the wireless A2G communication, and the local
computation, respectively. Based on the perspective of optimal
control theory, we further develop a joint optimal control
model that takes into consideration the coupled dynamics of
the mobility, communication and computation of the UAV.
The transmission power and the longitudinal acceleration are
treated as the decision variables of the UAV, which are time-
varying and constrained. To deal with the challenge in the
optimal control system, we propose a primal decomposition
approach to transform the original model into a subproblem
and a primary problem, which reduces the complexity and
thus facilitates the algorithm design. A closed-form optimal
power control that relies on the mobility information has
been theoretically derived by solving the subproblem. Then,
a gradient projection-based algorithm combined with the op-
timal power control has been proposed to solve the primary
problem, which results in the joint optimal control solution
over a finite horizon. To the best of our knowledge, our
work presents the first joint optimal control on the mobility,
communication and computation of a UAV in an air-ground
cooperative network, which can provide meaningful guidelines
for air-ground cooperative computing and cross-layer system
optimization.

The main contributions of our work are twofold with respect
to modeling and optimization design:
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• We develop a joint optimal control model by considering
the coupled dynamics of the UAV’s longitudinal mobility,
A2G communication and local computation, and then
decompose such a complicated constrained optimization
model into a tractable one.

• We theoretically derive and validate a closed-form and
mobility-dependent formulation for the optimal trans-
mission power control of the UAV, which is used to
dynamically adapt the computation offloading according
to the UAV’s motion and exogenous application demands.

• Based on the closed-form expression of the optimal
power control, we further propose a gradient projection-
based algorithm to solve the joint optimal control model.
The descent feasibility and convergence of the proposed
algorithm in the closed control constraint domain are
guaranteed by theoretical analysis.

• We have carried out extensive simulation experiments
to validate the effectiveness of the proposed method
and demonstrate its advantage. We compare our method
with other conventional methods based on the aggressive
mobility, aggressive offloading, and local computation
mechanisms, respectively, and show that our method can
outperform the conventional methods in terms of the
global energy efficiency.

The rest of this paper is organized as follows: we review
the related work in Section II and formulate the system model
of the joint optimal control in Section III. In Section IV, we
present a primal decomposition for model transformation and
derive the closed-form solution for a subproblem. In Section
V, a gradient projection-based algorithm is proposed with
the closed-form solution and its convergence is theoretically
analyzed. Section VI conducts the performance evaluation, and
Section VII concludes our paper and outlines the future work.

II. RELATED WORK

UAVs are currently playing significant roles in various
domains due to their highly flexible mobility. As a result,
diverse UAV-based intelligent systems have been attracting
much research attention from both academia and industry.
In particular, UAVs equipped with emerging ICT and control
technologies are envisioned to boost a technological shift from
conventional ground infrastructure-based communication and
networking paradigms to air-ground cooperative paradigms
[1], [2], [5], [9]. For instance, [3] presents a novel architecture
of aerial-ground cooperative vehicular networks in which
multiple UAVs are used to help forward vehicular information
and enhance the vehicular connectivity. [13] develops an anti-
jamming vehicular ad-hoc networks by integrating the relaying
functionality of a UAV.

Specifically, there are many researchers currently focusing
on joint communication and trajectory optimization design
for UAV-based networking systems. In [28], the researchers
have formulated a system throughput maximization model
to optimize the relaying UAV’s transmission power along
with its flying trajectory and proposed an iterative algorithm
based on successive convex optimization technique. In [26],
the researchers also aim at maximizing the sum data rate

of a UAV-based vehicular communication system, for which
the UAV works as an aerial base station and a trajectory
control solution has been designed by resorting to the theory
of reinforcement learning. In [24], the reinforcement learning
theory is also adopted to design the UAV’s trajectory with
the goal of maximizing the expected uplink sum rate of a
UAV-aided cellular network. The work [20] leverages deep
reinforcement learning for energy-efficient control design of
UAVs, which aims at improving the coverage and connectivity
of a UAV-based cellular communication system. In both [29],
[30], the problem of the coverage and deployment optimization
of multiple UAVs has also been studied in terms of energy
efficiency, for which the optimal transport and the block coor-
dinate descent methods are applied, respectively. In [14], [23],
the authors have investigated the issue on energy-efficient UAV
communication and trajectory optimization. In their system
designs, the communication throughput in the sense of energy
efficiency is treated as the optimization objective. Differently,
[14] exploits the sequential convex optimization technique to
solve their joint optimization model, while an iterative algo-
rithm has been proposed based on the alternating directional
method of multipliers (ADMM) in [23]. Besides focusing on
joint communication and trajectory design, many researchers
have also been engaged in developing UAV-oriented secure
communication methods by jointly considering UAV commu-
nication and mobility control such as [25], [31]. From these
aforementioned studies [14], [20], [23]–[26], [28]–[31], it can
be summarized that many significant and novel paradigms
have been designed and well validated from the perspective
of joint UAV communication and mobility optimization. Nev-
ertheless, the decision-making modeling and optimization of
mobile edge computing in air-ground cooperative scenarios
has been ignored in these works, while the computation-related
energy consumption can actually affect the overall energy
efficiency of UAVs.

As MEC is widely considered as a promising technology for
tackling the challenge arising from computation/data-intensive
applications in smart but resource-hungry mobile devices,
there are also many research efforts that have been made to
combine MEC with UAV-based systems. For instance, [27]
targets maximizing the computation rate of a UAV-enabled
wireless-powered MEC system, which proposes a two-stage
and a three-stage algorithms for computation offloading of
ground end-users. In such a situation, a UAV with constant-
velocity motion is used as computing resource providers to
serve ground end-users. In [4], UAVs are expected to be
integrated with both ground and space networking systems
to form a space-air-ground integrated network, and a joint
resource allocation and task scheduling method is proposed
for UAV edge servers. In their scenarios, the mobility impacts
of the UAVs have been neglected to reduce the modeling
complexity. Additionally, some other works such as [15]–[19],
[21], [22], [32], [33] differentiate their studies from the above
ones [4], [27] by introducing the idea of joint computation
offloading and trajectory optimization. Specifically, in [15],
a UAV is working as a cloudlet, and its trajectory and
bit allocation are jointly optimized by exploiting successive
convex approximation so as to support computation offloading
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from ground mobile end-users. Nonetheless, the goal of their
system design is to minimize the overall energy consumption
of all the ground end-users instead of the energy cost of
the UAV. Similarly, in [16], the authors have studied the
problem of joint ground users’ computation offloading and
a UAV server’s trajectory design, and they proposed a penalty
algorithm based on dual decomposition to handle the non-
convexity of the system model. The optimization objective is
to minimize the sum of the maximum latency of the overall
ground end-users. In [18], the authors aim to optimize the
average weighted energy consumption of both ground end-
users and a UAV by jointly considering the ground end-
users’ computation offloading, the UAV’s trajectory scheduling
and resource allocation. In their work, a stochastic solution
is presented by a Lyapunov-based queueing analysis and a
decomposition-based algorithm design. In [19], a successive
convex approximation-based algorithm has been employed to
minimize the energy consumption of a UAV, in which the
terminal CPU frequencies, the offloading data amount, the
transmit power of ground end-users and the UAV’s trajectory
are jointly considered and optimized. Although the system
model of [19] has taken into account the computation and
mobility-related energy consumption, it does not aim to con-
trol or optimize the transmission power, and the initial or
terminal position and velocity of the UAV are treated as free
design variables to reduce the complexity in its trajectory
optimization. In reality, the initial or terminal state of a UAV
is usually restricted, i.e., the UAV is expected to start at
a specified initial position with a given velocity and end
at a targeted state while the flying trajectory is optimized,
especially when it is assigned with a flight mission. In [21], a
successive convex approximation approach combined with the
Dinkelbach’s fractional programming algorithm has also been
adopted to deal with the problem of jointly optimizing the
UAV trajectory, the ground user’s transmit power, and compu-
tation load allocation. In [22], the UAV’s trajectory is the only
design factor and a mixed-integer non-convex model has been
formulated to maximize the sum rate of edge users served by
the UAV. In [33], the authors jointly optimize the bandwidth
allocation, the computation resource, and the UAV’s trajectory.
The researchers proposed a three-step optimization scheme to
address the modeling complexity [22], in which they first fix
the UAV’s trajectory and the allocated bandwidth to schedule
the computation resource, then optimize the bandwidth allo-
cation by fixing the obtained computation resource allocation
in the second step, and finally design the UAV’s trajectory.
However, the overall solution obtained by the three-step design
may not be optimal in terms of global optimality, since the
inherent coupling effects in their original model have not been
incorporated the design steps. Besides those works mentioned
above, successive convex approximation-based methods have
been widely adopted to tackle the joint flight trajectory and
wireless caching optimization issues, which, for instance,
can be found in [17], [32]. Nevertheless, even though the
successive convex approximation technique is powerful to
deal with the modeling non-convexity, it may fail to satisfy
the solution feasibility during iterations due to the potential
existence of a gap between the approximated and the actual
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Fig. 1. An exemplary application scenario of an air-ground cooperative
network where a cruising UAV cooperates with a ground RSU (an edge-
computing server with a wireless interface) to process the real-time aerial
sensing data via A2G computation offloading. The UAV is enabled to
maximize its overall energy efficiency by joint optimization of mobility,
communication and computation related control variables.

