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for Multi-UAV-Aided Vehicular Networks
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Abstract—Aerial-ground cooperative vehicular networks are
envisioned as a novel paradigm in B5G/6G visions. In this
letter, the challenge of optimizing the global energy-efficiency
(EE) of multi-UAV-aided vehicular networks in the presence of
uncertain air-to-ground (A2G) channels is addressed. Specifically,
we propose a maximin paradigm to characterize the system,
which aims to maximize its global EE meanwhile satisfying
Quality-of-Service (QoS)-oriented data rate requirements in
the worst-case situation. We theoretically derive a closed-form
optimal solution for an embedded minimization subproblem
under a parametric channel uncertainty set and thus develop
a computationally tractable robust counterpart, which leads to
a robust EE optimization design. Simulation results show that
the proposed method significantly outperforms conventional EE
schemes in terms of achieving higher global system performance
and better robustness under random uncertain environments.

Index Terms—Aerial-ground cooperative networks, unmanned
aerial vehicles (UAVs), cooperative communication, energy effi-
ciency, robust counterpart optimization.

I. INTRODUCTION

IN the visions of Beyond 5G (B5G) or even 6G systems,
unmanned aerial vehicles (UAVs or drones) can act as

flying relays to enhance the connectivity of ground vehicles
by creating a cooperative communication network [1]. Since
the onboard resources carried by the UAVs are quite limited,
one key requirement is the energy-efficiency (EE) transmission
optimization for the practical realization of a multi-UAV-
aided vehicular network. However, due to inaccurate channel
estimation, erroneous channel feedback or frequency offsets
resulting from nodes’ high mobility, there inherently exist
disturbances and uncertainty in the channel state information
(CSI) of air-to-ground (A2G) wireless links, which poses a
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Fig. 1. A typical multi-UAV-aided vehicular network.

great challenge and should be appropriately tackled in the
practical system deployment.

Currently, many researchers are engaged in developing
energy-efficiency UAV-aided communication and networking
systems, such as cooperative UAV-assisted terrestrial cellular
networks [2], UAV-assisted mobile edge computing systems
[3], [4], space-air-ground integrated heterogeneous networks
[5], etc. In these works, the energy-efficiency optimization of
their targeted systems has been well addressed by exploiting
either classical convex optimization approaches [2]–[4] or
deep reinforcement learning-based approaches [5]. In other
works such as [6], [7], UAV-enabled networks are optimized
by jointly designing UAVs’ trajectories and power control.
Nevertheless, the aforementioned studies and most of those
references therein are based on an implicit assumption that
perfect CSI is available at both ends of an A2G link. Few
works have taken into account channel disturbances and un-
certainty in their system designs. Unfortunately, in reality, the
aerial-ground cooperative system has to confront more general
situations. Especially, the A2G channels inherently experience
random disturbances and uncertainty. Hence, the channel im-
perfectness should be properly captured and handled in the
system optimization, which essentially motivates our work.

In this letter, we address robust energy-efficiency optimiza-
tion of multi-UAV-aided vehicular networks. Specifically, we
explicitly characterize the imperfectness of the CSI on the
A2G links by a parametric uncertainty set. We propose a
maximin optimization model and then theoretically derive a
closed-form solution for the nested minimization subproblem
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under the channel uncertainty set. Based on this, we further
develop a computationally tractable counterpart to maximize
the worst-case EE performance. An novel iterative program-
ming algorithm has also been proposed based on the theory of
the augmented Lagrangian multipliers, which leads to a robust
communication optimization design. The convergence and
advantages of the proposed method in terms of both the global
EE and robustness are also validated by extensive simulations.
Our robust optimization design can cope with A2G channel
uncertainty, relax the assumption on the perfectness of the
A2G CSI that has been widely adopted in current literature,
and thus facilitate the practical deployment of multi-UAV-
aided vehicular communication systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a general multi-UAV-aided
vehicular network, in which the physical-layer repetition-
coded DF mechanism [1] can be used to realize the coop-
erative communications among ground networking vehicles
and multiple flying UAVs as aerial relays. The ground source
node, e.g., a Road-Side Unit (RSU), is denoted by s, while
the set of the cooperative UAVs, also termed the aerial
relay set, is denoted by D(s). Without loss of generality,
let |D(s)| = N , and the allowable maximum and minimum
normalized transmission powers of a node i ∈ {s} ∪ D(s) be
pi,max and pi,min, respectively. We consider a discrete-time
system implementation and the index of a time slot with the
duration τ is denoted by t. The total number of time slots is
T , i.e., t = 1, 2 . . . , T . The normalized transmission power of
the source s at t is ps(t) ∈ [ps,min, ps,max] and that of a UAV
r ∈ D(s) is pr(t) ∈ [pr,min, pr,max].

