
Mathematical Concepts (G6012)

Thomas Nowotny

Chichester I, Room CI-105

Office hours: Tuesdays 15:00-16:45

T.Nowotny@sussex.ac.uk

Computing Machines III

mailto:A.K.Seth@sussex.ac.uk

Last time

• We saw that deterministic FSA and non-

deterministic FSA are equivalent

• We introduced Finite State Transducers:

Addition of an output tape

q1
a/b

q0

Input symbol Output symbol

BB Another example

• Let’s build a whitespace remover (remove

any multiple space characters)

q1

s/s

x/x

q0

s/
x/x

x used here for anything

that is not s.

Today: Pushdown Automata

• What FSA cannot do is processing nested

structures:

– In programming languages: if-then-else,

procedure calls, …

– In natural languages: phrases embedded in

others

– Generally: We need the power to process

strings of brackets, e.g. ([{}()])

Processing nested structures

• Memory requirements:

– Unlimited unless we limit the depth of nesting

– Need to keep track of the order in which

brackets must be closed

– We have a linear structure (sequence) of

symbols

– Most recently recorded memories (opening

brackets) must be accessed first

Pushdown

• A special kind of list

• Provides (in principle) unbound storage

• Last in, first out (LIFO)

• Add/remove items only from one end (“top”)

• Push – add an element to the top of PD

• Pop – remove and element from the top of PD

• No other editing or browsing allowed

Example

• It’s like a stack of paper where you stack stuff on

the top and take it away from the top:

push ‘a’
a

push ‘a’
a

a push ‘b’
b

a

a

pop
a

a

‘b’

etc

• Alternative notation:

()
push ‘a’

(a)
push ‘a’

(aa)
push ‘b’

(baa)
pop

‘b’

(aa)

Pushdown Automata

• Result of adding a pushdown storage to

an FSA

• This gives a more powerful language

recogniser (see below)

• Provides enough power for programming

language analysis (syntax analysis)

• May even be enough for natural language

analysis

Pushdown Automaton: How

does it work?

• Need to specify 3 things now:

– Input symbol to be scanned

– Symbol to be popped from pushdown

– Symbol to be pushed onto pushdown

• Any of these can be the empty string

Example

a, /1

q1 q0
b, 1/

b, 1/

input

Symbol

popped Symbol

pushed

What language does this accept?

a a b b

Input tape State Pushdown

q0 () 1.

2. a a b b q0 (1)

3. a a b b q0 (1 1)

4. a a b b q1 (1)

5. a a b b q1 ()

• Accepts a string of a’s followed by the

same number of b’s:

• This cannot be expressed with a

regular expression!

Accepting computation

• Must be in a final state

• The input must have been consumed

• The pushdown must be empty

Error states

• No rule applies for input symbol (stuck)

• Cannot pop correct symbol (error)

(includes trying to pop a symbol other than

from empty pushdown)

Alternative Notation for

Computation

(q0, aabb,) ↦ (q0, abb,1)

 ↦ (q0, bb, 11)

 ↦ (q1, b, 1)

 ↦ (q1, ,)

• Pushdown here represented as a string

of pushdown symbols

a, /A

Example

q1

a, /

b, /

a, A/

b, B/ b, /B

q0

(q0, babab,) ↦ (q0, abab, B)

 ↦ (q0, bab, AB)

 ↦ (q1, ab, AB)

 ↦ (q1, b, B)

 ↦ (q1, ,)

BB: A successful Computation

• This recognises the language:

 , i.e.