objective or constraint equations.
In this paper, we differentiate our contributions from these

aforementioned works by jointly modeling UAV’s longitu-
dinal mobility, A2G wireless communication and onboard
computation, and by proposing a novel joint optimization
design based on primal decomposition and gradient projection
mechanisms. To be specific, unlike the aforementioned works,
we treat a UAV as a resource-hungry requester instead of
a resource-rich server, and both the longitudinal acceleration
and the transmission power of the UAV are design variables.
The trajectory of the UAV is not directly optimized in our
work. Instead, the energy-efficient trajectory is obtained by the
UAV’s kinematics that is driven by the optimal acceleration
control signal. The initial and terminal constraints are also
considered in our model. Besides, the coupling effects in the
UAV’s mobility, communication and computation are explic-
itly handled, and we can derive a closed-form and mobility
information-dependent optimal power control. Based on the
closed-form power control, we further propose a gradient
projection method to solve the primary problem, the iterative
feasibility and convergence of which are theoretically proven
and well guaranteed.

III. SYSTEM MODEL

As shown in Fig. 1, we consider a general A2G computation
offloading scenario where a UAV with limited capacities of
communication, computing and mobility has to offload a part
of its computation or its whole computation to a ground
infrastructure (e.g., an RSU) for remote execution. In such
a situation, the UAV needs to fly from a given initial position
to a targeted position under a proper speed control strategy.
From a systematic perspective, the mobility of the UAV will
significantly affect the dynamics of the relative geographical
distance between itself and the RSU over time, which will have
a further impact on the A2G communication link performance.
On the other side, the computation offloading, which depends
on the A2G link transmission, will be also influenced by
the UAV mobility. At this point, the mobility, communication
and computing dynamics of the UAV are inherently coupled,



5

TABLE I
LIST OF SYMBOLS

Symbol Definition

t time slot index
N number of time slots
t0 initial time instant
tf terminal time instant
∆τ duration of a time slot
x[t] UAV’s longitudinal position at t
H UAV’s flight height
Y UAV’s lateral position
v[t] UAV’s longitudinal velocity at t
vmin, vmax minimum and maximum longitudinal velocities
a[t] UAV’s motion control variable at t
amin, amax minimum and maximum accelerations
s[t] UAV’s motion state at t
X , V , S position, velocity and motion state constraint sets
Emob[t] mobility-related energy consumption at t
a1, a2 UAV’s propulsion energy consumption parameters
pUAV[t] UAV’s position vector at t
pRSU RSU’s position vector
d[t] relative distance between UAV and RSU at t
pTx[t] UAV’s power control variable at t
pmin, pmax minimum and maximum power levels
ETx[t] communication-related energy consumption at t
ω available bandwidth
α path loss exponent
N0 environmental noise power
a3, a4 A2G channel attenuation factors
r[t] computation offloading rate at t
β CPU effective switched capacitance
C number of CPU cycles for processing 1 bit
fCPU CPU frequency
D[t] arrival rate of computation tasks at t
Ecom[t] computation-related energy consumption at t

hence we aim at developing a joint optimization framework.
For practical implementation, we consider that the continuous
time horizon [t0, tf ] is discretized into N discrete intervals
each with the duration of ∆τ = (tf − t0)/N seconds,
i.e., [t0, tf ] = [t0, t1) ∪ [t1, t2) ∪ · · · ∪ [tN−1, tN ], where
t0 ≥ 0 and tf > t0 denote the initial and the terminal
time instants, respectively. Let t be the time interval index
such that t = 0, 1, · · · , N . In the following subsections, we
formulate different models for the UAV in terms of mobility,
communication and computing.

A. Mobility Modeling

For simplicity but without loss of generality, we consider to
optimize the longitudinal mobility of the targeted UAV, while
assuming that the flight altitude and the lateral position do
not change within [t0, tf ]. Nevertheless, it is remarked here
that the mobility modeling approach in this paper can be
easily extended to multiple dimensions, e.g., the 3-dimensional
coordinate space. Let the flight altitude and the lateral position
of the UAV be H > 0 and Y > 0, respectively, while the time-
varying longitudinal position is denoted by x[t]. Besides, the
longitudinal velocity is denoted by v[t]. With these notations,
we can represent a time-varying mobility state of the UAV
as a column vector s[t] = [x[t], v[t]]

T. We also let the time-
varying velocity control be a[t]. Now, we further propose the
dynamical system using a time-discrete double-integral model

to describe the UAV mobility as follows

s[t+ 1] = As[t] + Ba[t], ∀t, (1)

where A and B are the state matrix and the control matrix,
respectively, which are given as

A ,

[
1 ∆τ
0 1

]
, B ,

[
1
2 (∆τ)2

∆τ

]
. (2)

To model the mobility-related energy consumption of the
UAV, we assume that the UAV is of rotary-wing type as widely
considered in most existing literature. Let Emob[t] denote its
propulsive energy consumption at t. According to [14], [15],
[37], Emob[t] can be approximately modeled by

Emob[t] = a1 ‖v[t]‖3 +
a2

‖v[t]‖

(
1 +
‖a[t]‖2

g2

)
, (3)

where a1 > 0 and a2 > 0 are two positive coefficients related
to the fluid dynamics and aerodynamic layout of the rotary-
wing UAV. g is the constant gravitational acceleration, whose
typical value is 9.8 m/s2.