A. Mobility Model
Since the mobility of either the ground vehicle or the flying

UAVs has a significant impact on the system performance,
we would like to capture the mobility effect in the system
modeling. To be specific, letting the 3-dimensional position,
velocity and acceleration of a moving node i ∈ {s} ∪D(s) at
t be xi(t), vi(t) and ai(t), respectively, we characterize the
kinematics of the node i by using the following time-discrete
double integral model{

xi(t+ 1) = xi(t) + τvi(t) + τ2

2 ai(t);

vi(t+ 1) = vi(t) + τai(t).
(1)

Thus, the relative distance between any two moving nodes
i′ and i′′ at t, di′,i′′(t), can be estimated by

di′,i′′(t) = ‖xi′(t)− xi′′(t)‖2, i′, i′′ ∈ {s} ∪ D(s). (2)

B. Multi-Relay Cooperative Communication Model
With a given aerial relay set D(s), the maximum average

mutual information of the source-destination link using the DF
cooperative communication protocol [1] under the condition
that each UAV in D(s) can successfully decode its received
information from the source can be formulated as follows

I(t) =
τB

N + 1
log2

1 +
∑

i∈{s}∪D(s)

pi(t)|hi(t)|2

dαi (t)

 , (3)

where B is the totally available bandwidth; di(t) is the relative
distance between node i and the destination at t that can
be calculated by (2); hi(t) is the coefficient capturing the
channel fading characteristics over the link from node i to
the destination at t; α is the path-loss factor.

Additionally, the condition for any UAV r successfully
decoding the source’s information is that the transmission
data rate over the communication link from source s to
r at t, denoted by Rr(t), should not be smaller than a
minimum requirement, r1, in order to establish the cooperative
communication. To practically characterize such a condition,
we adopt a soft constraint that the outage probability of the
s-to-r communication link, Prob{Rr(t) < r1}, should not
exceed a given threshold β, i.e.,

Prob{Rr(t) < r1} ≤ β, r ∈ D(s), (4)

in which Rr(t) is given as follows [1]

Rr(t) =
τB

N + 1
log2

(
1 +

ps(t)|gs,r(t)|2

dαs,r(t)

)
, (5)

where gs,r(t) characterizes the channel fading of the the s-
to-r communication link at t, and ds,r(t) denotes the relative
distance between s and r at t.

C. Channel Randomness and Uncertainty Model

Two types of communication channel are identified in our
considered scenario as shown in Fig. 1. Specifically, we
consider the effect of the heavily built-up urban environment
on signal propagation. According to the existing literature [8]–
[11], the frequency non-selective Rayleigh block fading can
well capture the channel characteristics of the ground-to-air
(G2A) uplinks, since there are many objects in the urban area,
such as high-rise buildings and trees, that can scatter the G2A
radio signal before it arrives at the aerial relays. Thus, we are
allowed to exploit the Rayleigh fading distribution to model
the stochastic G2A channels. Such a consideration results in
the situation that |gs,r(t)|2d−αs,r (t) is exponentially distributed
with the parameter dαs,r(t). Therefore, the outage probability
of the s-to-r uplink can be rearranged as

Prob{Rr(t) < r1} = 1−exp

−
(

2
r1(N+1)
τB − 1

)
ps(t)d

−α
s,r (t)

 , r ∈ D(s).