B. Communication Modeling

Let the position of the UAV be pUAV[t] = [x[t], Y,H]
T and

the specific RSU be pRSU. The relative distance between the
UAV and the RSU can be formulated as follows

d[t] = ‖pUAV[t]− pRSU‖ , ∀t. (4)

To model the physical-layer transmission over the A2G link,
we resort to the data rate formula in the Shannon’s form that
has been widely used in recent studies [13]–[19], [30]. Let the
available bandwidth assigned for this A2G link be ω, the path
loss exponent over this link be α, the average noise power be
N0, and the transmission power of the UAV at t be pTx[t].
When adopting the power control pTx[t], the communication
energy consumption of the UAV at t is

ETx[t] = pTx[t]∆τ. (5)

Additionally, the achievable data rate of the A2G link at t is
then formulated as a logarithmic function of the transmission
power pTx[t] and the relative distance d[t] as follows

r[t] = ω log2

(
1 + a3pTx[t]d−α[t]

)
, (6)

where a3 = a4/N0 and a4 > 0 is an additional scalar factor
used to characterize the attenuation of the A2G link. When
the A2G link is a line-of-sight (LoS) link, a4 can be fixed
at a4 = 1, while a4 ∈ (0, 1) when the link is a non-line-
of-sight (NLoS). Besides, some current works [30], [38], [39]
also suggest that a4 can be specified as the average attenuation
of the A2G link in a stochastic situation, i.e., a4 = pLoS +
ηpNLoS, where pLoS and pNLoS denote the probabilities of the
LoS and the NLoS situations, respectively, and η denotes the
attenuation factor due to the NLoS effect.
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C. Computation Modeling
Regarding the computation offloading of the UAV, we

denote the arrival computation demand in bits at t by D[t],
which is the exogenous factor of the aerial-ground integrated
edge-computing network. Given the offloading data rate, i.e.,
r[t] in (6), the UAV needs to consume certain onboard energy
to process the partial data, q[t] = D[t]− r[t]∆τ . Specifically,
letting the effective switched capacitance of the onboard CPU
be β, the clock frequency of the onboard CPU be fCPU, and
the number of the CPU clock cycles required to process per-
bit input data is C, we can model the computation energy
consumption for processing q[t]-bit input data as follows

Ecom[t] = βCq[t]f2
CPU = βC (D[t]− r[t]∆τ) f2

CPU. (7)

D. Joint Optimization Model
Using the mobility, communication and computing models

developed above, we can further propose the joint optimization
model under a set of state and control bound constraints. To
be specific, let the initial state be s0 = [x0, v0]T, where
x0 is the initial longitudinal position, and v0 is the initial
longitudinal velocity. We further denote the upper bound
of the longitudinal position of the UAV during motion as
xf > x0. Thus, the longitudinal position bound is assumed
to be X , [x0, xf ], while the longitudinal velocity bound is
V , [vmin, vmax] where vmin and vmax are the upper and
the lower bounds on the longitudinal velocity of the UAV,
respectively. Then, we can present the state bound constraint
as s[t] ∈ S , X × V for t = 0, 1, . . . , N − 1. At the terminal
time t = N , we denote the terminal state space as Sf , i.e.,
letting s[N ] ∈ Sf . In addition, we let the allowable minimum
and maximum velocity control be amin and amax, respectively,
and the allowable minimum and maximum power control be
pmin and pmax, respectively. The joint system control at t can
be represented by u[t] = [a[t], pTx[t]]T.

Accordingly, we formulate the global objective of jointly
minimizing the whole energy consumption required by the
communication, computing and mobility of the UAV as

J (s[0];u[0], . . . ,u[N − 1])

= g(s[N ], N) +

N−1∑
t=0

g(s[t],u[t], t),
(8)

where g(s[t],u[t], t) is the cost function of the system in
state s[t] under control u[t] at t, which combines the energy
consumption related to the UAV mobility, communication and
computing, i.e.,

g(s[t],u[t], t) = Emob[t] + ETx[t] + Ecom[t], (9)

while g(s[N ], N) is the terminal cost depending on the ter-
minal state the UAV actually reaches, s[N ]. To model the
terminal cost function, we can set sf = [xf , vf ]T ∈ Sf to
be an expected terminal state for the UAV at t = N , where
vf denotes the expected terminal velocity. Based on this, we
propose an utility function for g(s[N ], N) as follows

g(s[N ], N) =

a1

∥∥∥[xf−x[N ]
∆τ , vf − v[N ]

]∥∥∥3

, s[N ] ∈ Sf ;

Cpenalty, otherwise;
(10)

in which a1 is given as in (3), and Cpenalty is a sufficiently
large penalty factor when the UAV cannot reach the expected
terminal state sf at the end. From (9), it can be found that
0 ≤ g(s[N ], N) ≤ Cpenalty. When s[N ] = sf , the terminal
cost g(s[N ], N) is zero, while the terminal cost g(s[N ], N) is
positive when s[N ] deviates sf . The closer the terminal state
s[N ] is to sf , the smaller the terminal cost g(s[N ], N) is.

To optimize the overall energy efficiency, we further propose
the following joint optimization modelM1 by treating a[t] and
pTx[t] as the control variables

min
{u[t],t=0,··· ,N−1}

: J(s[0];u[0], · · · ,u[N − 1])

s.t.



s[t+ 1] = As[t] + Ba[t], t = 0, . . . , N − 1;

s[0] = s0;

s[t] ∈ S, t = 0, . . . , N − 1;

a[t] ∈ [vmin, vmax] , t = 0, . . . , N − 1;

pTx[t] ∈ [pmin, pmax] , t = 0, . . . , N − 1.

(11)

From (11), it can be seen that M1 is a complex dynamical
optimal control problem under a set of bound constraints.
Indeed, it is difficult or even impossible to solve M1 directly
by using traditional optimization algorithms such as the New-
ton’s methods. In the following sections, we would like to
develop a novel approach for solving M1 by combining a
primal decomposition method and a gradient projection-based
method.

IV. PRIMAL DECOMPOSITION METHOD WITH CONVEX
OPTIMIZATION

In the primal model M1, we can find that the velocity
control a[t] is directly coupled with the communication energy
consumption, Ecom[t], with respect to the transmit power
control pTx[t] via the distance-dependent transmission data
rate, i.e., r[t] as in (6). This motivates us to propose a primal
decomposition transformation to convert M1 into another
equivalent form that is mathematically tractable.

A. Primal Decomposition

Specifically, at each t we fix the distance between the UAV
and the RSU, d[t], which depends on the current system
state s[t], and thus we are allowed to separately optimize
the objective function with respect pTx[t]. At this point, we
formulate the following model M2 given the fixed d[t] at t
based on (5), (6) and (7)

h(d[t]) = min
pTx[t]

: pTx[t]∆τ + βC(D[t]− r[t]∆τ)f2
CPU

s.t.

{
r[t] = ω log2

(
1 + a3pTx[t]d−α[t]

)
pTx[t] ∈ [pmin, pmax],

(12)

in which h(d[t]) denotes the optimal value of M2.
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Following M2, the primal model M1 is then reformulated
as follows, which is denoted by M3

min
{a[t],t=0,··· ,N−1}

: g(s[N ], N) +

N−1∑
t=0

[Emob[t] + h(d[t])]

s.t.


s[t+ 1] = As[t] + Ba[t], t = 0, . . . , N − 1;

s[0] = s0;

s[t] ∈ S, t = 0, . . . , N − 1;

a[t] ∈ [vmin, vmax] , t = 0, . . . , N − 1.
(13)

As demonstrated above, using the decomposition structure,
we can solve the subproblem M2 with respect to only a
decision variable pTx[t], and then further address the primal
problem with respect to a[t]. The subproblem M2 and the
primal problem M3 actually share the common information
incorporated in d[t].

B. Convex Optimization for Subproblem M2

To deal with M2, we first derive the following results by
proving its convexity.

Corollary 1: The subproblemM2 guarantees that there only
exists an unique global optimum point in [pmin, pmax].

Proof: For simplicity, we denote the objective function of
M2 by F (pTx[t]) = pTx[t]∆τ+βC(D[t]−r[t]∆τ)f2

CPU. The
second-order derivative of F (pTx[t]) with respect to F (pTx[t])
is expressed as

d2F (pTx[t])

d(pTx[t])2
=

βCf2
CPU∆τωa2

3d
−2α[t]

ln 2 (1 + a3pTx[t]d−α[t])
2 . (14)

Recalling d[t] > 0, we can have d2F (pTx[t])
d(pTx[t])2 > 0. The result

indicates that F (pTx[t]) is a strictly convex function with
respect to pTx[t]. In addition, M2 is bounded by the closed
domain [pmin, pmax]. Therefore, it well guarantees the strict
convexity, which proves the corollary.

Following Corollary 1, we define the Lagrangian function
associated with M2 as follows

L(pTx[t], λ1, λ2) =F (pTx[t])− λ1 (pTx[t]− pmin)

− λ2 (pmax − pTx[t]) ,
(15)

where λ1 ≥ 0 and λ2 ≥ 0 are two nonnegative Lagrangian
multipliers. Based on the first-order necessary conditions (i.e.,
the Karush-Kuhn-Tucker (KKT) conditions), we obtain the
following result:

Corollary 2: For M2, suppose that popt
Tx [t] is its unique

global optimal solution. The Lagrangian multipliers λ1 and
λ2 can be identical to zero simultaneously if pmin < popt

Tx [t] <
pmax; Otherwise, we only have λ2 = 0 if popt

Tx [t] = pmin, and
λ1 = 0 if popt

Tx [t] = pmax.
Proof: According to Corollary 1, the subproblem M2

guarantees an unique global point popt
Tx [t]. It satisfies the KKT

conditions as follows
∇L(popt

Tx [t], λ1, λ2) = ∇F (popt
Tx [t])− λ1 + λ2 = 0;

λ1

(
popt

Tx [t]− pmin

)
= 0;

λ2

(
pmax − popt

Tx [t]
)

= 0;

λ1 ≥ 0, λ2 ≥ 0, popt
Tx [t] ∈ [pmin, pmax].

(16)

In (16), when the optimal point is an interior point, i.e.,
popt

Tx [t] ∈ (pmin, pmax), the complementary slackness (i.e., the
second and the third equations) and the non-negativity of the
Lagrangian multipliers result in λ1 = λ2 = 0. Otherwise,
when popt

Tx [t] = pmin, the third complementary slackness
leads to λ2 = 0, while, when popt

Tx [t] = pmax, the second
complementary slackness leads to λ1 = 0.

From Corollary 2, it can be seen that when the optimal
point of M2 is a boundary point of [pmin, pmax], these
two Lagrangian multipliers, λ1 and λ2, cannot be positive
simultaneously. That is, it always holds that λ1×λ2 = 0. Based
on Corollary 2, we derive the closed-form optimal solution for
M2 as given in the following theorem.

Theorem 1: For M2, define p∗Tx[t], λ∗1, and λ∗2 as follows

p∗Tx[t] =
βCf2

CPUω

ln 2
− 1

a3d−α[t]
;

λ∗1 = ∆τ − βCf2
CPU∆τωa3d

−α[t]

ln 2 (1 + a3pmind−α[t])
;

λ∗2 =
βCf2

CPU∆τωa3d
−α[t]

ln 2 (1 + a3pmaxd−α[t])
−∆τ.

(17)

The optimal solution of M2, popt
Tx [t], and the Lagrangian

multipliers, λ1 and λ2, must satisfy one of the following three
situations:

(i) If pmin ≤ p∗Tx[t] ≤ pmax, the optimal solution is
popt

Tx [t] = p∗Tx[t]. The Lagrangian multipliers satisfy λ1 =
λ2 = 0.

(ii) If λ∗1 > 0, the optimal solution is popt
Tx [t] = pmin and the

Lagrangian multipliers are λ1 = λ∗1 and λ2 = 0, respectively.
(iii) If λ∗2 > 0, the optimal solution is popt

Tx [t] = pmax and the
Lagrangian multipliers are λ1 = 0 and λ2 = λ∗2, respectively.

Proof: According to Corollary 2, we can only have three
situations for the values of λ1 and λ2, i.e., (i) λ1 = λ2 = 0,
(ii) λ1 > λ2 = 0, and (iii) 0 = λ1 < λ2. In the first situation,
we can solve the gradient condition in (16), i.e.,

∆τ − βCf2
CPU∆τωa3d

−α[t]

ln 2 (1 + a3pTx[t]d−α[t])
− λ1 + λ2 = 0, (18)

with λ1 = λ2 = 0, which results in p∗Tx[t] as in (17). Thus, the
optimal solution is popt

Tx [t] = p∗Tx[t] if p∗Tx[t] ∈ [pmin, pmax].
In the second situation, λ1 > 0 indicates that the optimal

solution must be popt
Tx [t] = pmin. Combining this result with

λ2 = 0, we can solve λ1 from the gradient condition, i.e.,

∆τ − βCf2
CPU∆τωa3d

−α[t]

ln 2 (1 + a3pmind−α[t])
− λ1 = 0, (19)

which results in λ∗1 as in (17). Thus, we can set λ1 = λ∗1 if
λ∗1 > 0.

Following the same logic, in the third situation, λ2 > 0
indicates that the optimal solution must be popt

Tx [t] = pmax.
Using λ1 = 0, we can also derive λ2 from the gradient
condition, i.e.,

∆τ − βCf2
CPU∆τωa3d

−α[t]

ln 2 (1 + a3pmaxd−α[t])
+ λ2 = 0, (20)

which results in λ∗2 as in (17). Hence, we can set λ2 = λ∗2 if
λ∗2 > 0.
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TABLE II
SIMULATION PARAMETERS

Parameter Value

∆τ , g 50 ms, 9.8 m/s2

a1, a2 0.0037, 5.0206
vmin, vmax 1 m/s, 30 m/s
amin, amax −5 m/s2, 5 m/s2

α, ω 3, 10 MHz
a4, N0 1.0, −50 dBm
pmin, pmax −50 dBm, 30 dBm
β 10−28

C 1550.7
fCPU 800 MHz
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-40
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Fig. 2. Optimal transmission power against different relative distances
between the UAV and the RSU.

Recall that M2 guarantees the strict convexity. It has only
an unique optimal point that must satisfy one of the three
situations above. At this point, the theorem is proven.