(6)
However, for the case of A2G communications, the channel

fading can be much more complicated, and thus the uncer-
tainty and imperfectness of the A2G channels, i.e., hi(t),
i ∈ {s}∪D(s), has to be taken into account here. Without loss
of generality, the channel fading coefficient hi(t) can be fur-
ther modeled by the combination of its nominal deterministic
estimation ĥi(t) and an uncertain disturbance ∆hi(t), i.e.,

hi(t) = ĥi(t) + ∆hi(t), i ∈ {s} ∪ D(s). (7)

For simplicity, we let the global channel uncertainty be

∆h(t) , col {∆hi(t), i ∈ {s} ∪ D(s)} , ∀t, (8)
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and consider that the channel uncertainty is bounded within a
norm ball Uρ with a radius ρ as follows

Uρ ,
{

∆h(t) ∈ R(N+1)×1 : ‖∆h(t)‖2 ≤ ρ
}
. (9)

Uρ is also termed a spherical uncertainty region, which has
been widely adopted in the theory of robust optimization [12].
The radius ρ indicates the size of the channel uncertainty
region, which implies the amount of the channel uncertainty. A
larger value of ρ indicates higher uncertainty in the channels.

D. Maxmin Optimization Paradigm
With the goal of maximizing the overall energy efficiency

of the network, we define the following system performance
metric over T time slots

J = J (p(1), . . . ,p(T )) =

∑T
t=1 I(t)∑T

t=1

∑
i∈{s}∪D(s) pi(t)

, (10)

where the decision vector p(t) is the collection of the ground
source’s and the aerial relays’ transmission powers at t, i.e.,
p(t) = col{pi(t), i ∈ {s} ∪ D(s)}. The objective function
J indeed represents the achievable transmission data rate per
power consumption by the network system.

Besides, we also consider a lower bound on the coopera-
tive transmission data rate I(t), i.e., proposing the nonlinear
constraint I(t) ≥ r2 where r2 is a given minimum data rate
requirement for guaranteeing the system QoS. Let pmin =
col{pi,min, i ∈ {s} ∪ D(s)} and pmax = col{pi,max, i ∈
{s} ∪ D(s)}. Due to the presence of the channel uncertainty
∆h(t), t = 1, . . . , T in both the objective function and the
nonlinear constraint, it is difficult and impractical to directly
solve an EE optimal solution for the system. Instead, we turn
to optimize the system performance J in the worst case of the
A2G channels so as to provide a robust design, which leads
to a maximin formulation as follows
M1 : max

p(t),t=1,...,T
min

∆h(t),t=1,...,T
J (p(1), . . . ,p(T ))

s.t.


Prob{Rr(t) < r1} ≤ β, r ∈ D(s);

I(t) ≥ r2, ∆h(t) ∈ Uρ;
p(t) ∈ [pmin,pmax] ;

t = 1, . . . , T.

(11)

It can be found that another challenge arises from the nested
minimization subproblem in the above maxmin model. The
uncertain parameters {∆h(t),∀t} are treated as the decisions
that are highly coupled with the power controls {p(t),∀t}.
In the following, we would like to propose a computationally
tractable optimization method for M1.

III. ROBUST COUNTERPART OPTIMIZATION

A. Robust Counterpart
Recalling that the channel uncertainty ∆h(t) is involved

in I(t), we can formulate the lower bound of I(t) over the
channel uncertainty region Uρ as
θ(p(t)) =

min
∆h(t)∈Uρ

 τB

N + 1
log2

1 +
∑

i∈{s}∪D(s)

pi(t)
∣∣∣ĥi(t) + ∆hi(t)

∣∣∣2
dαi (t)




(12)

and see I(t) ≥ θ(p(t)) for t = 1, . . . , T . With θ(p(t)), we
further present the robust counterpart associated with M1

M2 : max
p(t),t=1,...,T

∑T
t=1 θ(p(t))∑T

t=1

∑
i∈{s}∪D(s) pi(t)

s.t.