Based on Theorem 1, we can further derive the closed-form
expression of the optimal objective function h(d[t]) in three
cases as follows:

(i) When pmin ≤ p∗Tx[t] ≤ pmax holds true, the optimal
energy consumption of communication and computing is

h(d[t]) =

(
βCf2

CPUω

ln 2
− 1

a3d−α[t]

)
∆τ + βCf2

CPUD[t]

− βCf2
CPUω log2

(
a3d
−α[t]βCf2

CPUω

ln 2

)
∆τ.

(21)

(ii) When λ∗1 > 0 holds true, the optimal energy consump-
tion of communication and computing is

h(d[t]) =pmin∆τ + βCf2
CPUD[t]

− βCf2
CPUω log2

(
1 + a3pmind

−α[t]
)

∆τ.
(22)

(ii) When λ∗2 > 0 holds true, the optimal energy consump-
tion of communication and computing is

h(d[t]) =pmax∆τ + βCf2
CPUD[t]

− βCf2
CPUω log2

(
1 + a3pmaxd

−α[t]
)

∆τ.
(23)

To verify the proposed theorem above, we conduct a number
of experiments and then compare the theoretical results ob-
tained by the closed-form model with the numerical solution-
based results. To be specific, a UAV is simulated to be cruising

over a road traffic network and needs to process its collected
computation tasks on demand (e.g., real-time traffic sensing
data) via the air-ground cooperation between itself and a RSU
as illustrated in Figure. 1. According to the existing literature
[14], [15], [37], [40], the simulation parameters related to the
mobility, communication and computation models of the UAV
are given in Table II. In addition, we fix the flight height
and the latitude of the UAV at 50 m and 10 m, respectively,
while the altitude and latitude positions of the RSU are
set to zero. The longitudinal position of the RSU is set to
x0+xf

2 , i.e., it is located at the middle position of the UAV’s
trajectory. The initial and the terminal velocities of the UAV
are set to v0 = vf = 1 m/s, the flight duration is set to
tf − t0 = 30 seconds, and the computation demand is fixed
at D[t] = 2 × 106 bits for all t. It is noted that the UAV is
set to move with the constant velocity since we do not jointly
optimize its mobility here. The joint optimization method will
be validated in the Performance Evaluation section.

We calculate the optimal transmission power against the
varying relative distance between the UAV and the RSU, d[t].
The results are illustrated in Fig. 2. In Fig. 3, the optimal
energy consumption in offloading and local computing is also
shown along with varying d[t]. From Fig. 2, it is seen that
when the relative distance d[t] is lower than about 200 m, the
UAV can increase its transmission power up to the maximum
level in order to improve the offload rate and get better
benefit from remote computing. When d[t] is larger than about
500 m and the UAV is flying away from the RSU, i.e., d[t]
arising, the UAV reduces its transmission power down to
the minimum level and processes the computation demand
mainly by local computing. This means that when the relative
distance becomes larger, the UAV cannot get much benefit
from computation offloading, and thus it is expected to adopt
the local computation rather than the remote computation.
Fig. 3 shows that increasing the relative distance will in-
crease the overall energy cost of onboard communication and
computation. Besides, from both the figures, it can be seen
that the closed-form results are the same as those of the
numerical solution, which confirms the proposed theorem. In
Fig. 4, we evaluate the optimal ratio of the data volume to be
offloaded to the RSU over the total computation demand under
different situations. Fig. 4 also shows that the UAV reduces
the offloaded data volume by reducing the transmission power
when it is far away from the RSU and the optimal offloading
ratio decreases with increasing the total computation demand.
The result implies that the UAV cannot always save its energy
by computation offloading. The optimal offloading strategy
depends on the computation demand and the relative distance.

V. NONLINEAR PROGRAMMING WITH GRADIENT
PROJECTION METHOD

A. Constrained Nonlinear Optimization Formulation

Following Section IV, we further propose a nonlinear pro-
gramming method based on the gradient projection mechanism
to deal with the complexity of the primal problem M3. For
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Fig. 3. Optimal communication and computation energy consumption against
different relative distances between the UAV and the RSU.

Fig. 4. Optimal offloading ratio against different computation demands and
relative distances.

this goal, we re-arrange the system state equations as follows
according to (1)

s[t] = Ats[0] +

t−1∑
l=0

At−1−lBa[l], t = 1, . . . , N. (24)

Based on (24), we can have for t = 1, . . . , N
x[t] = x[0] + t∆τv[0] +

t−1∑
l=0

[
(t− 1− l)∆2τ + 1

2∆2τ
]
a[l];

v[t] = v[0] + ∆τ
t−1∑
l=0

a[l].

(25)
Let the sequence of the velocity controls over time be
a = [a[0], a[1], . . . , a[N − 1]]T, the sequence of the longi-
tudinal positions over time be x = [x[1], x[2], . . . , x[N ]]T,
and the sequence of the longitudinal velocities over time be
v = [v[1], v[2], . . . , v[N ]]T. We can express (25) into a more
compact form {

x = bx + Axa;

v = bv + Ava,
(26)

where bx and bv are two N×1 column vectors given as bx =
col{x[0] + ∆τv[0], x[0] + 2∆τv[0], . . . , x[0] +N∆τv[0]} and
bv = col{v[0], . . . , v[0]}, respectively. Ax and Av are N×N
lower triangular matrices, the m-th row and n-th column of
which are [Ax]m,n =

[
(m− n)∆2τ + 1

2∆2τ
]
× Im≥n and

[Av]m,n = ∆τ × Im≥n, respectively. Here, Im≥n is defined

as an indicator function which is equal to 1 if and only if
m ≥ n, and otherwise 0.

Besides, we represent the lower and the upper bounds
of the longitudinal position as xmin = col{xmin, . . . , xmin}
and xmax = col{xmax, . . . , xmax}, the lower and the up-
per velocity bounds as vmin = col{vmin, . . . , vmin} and
vmax = col{vmax, . . . , vmax}. The lower and the upper
bounds of the velocity control sequence are given as amin ,
col{amin, . . . , amin} and amax , col{amax, . . . , amax}, re-
spectively. Thus, the bound constraints of the system states
and the controls, i.e., s[t] ∈ S and a[t] ∈ [amin, amax] for
t = 1, . . . , N , can be represented as

Ca ≥ b, (27)

where C , col{Ax,−Ax,Av,−Av, IN×N ,−IN×N} and
the constant column vector is b , col{xmin − bx,bx −
xmax,vmin − bv,bv − vmax,amin,−amax}.

To re-arrange the terminal constraints of the system state,
we define a 2×N matrix E as

E ,

[
(N − 1)∆2τ + 1

2∆2τ, · · · , 1
2∆2τ

∆τ, · · · , ∆τ

]
(28)

and a column vector e as

e ,

[
xf − x[0]−N∆τv[0]

vf − v[0]

]
. (29)

Since the UAV is expected to reach the specified terminal state
sf , i.e., s[t] = sf for t = N , we can formulate the terminal
equality constraint as follows by using (28) and (29)

Ea = e. (30)

To proceed, the primal problemM3 boils down to the follow-
ing constrained optimization model, denoted by M4,

min
a

: W (a) =

N−1∑
t=0

[Emob[t] + h(d[t])]

s.t.

{
Ca ≥ b;

Ea = e.

(31)

B. Gradient Projection-based Method

Motivated by the linear inequality and equality constraints
in the model M4, we propose a gradient projection-based
iterative framework to solve M4. The key idea is that we
are allowed to search the optimal point in the direction of the
negative gradient of the objective function W (a) starting at
a feasible point a. When the starting point for iterations is
located at the bounds of the feasible region, we can project
the negative gradient of the objective function into the tangent
subspace of those active constraints with respect to the starting
point. Thus, we can always guarantee the feasibility of the
search direction.