Prob{Rr(t) < r1} ≤ β, r ∈ D(s);

θ(p(t)) ≥ r2;

p(t) ∈ [pmin,pmax] ;

t = 1, . . . , T.

(13)

In fact, θ(p(t)) indicates the worst-cast transmission data
rate by aerial-ground cooperative communications. M2 is a
robust counterpart model for the worst-case optimization of
the system. Now, the key point to effectively solve M2 lies
in the calculation of θ(p(t)). Based on (12), we can further
derive the following closed form:

Theorem 1: The feasible lower bound of the aerial-ground
cooperative transmission data rate I(t) is expressed as
θ(p(t)) =

max

r2, τB

N + 1
log2

1 +
∑

i∈{s}∪D(s)

pi(t)d
α
i (t)

(
λ∗ĥi(t)

)2

(
λ∗dαi (t) + pi(t)

)2



(14)
where the parameter λ∗ is given as

λ∗ = arg

λ ∈ R+ : ρ2 =
∑

i∈{s}∪D(s)

∣∣∣∣∣pi(t)d−αi (t)ĥi(t)

λ+ pi(t)d
−α
i (t)

∣∣∣∣∣
2
 .

(15)
Proof: Theorem 1 results from the Karush-Kuhn-Tucker

(KKT) conditions, the proof of which is provided in Appendix
A that can be found in the online supplementary materials.

B. Robust Optimization Algorithm
As can be seen, the robust counterpart M2 based on

Theorem 1 is computationally tractable, which can motivate
a practical optimization design. Here, we consider to solve
the robust counterpart model by iterative programming. For
simplicity, we let p = col{p(t), t = 1, . . . , T} and denote
all the inequality constraints including the bound constraints
by gl(p) = β − Prob{Rr(t) < r1} ≥ 0 for l = 1, . . . , NT ,
gl(p) = θ(p(t)) − r2 ≥ 0 for l = 1 + NT, . . . , (N + 1)T ,
gl(p) = pi(t)−pi,min ≥ 0 for l = (N+1)T+1, . . . , 2(N+1)T
and gl(p) = pi,max − pi(t) ≥ 0 for l = 2(N + 1)T +
1, . . . , 3(N+1)T . Note that the total number of the inequality
constraints is 3(N+1)T . We further derive the following result
for M3 based on the Lagrangian optimization theory:

Theorem 2: A local optimal point of the unconstrained
optimization modelM3 with a given sufficiently large positive
real number σ > 0 is equivalent to that of M2

M3 : min
p,w
Lσ(p,w), (16)

where w = col{wl} ∈ R3(N+1)T×1 is the column vector col-
lecting Lagrangian multipliers and Lσ(p,w) is the augmented
Lagrangian function as follows

Lσ(p,w) = V (p) +
1

2σ

3(N+1)T∑
l=1

{
[wl − σgl(p)]

+2 − w2
l

}
(17)
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in which [x]
+

= max{0, x} and we let the inverse objective
function of M3 be V (p).

Proof: Theorem 2 follows the Lagrangian optimization
technique. The proof is detailed in Appendix B, which can be
found in the online supplementary materials.

Based on Theorem 2, we can devise an effective iterative
programming algorithm to obtain the solution of M2, since
there already exist many highly efficient numerical optimiza-
tion algorithms for solving the unconstrained counterpartM3.
Specifically, given the current feasible point p[k− 1], the cur-
rent Lagrangian multipliers w[k] and the current penalty factor
σ[k] at an algorithmic iteration k, the update formulations for
obtaining new iterative points p[k], w[k+ 1] and σ[k+ 1] can
be established as follows

p[k] ∈ argminpLσ[k](p,w[k];p[k − 1]);

σ[k + 1] = σ[k] + (ξ − 1)1φσ[k];

wl[k + 1] = [wl[k]− σ[k + 1]gl(p[k])]
+
,∀l,

(18)

where the parameter ξ > 1 is the increment coefficient, 1φ is
an indicator that is equal to 1 only if φ > 0, otherwise 0. φ is
a condition function defined as follows

φ =
η(p[k],w[k], σ[k])

η(p[k − 1],w[k − 1], σ[k − 1])
− ϕ (19)

where ϕ ∈ (0, 1) is a threshold and η(p[k],w[k], σ[k]) is a
2-norm stopping criteria function

η(p[k],w[k], σ[k]) =


3(N+1)T∑
l=1

[
min

(
gl(p[k]),

wl[k]

σ[k]

)]2


1
2

.

(20)

Based on (18), Fig. 1 also illustrates the implementation
framework of our proposed iterative programming algorithm
for the robust counter optimization. In Fig. 1, ε > 0 is a
sufficiently small threshold for stopping the iterations. The key
step here is to solve an unconstrained subproblemM3, which
can be efficiently achieved by using existing methods such
as the well-known Newton’s method or the conjugate gradient
descent method. Let the upper bounds on the sequences {σ[k]}
and {η(p[k],w[k], σ[k])} be σupper and ηupper, respectively,
i.e., σ[k] ≤ σupper and η(p[k],w[k], σ[k]) ≤ ηupper. Accord-
ing to the complexity theory of the augmented Lagrangian
method [13], the worst-case complexity of the outer-loop
algorithm shown in Fig. 1 can be evaluated in the order of

O
(
N(ε)× log (σupper/σ[0])

log(ξ)
× log(ε/ηupper)

log(ϕ)

)
, (21)

where N(ε) denotes the complexity for solving the uncon-
strained optimization M3 and can be in the order of O(ε−

3
2 )

when using the Newton’s method [14].

IV. PERFORMANCE EVALUATION

A. Simulation Parameters

We evaluate the proposed robust optimization method via
simulations, in which the total number of simulation time
slots is T = 100 and each slot duration is ∆τ = 0.1 s.
A RSU as a source is located at (0, 0, 0) m, and a ground

vehicle as a destination is initially located at (100, 0, 0) m.
The vehicle is moving at an initial velocity of 25 m/s with a
constant acceleration of 1 m/s2 in the positive longitudinal
direction. A platoon of UAVs as a group of aerial relays
with a fixed flight height of 50 m are initially located above
the RSU and are flying towards the ground vehicle. Their
longitudinal velocity and the space headway are set to 40 m/s
and 10 m, respectively. Throughout the simulations, the upper
and lower power bounds are set to pi,max = 40 dBm and
pi,min = −40 dBm for all i ∈ {s} ∪ D(s). Additionally,
the other physical-layer communication parameters are set as
in [15]: the total available bandwidth is B = 10 MHz, the
channel noise power over 10 MHz is −95 dBm, the antenna
gain at each receiver is 3 dB along with a path loss of 47.86 dB
per meter, and the path loss exponent is α = 2.75. The data
rate thresholds are set to r1 = 1 Kbits and r2 = 1.45 Mbits,
respectively. The 2-norm bound on the uncertain channel
disturbances is ρ = 2×10−3. ε = 1×10−3, σ = ϕ = 0.8 and
ξ = 1.5 are adopted for the algorithm implementation.

B. Convergence Analysis and Performance Comparison

Fig. 2(a) shows that the global convergence of our proposed
method can be well guaranteed with different UAV num-
bers. Specifically, the worst-case global energy-efficiency (EE)
performance can effectively converge by only 250 iterations
even when the number of the aerial nodes is relatively large,
i.e., N = 10. Moreover, the first-order measure in Fig. S.2
in Appendix D of the online supplementary materials also
confirm the convergence. In Fig. 2(b), we compare our method
(Robust-EEO) with different benchmark methods based on
the stochastic power control (Stochastic-Power) and the max-
imum power control (Max-Power) in ideal situations without
any uncertain channel disturbance. Our method achieves the
highest EE performance, the average level of which is about
17.41 Mbit/s/W and 17.47 Mbit/s/W higher than that of
the Stochastic-Power method and the Max-Power method,
respectively. The main reason is that when the channel uncer-
tainty has not been considered, our method boils down to the
ideal EE maximization, which can optimize the aerial-ground
cooperative system performance as much as possible.