Let ak be a feasible point at iteration k, i.e., satisfying
Aak ≥ b and Eak = e in M4. To construct the projection
operator, we first construct a row full rank matrix M, which
is composed of those row vectors that are associated with
the active constraints. Suppose for ak C1ak = b1 and
C2ak > b2, where C1 and C2 are two sub-blocks of C, and
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b1 and b2 are two sub-blocks of b, i.e., C = col{C1,C2} and
b = col{b1,b2}. We can let M = col{C1,E}. The projection
matrix that can be used to project any N × 1 column vector
into the null space of M is

P = IN×N −MT
(
MMT

)−1
M, (32)

where IN×N is an N × N identity matrix. For P, we have
the following results:

Lemma 1: It always holds true that P = PT, P = P2 and
P is a semidefinite matrix.

Proof: According to the formulation of P (32), it is easy
to verify P = PT and P = P2. For any column vector
y ∈ RN×1, we can also observe yTPy = yTPPy =
(Py)T(Py) = ‖Py‖2 ≥ 0. This indicates that P is a
semidefinite matrix.

Let the gradient of the objective function W (a) with respect
to a be ∇aW (a). When P∇aW (ak) 6= 0 holds true at the
feasible point ak, we show the projection feasibility of the neg-
ative gradient into the null space of M, Zk = −P∇aW (ak),
in the following theorem.

Theorem 2: Suppose that ak is a feasible point of the model
M4 and P is given by (32). If P∇aW (ak) 6= 0 holds true,
Zk = −P∇aW (ak) must be a descent feasible direction.

Proof: Based on Lemma 1, we can see

(∇aW (ak))
T
Zk = − (∇aW (ak))

T
P∇aW (ak)

= −‖P∇aW (ak)‖2 ≤ 0,
(33)

which indicates that Zk is a descent direction for iterations.
Besides, it can also be seen that

MZk = −MP∇aW (ak)

= −M
(
IN×N −MT

(
MMT

)−1
M
)
∇aW (ak)

= (−M + M)∇aW (ak) = 0,

(34)

which implies that C1Zk = 0 and EZk = 0. According to
the condition, C2ak > b2, there must exist a positive real
number λmax > 0, such that for all λ ∈ [0, λmax],

C2 (ak + λZk) ≥ b2. (35)

Since C1Zk = 0 and C1ak = b1, we also get

C1 (ak + λZk) = b1. (36)

Thus, combining (35) and (36) can result in

C (ak + λZk) ≥ b. (37)

According to EZk = 0 and Eak = e, the following equation
also holds true

E (ak + λZk) = e. (38)

Combining (37) and (38) can prove the feasibility of the
direction Zk.

In addition, based on (35) and recalling b2−C2ak < 0, we
further derive the closed-form expression for the upper bound
of the step size λ, λmax, as follows

λmax =

{
min

{
[b2−C2ak]l

[C2Zk]l
: [C2Zk]l < 0

}
,C2Zk � 0;

+∞,C2Zk ≥ 0.
(39)

In (39), C2Zk � 0 implies that there exists at least one
negative component in the vector C2Zk. In this case, the upper
bound of λ is finite, while λ can be any positive real number
when all the components in C2Zk are positive. Accordingly,
we can construct a new iterative point, ak+1, as follows

ak+1 = ak + λZk (40)

for λ ∈ [0, λmax] and Zk 6= 0.
On the other hand, in such a situation where P∇aW (ak) =

0, Theorem 2 may not be valid. At this point, we need
to construct another projection matrix rather than using P
directly. To be specific, we let Q be

Q =
(
MMT

)−1
M∇aW (ak) =

[
w1

w2

]
, (41)

where w1 and w2 are two sub-blocks of W, whose row
indexes correspond to those of C1 and E, respectively. Then,
we obtain the following result.

Theorem 3: Suppose that ak is a feasible point of the model
M4 and P is given by (32). If P∇aW (ak) = 0 holds true,
it follows that

(i) if w1 ≤ 0, ak must be a local optimal point (a KKT
point) for the model M4;

(ii) if there exist negative components in w1, a new
coefficient matrix Ĉ1 can be constructed by removing the
rows whose indexes correspond to those with the negative
components in w1, and a new projection matrix P̂ can be
defined as

P̂ = IN×N − M̂T
(
M̂M̂T

)−1

M̂, (42)

where M̂ , col{Ĉ1,E}. Let Ẑk = −P̂∇aW (ak). Ẑk must
be a descent feasible direction.

Proof: In the first situation (i), since P∇aW (ak) = 0,
we can have

0 = P∇aW (ak) =
[
IN×N −MT

(
MMT

)−1
M
]
∇aW (ak)

= ∇aW (ak)−MT
(
MMT

)−1
M∇aW (ak)

= ∇aW (ak)−CT
1 w1 −ETw2.

(43)

According to w1 ≥ 0, (43) is in coincidence with the KKT
conditions in which w1 can be treated as the nonnegative
Lagrangian multipliers corresponding to the inequality con-
straints. Thus, ak is a KKT point.

In the second situation (ii), let [w1]l < 0 be one of the
negative component in w1. We first prove by contradiction that
P̂∇aW (ak) 6= 0 must hold true. Suppose P̂∇aW (ak) = 0.
We can see

0 = P̂∇aW (ak) =

[
IN×N − M̂T

(
M̂M̂T

)−1

M̂

]
∇aW (ak)

= ∇aW (ak)− M̂TQ̂,
(44)

where Q̂ is defined as Q̂ =
(
M̂M̂T

)−1

M̂∇aW (ak). Let the
l-th row of C1 be [C1]l. Since

CT
1 w1 + ETw2 = ĈT

1 ŵ1 + [w1]l [C1]Tl + ETw2

= M̂TQ + [w1]l [C1]Tl ,
(45)
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where ŵ1 is the vector composed of the components in
w1 except [w1]l. Q is defined as Q , col{ŵ1,w2}. Now,
substituting (45) into (43) can yield

0 = ∇aW (ak)− M̂TQ− [w1]l [C1]Tl . (46)

Furthermore, subtracting (46) from (44) can obtain

0 = M̂T
(
Q− Q̂

)
+ [w1]l [C1]Tl . (47)

Notice that the right-side term of (47) is indeed a linear com-
bination of the rows in the matrix M. Since the combination
coefficient [w1]l 6= 0, (47) indicates that the row vectors of
M are linearly dependent. This conclusion is contradictory to
the fact that M is full row rank. At this point, a contradic-
tion arises under the hypothesis of P̂∇aW (ak) = 0. It is
confirmed that P̂∇aW (ak) 6= 0.

Since P̂∇aW (ak) 6= 0, it can be seen that

∇aW (ak)TẐk = −∇aW (ak)TP̂∇aW (ak)

= −
∥∥∥P̂∇aW (ak)

∥∥∥2

≤ 0,
(48)

which means that Ẑk is a descent direction. Besides, we can
also observe

M̂Ẑk = −M̂P̂∇aW (ak)

= −M̂
[
IN×N − M̂T

(
M̂M̂T

)−1

M̂

]
∇aW (ak)

= −
[
M̂− M̂

]
∇aW (ak) = 0.