Moreover, we compare our proposed method with the
conventional EE optimization (Conventional EEO) based on
the widely-adopted sequential convex approximation approach
in the presence of uncertain channel disturbances. Fig. 2(c)
illustrates the worst-case throughput of the aerial-ground nodes
under different N . As can be seen, the throughput performance
of our proposed method is about 2 times higher than that of
the Conventional EEO with N = 2, 4. Even with larger UAV
numbers, e.g., N = 6, 8, 10, our method can also outperform
the Conventional EEO by improving 38.23% throughput on
average. This is because the conventional approach fails in
dealing with the channel uncertainty. In addition, we carry out
extensive Monte Carlo simulations, with 5000 replications per
experimental condition, to examine the robustness of both the
methods, in which the channel uncertainty ∆h(t) is randomly
generated by following the normal distribution for all t. Fig. 3
demonstrates the frequency distributions of the network data
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Fig. 2. Simulation results.

Fig. 3. System Robustness against Uncertain Channel Disturbances.

rate I(t) achieved by these two methods. It is observed that the
conventional EEO can satisfy the minimum QoS requirement
with only about 50% probability, while our method can always
guarantee QoS regardless of random channel disturbances, i.e.,
the probability of the data rate constraint satisfaction is 100%.

V. CONCLUSION

In this letter, we have proposed a robust counterpart opti-
mization method to achieve the global energy-efficiency max-
imization of multi-UAV-aided networks with uncertain aerial-
ground cooperative communication channels. Importantly, we
have proposed a maximin model and theoretically derived
a closed-form solution for its embedded subproblem, which
enables a computationally tractable robust design. We propose
a novel algorithm that re-formulates the constrained robust
optimization into an unconstrained iterative programming
paradigm and thus reduces the implementation complexity.
Simulation results have verified the convergence of our method
and its superior performance over several classical schemes
in terms of global energy efficiency and robustness against
random channel disturbances and uncertainty.
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APPENDIX A
PROOF OF THEOREM 1

Recalling (12) and the constraint θ(p(t)) ≥ r2, we can
propose an equivalent subproblem as

min
∆h(t)

f(∆h(t)) =
∑

i∈{s}∪D(s)

pi(t)
∣∣∣ĥi(t) + ∆hi(t)

∣∣∣2
dαi (t)

s.t.


∑

i∈{s}∪D(s)

pi(t)
∣∣∣ĥi(t) + ∆hi(t)

∣∣∣2
dαi (t)

≥ C;

∑
i∈{s}∪D(s)

|∆hi(t)|2 ≤ ρ2.

(S.1)

where C = 2
r2(N+1)
τB − 1. The Lagrangian function of (S.1) is

then expressed as follows

L(∆h(t), λ, γ) = (1− γ)
∑

i∈{s}∪D(s)

pi(t)
∣∣∣ĥi(t) + ∆hi(t)

∣∣∣2
dαi (t)

+ γC − λ

ρ2 −
∑

i∈{s}∪D(s)

|∆hi(t)|2


(S.2)

where λ and γ are two nonnegative Lagrangian multipliers.
Based on the Karush-Kuhn-Tucker (KKT) conditions, the

optimum point of (S.1) and the optimal Lagrangian multipliers,
denoted by ∆h∗(t), λ∗ and γ∗, respectively, must satisfy

∇∆hL(∆h∗(t), λ∗, γ∗) = 0, γ∗ ≥ 0, λ∗ ≥ 0;

γ∗

 ∑
i∈{s}∪D(s)

pi(t)
∣∣∣ĥi(t) + ∆h∗i (t)

∣∣∣2
dαi (t)

− C

 = 0;

λ∗

ρ2 −
∑

i∈{s}∪D(s)

|∆h∗i (t)|
2

 = 0;