(49)

As M̂ = col{Ĉ1,E}, (49) indicates

Ĉ1Ẑk = 0, EẐk = 0. (50)

Multiplying both sides of (46) with [C1]lP̂ can yield

0 = [C1]lP̂∇aW (ak)− [C1]lP̂M̂TQ− [w1]l [C1]lP̂[C1]Tl .
(51)

Recalling P̂M̂T = 0 and Ẑk = −P̂∇aW (ak), we further get

0 = [C1]lẐk + [w1]l [C1]lP̂[C1]Tl . (52)

Since P̂ is semidefinite and [w1]l < 0, it can be found from
(52) that

[C1]lẐk = − [w1]l [C1]lP̂[C1]Tl ≥ 0. (53)

Combining (53) and (50) results in

C1Ẑk ≥ 0, EẐk = 0. (54)

Therefore, following the same logic in Theorem 2 and (55),
we can also prove that Ẑk guarantees the feasibility of the
descent direction.

Algorithm 1 summaries the proposed gradient projection
based iterative algorithm based on Theorems 2 and 3. In
Algorithm 1, we denote the maximum number of the iterations
by Kmax and the tolerant numerical error by ε ∈ (0, 1).

Algorithm 1: Gradient Projection-based Algorithm
/* Initialization */

1 Select a feasible initial point a1 and set k = 1.
/* Do iterations. */

2 while k ≤ Kmax do
/* Decompose the coefficient matrix. */

3 Decompose C into C = col{C1,C2} and b into
b = col{b1,b2} such that C1ak = b1 and
C2ak > b2.

4 while TRUE do
/* Construct the active matrix. */

5 Construct M = col{C1,E}.
/* Construct the projection matrix. */

6 Construct P = IN×N −MT(MMT)−1M.
/* Construct the search direction. */

7 Set Zk = −P∇aW (ak).
/* Check and do modification. */

8 if ‖Zk‖∞ ≤ ε then
9 Construct Q = (MMT)−1M∇aW (ak).

10 Decompose Q into Q = col{w1,w2}.
11 if w1 ≥ 0 then

/* Obtain the KKT point. */

12 Break the inner and outer While-loops.
13 Return ak.

14 else
/* Modify the sub-block C1. */

15 Select [w1]l < 0.
16 Remove [C1]l from C1.

17 else
18 Break the inner While-loop.

19 Determine the upper bound of the step size λmax.
20 Determine an optimal step size λopt by

λopt = argmin
λ∈[0,λmax]

W (ak + λZk). (55)

21 Set ak+1 = ak + λoptZk.
22 Update k = k + 1.

23 Return ak.

C. Complexity Analysis

From Algorithm 1, it can be observed that the compu-
tation complexity of the proposed gradient projection-based
method is dominated by two parts, the construction of a
feasible projection matrix P and the line search for obtain-
ing an optimal descent step size λopt. For the program of
constructing the projection matrix, the program might need
to do the matrix modification several times as in the IF-
THEN block in the worst-case situation. The major com-
putational complexity of the projection matrix modification
lies in calculating the matrix Q. Let M be the row num-
ber of M. We can have M ≤ (6N + 2) since M =
col{C1,E} where C1 is a sub-block of C ∈ R6N×N and
E ∈ E2×N . Note that the computational complexity of the
matrix transpose MT, the matrix inversion (MMT)−1, the
matrix-by-matrix multiplications (MMT) and (MMT)−1M,
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the matrix-by-vector multiplication (MMT)−1M∇aW (ak)
is O(MN), O(M3), O(2M2N), and O(MN), respectively.
Thus, the projection matrix modification has the complexity of
O
(
MN +M3 + 2M2N +MN

)
in the worst-case situation.

Similarly, the computational complexity in calculating P is
in the order of O

(
2MN +M3 + 2M2N +N2M +N2

)
.

Hence, in the worst-case situation where it needs to do the
matrix modification up to M times in the inner WHILE-DO
loop of Algorithm 1, the construction of a feasible projection
matrix has the complexity of O(M(2MN +M3 + 2M2N +
N2M + N2)). Besides, for the line search in solving the
optimal step size λopt, the complexity to achieve ε-optimality
is in the order of O(ε−2) by using Newton’s first-order method
[41]. With Kmax iterations in the outer WHILE-DO loop of
Algorithm 1, the overall worst-case computational complexity
of the proposed method is approximately in the order of
O(KmaxM(2MN+M3+2M2N+N2M+N2)+Kmaxε

−2).
At this point, the polynomial complexity can be efficiently
realized by the proposed method. It is noticed that the worst-
case computational complexity above is an upper bound of the
actual complexity of the proposed method, and the sparsity of
the active matrix M and some others can considerably reduce
the computational complexity in actual application situations.

Additionally, it is remarked that the proposed method simply
needs to allocate the memory for storing the decision vector
ak ∈ RN×1, the constraint coefficient matrices C ∈ R6N×N

and E ∈ R2×N , the column vector b ∈ R6N×1, the gradient
vector ∇aW (ak) ∈ RN×1, the active and projection matrices
M ∈ RM×N and P ∈ RN×N , and some others like Zk ∈
RN×1, Q ∈ RM×1, IN×N . The preallocated space for all
the decisions and parameters involved in our algorithm will
not change during iterations. According to the sizes of the
above decisions and parameters depending on M and N , the
space complexity is in the order of O(11N + 8N2 +MN +
M). Besides, all the constant-size parameters, including e,
λopt, λmax, k, Kmax, have the space complexity of O(1). In
actual computer programming, the preallocated space of the
matrix-type or vector-type parameters can be locally reused
or shared by using memory management techniques, e.g., the
well-known Copy-on-Write (COW) technique, such that the
space complexity can be practically reduced.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
joint optimization method for a UAV in an A2G-based com-
putation offloading scenario, where the UAV is assumed to be
cruising over a road traffic network and cooperate with a RSU
(i.e., a network edge) to process computation-intensive tasks
like real-time aerial sensing data. The UAV needs to jointly
optimize its communication power, computation offloading
rate, and longitudinal acceleration to maximize its energy
efficiency meanwhile satisfying cruising motion constraints. In
the simulation scenario, the convergence performance of the
proposed algorithm is first demonstrated and then its global
performance is compared with several other methods. The ba-
sic simulation parameters on the UAV’s kinematics, physical-
layer communication, and local computation are given in Table
II and also adopted here to conduct the experiments.
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Fig. 5. The convergence of the proposed method.

A. Convergence Analysis

To validate the convergence of the proposed method, we
consider that a rotary-wing UAV flies along a longitudinal
trajectory with specified initial and terminal velocities and
positions. The flight duration is set to 30 seconds, and the com-
putation demand is set to D[t] = 2×106 bits for all t. Besides,
we restrict the terminal velocity of the UAV to v[tf ] = 1 (m/s),
while varying its initial velocity v[0] to simulate different situ-
ations, i.e., setting v[0] ∈ {1, 5, 10, 15} (m/s). The convergence
performance of the proposed joint optimization method with
different initial velocities is illustrated in Fig. 5. As can be
seen, the steady value of the global objective function that
the algorithm converges to is different from each other since
the initial velocity is varied, and more mobility-related energy
is consumed with a larger initial velocity. Additionally, the
proposed method is shown to converge effectively after a few
iterations, even when the initial velocity is set to different
situations. That is, the first-order optimality for convergence
can be satisfied within only 10 iterations in all the situations.