(S.3)

and the constraints of (S.1). Next, we can solve (S.3) in the
following two cases:

i) If
∑
i∈{s}∪D(s) |∆h∗i (t)|

2
< ρ2, we can have λ∗ =

0. The gradient condition and the second complementary
slackness condition in (S.3) further lead to γ∗ = 1 and∑
i∈{s}∪D(s) pi(t)

∣∣∣ĥi(t) + ∆h∗i (t)
∣∣∣2d−αi (t) = C. This result

indicates θ(p(t)) = r2.

ii) If
∑
i∈{s}∪D(s) |∆h∗i (t)|

2
= ρ2, we can derive the

nonzero Lagrangian multiplier λ∗ > 0 as given by (15).
Using the gradient condition and the second complementary
slackness condition in (S.3), we can further solve

∆h∗i (t) = − pi(t)ĥi(t)d
−α
i (t)

λ∗ + pi(t)d
−α
i (t)

, i ∈ {s} ∪ D(s) (S.4)

and γ∗ = 0. Substituting (S.4) into the objective function of
(S.1) can lead to

θ(p(t)) =

τB

N + 1
log2

1 +
∑

i∈{s}∪D(s)

pi(t)d
α
i (t)

(
λ∗ĥi(t)

)2

(λ∗dαi (t) + pi(t))
2

 .

(S.5)
Combining both results in the above two cases can prove the
theorem.

APPENDIX B
PROOF OF THEOREM 2

By introducing auxiliary variables q = col{ql ∈ R, l =
1, . . . , 3(N+1)T}, we can convertM2 into another equivalent
constrained optimization with a set of equality constraints

min
p,q

V (p)

s.t. gl(p)− q2
l = 0, l = 1, . . . , 3(N + 1)T.

(S.6)

For the above problem, the augmented Lagrangian function is

Lσ(p,q,w) =V (p)−
3(N+1)T∑
l=1

wl
(
gl(p)− q2

l

)
+
σ

2

3(N+1)T∑
l=1

[
gl(p)− q2

l

]2
.

(S.7)

That is, solving M2 is equivalent to solve minLσ(p,q,w)
with respect to p, q and w.

According to the KKT conditions, we can have the gra-
dient results with respect to the auxiliary variables q, i.e.,
∇qLσ(p,q,w) = 0, which further lead to

ql
[
σq2
l − (σgl(p)− wl)

]
= 0, l = 1, . . . , 3(N + 1)T. (S.8)

Accordingly, if σgl(p)− wl ≥ 0 then we have

q2
l =

1

σ
(σgl(p)− wl) , l = 1, . . . , 3(N + 1)T. (S.9)
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Fig. S.1. The implementation framework of the proposed iterative program-
ming algorithm.
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Fig. S.2. The First-Order Measure Variation with Different UAV numbers.

Otherwise, we can see σq2
l −(σgl(p)− wl) > 0, which implies

q2
l = 0. Combining both the results above can lead to

q2
l =

1

σ
max {σgl(p)− wl, 0} , l = 1, . . . , 3(N + 1)T.

(S.10)

Substituting (S.10) into (S.7) can prove the theorem.

APPENDIX C
THE ALGORITHM IMPLEMENTATION FRAMEWORK

In Fig. S.1, we illustrate the implementation framework
of the proposed iterative programming algorithm. As can
be seen, the proposed method can be effectively realized in

practical application scenarios, since it does solve a series of
unconstrained subproblems M3 instead of directly handling
the complicated constrained optimization model M2.

APPENDIX D
THE FIRST-ORDER MEASURE ON CONVERGENCE

We also supplement additional numerical results to validate
the convergence of the proposed algorithm as in Fig. S.2.
The figure shows the first-order measure variation on the
augmented Lagrangian function Lσ under different numbers
of UAVs N . It can be found that the first-order measure,
‖∇pLσ‖∞, can approximately converge to 0 under different
N , which indicates that the locally optimal robust solution has
been achieved by our algorithm.
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