In Fig. 6, the optimal longitudinal trajectory and velocity
of the UAV during flying are illustrated. From both Fig. 6.(a)
and Fig. 6.(b), it can be seen that the UAV first accelerates up
to an optimal cruising velocity and then flies with the constant
velocity. When it approaches the terminal position, the UAV
decelerates to the specified terminal velocity. In addition, the
optimal cruising velocity of the UAV with a different initial
velocity is also different. In Fig. 7, we show the optimal
transmission power for computation offloading over the A2G
wireless link and the optimal velocity control during flying.
It can be observed that when the relative distance between
the UAV and the RSU is relatively large, i.e., the UAV is
approaching the space above the RSU in the beginning phase
(the acceleration phase) or flying far away from the RSU in
the last phase (the deceleration phase), the UAV has to adopt
the maximum transmission power to offload its computation
tasks as many as possible. When the relative distance is
reduced to a certain range, i.e., t ranging within (150, 420),
the power consumption also decreases. The main reason is that
the quality of the A2G communication link becomes better
when the UAV is closer to the RSU. The optimal velocity
control curves in Fig. 7.(b) confirm that the UAV can always
satisfy the control constraint and show that the UAV adopts
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Fig. 6. Optimal longitudinal trajectory and velocity.

Fig. 7. Optimal power and velocity controls.
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Fig. 8. The variation of the computation energy consumption.

the maximum acceleration and the maximum deceleration
for achieving the optimal cruising velocity and the specified
terminal velocity, respectively.

To illustrate the offloading behavior of the UAV, we further
evaluate the computation energy cost related to the local
computation in Fig. 8. Interestingly, we can see that the
computation energy consumption Ecom[t] is reduced to zero
when t ∈ (150, 420). This result indicates that the UAV is
able to offload its whole computation tasks to the RSU and
fully employs the remote computing mode when it is flying
within a certain range sufficiently closed to the RSU. But
when the UAV is flying away from the RSU, for instance,
at t ∈ (500, 600), the transmission power is increased and
only a part of its computation tasks can be offloaded to the
RSU. To sum up, the results from the figures above confirm the
convergence and feasibility of the proposed method and show
that it enables the UAV to adapt its mobility, communication
and computation during flying.

B. Performance Comparison

To demonstrate the advantage of the proposed method, we
further carry out a series of experiments for performance com-
parison under different situations. To be specific, we compare
our method with three other conventional methods that are
based on the aggressive mobility mechanism, the aggressive
offloading mechanism, and the local computation mechanism,
respectively. For the sake of simplicity, the numerical results
corresponding to our proposed method are marked with “Joint
Optimization” or “JO”, while these other methods are marked
with “Aggressive Mobility” or “AM”, “Aggressive Offloading”
or “AO”, and “Local Computation” or “LC”, respectively. With
the aggressive mobility mechanism, the UAV will accelerate
up to the maximum allowed velocity with the maximum
acceleration and adopt the maximum velocity as its cruising
velocity. In this situation, the trajectory of the UAV is not
optimized. With the aggressive offloading mechanism, the
UAV will adopt its maximum allowed transmission power for
computation offloading all the time and it considers to jointly
optimize the mobility and computation energy consumption.
With the local computation mechanism, the UAV will only
optimize its mobility and fully adopt the local computation
mode to process its whole computation demand.

Fig. 9 shows the global performance, W (a), of the com-
pared methods under different computation demands, D[t].
Specifically, D[t] is varied from 103 bits to 4 × 106 bits. The
flying duration is set to 30 seconds, while the initial and the
terminal velocities are specified as v[0] = v[tf ] = 1 (m/s).
From Fig. 9, we can observe that the aggressive mobil-
ity mechanism without optimization has the highest energy
consumption in all the demand situations, while the global
energy consumption levels of the other methods are of the
same order of magnitude. However, when comparing our
proposed method with the aggressive offloading and the local
computation methods, we can find that the proposed joint
optimization method can achieve the lowest energy consump-
tion than the other two optimization methods under different
computation demands. The global energy consumption of our
method is about 14.3502 (Joule) and about 77.0035 (Joule)
less than those of the aggressive offloading and the local
computation methods on average, respectively. Besides, Fig. 9
demonstrates that when the computation demand is relatively
large, for instance, D[t] ≥ 3×106 bits, the performance of the
aggressive offloading mechanism tends to be closed to that
of our proposed method. This is because the UAV needs to
increase its transmission power for computation offloading in
order to benefit from remote computing when the computation
demand is increased substantially.

We also compare our method with the others under different
flying durations. The numerical results are shown in Fig.
10. We see that increasing the flying duration can improve
the whole energy cost as expected. The aggressive mobility
performs worst in all the situations, since it does not exploit
any optimization mechanism. Nonetheless, our method always
achieves the lowest global energy cost. For instance, the right
sub-figure in Fig. 10 shows the details on the numerical results
of the other methods except the aggressive mobility method
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Fig. 9. Global performance comparison under different computation demands.

Fig. 10. Global performance comparison under different flying durations.

Fig. 11. Global performance comparison under different initial velocities.

Fig. 12. Global performance comparison under different terminal velocities.

that are obtained under the flying duration of 70 seconds. In
all the duration settings, our proposed joint optimization can
reduce the energy consumption of about 29.7433 (Joule) and
75.8256 (Joule) on average when compared to the aggressive
offloading and the local computation methods.

Finally, to demonstrate the effects of the initial and the
terminal velocities on the global performance, we vary the
initial velocity v[0] and the terminal velocity v[tf ] from 1 (m/s)
to 19 (m/s) with an incremental step-size of 2 (m/s), respec-
tively, and compare the different methods. Fig. 11 and Fig. 12
demonstrate their numerical results. It is shown that increasing

the initial velocity or the terminal velocity can increase the
mobility-related energy cost. Both the figures also show that
our proposed method achieves the largest reduction in the
global energy consumption among these compared methods.
In particular, in Fig. 11, our method can reduce the energy
consumption by about 10.9126 (Joule) and 80.7331 (Joule)
on average when compared to the aggressive offloading and
the local computation methods, respectively. Similarly, in
Fig. 12, our method achieves the energy saving of about
10.9027 (Joule) and 80.6835 (Joule) on average, compared to
these two optimization methods, respectively. These results
confirm that jointly optimizing the mobility, communication
and computation of the UAV is more advantageous than only
planning the trajectory of the UAV and only optimizing either
the computation offloading or the transmission power.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the problem of the UAV-
oriented trajectory optimization, power control, and computa-
tion offloading in an air-ground-integrated network. We have
proposed a joint mobility, communication and computation
optimization method to maximize the energy efficiency of a
UAV. To tackle the optimization complexity, we have proposed
a primal decomposition approach and then theoretically de-
rived a closed-form formulation for the optimal power control.
Furthermore, the original joint optimization model is then
converted to another tractable form with the closed-form power
control. Based on the transformed model, we have proposed
a novel gradient projection-based method and theoretically
proved its feasibility and convergence. Comparative simulation
results have validated the effectiveness and advantage of the
proposed method. Our work can offer a valuable approach
of joint control and optimization modeling for the UAV in
air-ground-integrated scenarios. In the future, we will focus
on the design of a joint optimization framework for vehicle-
infrastructure-UAV-integrated systems.
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