Non-deterministic – guessing

midpoint

Wrongly guessed midpoint:

(q0, babab,) ↦ (q0, abab, B)

 ↦ (q0, bab, AB)

 ↦ (q0, ab, BAB)

 ↦ (q1, b, BAB)

 ↦ (q1, , AB) FAIL

As usual …

• Machine explores all possible choices

• Acceptance when one accepting

computation path exists

• It turns out that here non-determinism

does add power

• There are cases, where non-determinism

cannot be removed (like guessing the

midpoint)

DPDA

NPDA

Regular

Languages

Non-deterministic PDA (NPDA) and deterministic

PDA (DPDA) accept the a different family of

languages

Deterministic

Pushdown

Languages

Non-deterministic Pushdown

Languages

Properties of Pushdown

Automata
• Family of languages:

– PDA accept the same family of languages as

can be expressed by Context Free

Grammars

– In other words they accept exactly the

Context Free Languages

– Context Free Grammars are used to describe

(define) programming language syntax

– (Also equivalent to BNF and syntax charts)

Context-Free Grammar

• Is define by “productions” or “production

rules”:

1. S ↦ aSb

2. S ↦ ab

• Are applied repeatedly, e.g

S ↦ aSb ↦ aaSbb ↦ aaabbb

• Generates a’s followed by same number

of b’s

1. 1. 2.

Derivation tree

• Generating a word can be visualised as a

tree:
S

S

S

a

a

a

b

b

b

Other example

• Productions:

S ↦ aSa

S ↦ bSb

S ↦

• Generates the palindrome language

where the R denotes the reverse of the

string

Derivation tree example

S

S

S

b

a

b

a

S a a

Limits of Power

• Can be achieved:

– Language of palindroms

– Counting two symbols

– Programming languages (deterministically)

– Natural Languages?

• What can’t be done:

– Copy language

– Counting symbols beyond 2

– (Crossing dependencies)

Performance consideration

• When syntax-checking programs,

– PDA based checking can take O(n3) time

– This can be very slow for large programs

– However, if the PDA is deterministic, time is

only O(n)

Stacks vs Pushdowns

• Most people would not make a distinction

• If a distinction is made

– Pushdown strictly push-pop

– Stack can be inspected read-only

• Stack automata are a more powerful but

little known type of machine

TURING MACHINES

Turing Machines (TM)

• Are a very simple extension to finite state

machines

• The main change is to allow editing the input

tape

• No limit on the size of the tape

• Tape 2-way infinite (like the integers)

• (We will use the symbol B for blank positions)

a a B b a a * B … …

Transitions in TM

• Current state

• New state

• Symbol currently read

• New symbol to replace the read symbol

• Direction to move the tape head (left (L), right

(R), stay (S))

q1 q0
a/b, R

input
output

move

Example

q1 q0
/, L

a/b, R

b/a, R

B b a a b * B B … … q0

B a a a b * B B … … q0

B a b a b * B B … … q0

B a b b b * B B … … q0

B a b b a * B B … … q0

B b a a b * B B … … q1

finished

C
o
m

p
u
ta

ti
o
n

What did it do?

• baab became abba

• This machine swaps a to b and b to a until

it finds a *

Another

example

q0

a/b,R

a/a,R

q1 q2

q3

/,R

a/a,R

a/a,L
/,L

q4 q5

b/a,L

/,L

B/B,R

B/a,L
b/b,R

What does it do?

B a a a * B B B … … q0 B B

B b a a * B B B … … B B

B b a a * B B B … … B B

B b a a * B B B … … B B

B b a a * B B B … … B B

B b a a * a B B … … B B

B b a a * a B B … … B B

B b a a * a B B … … B B

q1

q1

q1

q2

q3

q3

q3

B b a a * a B B … … B B q3

B b a a * a B B … … B B q0

B b b a * a B B … … B B

B b b a * a B B … … B B

B b b a * a B B … … B B

B b b a * a B B … … B B

B b b a * a a B … … B B

B b b a * a a B … … B B

q1

q1

q2

q2

q3

q3

B b b a * a a B … … B B q3

B b b a * a a B … … B B q3

B b b a * a a B … … B B

B b b b * a a B … … B B

B b b b * a a B … … B B

B b b b * a a B … … B B

B b b b * a a B … … B B

B b a a * a a a … … B B

q0

q1

q2

q2

q2

q3

B b b b * a a a … … B B q3

B b b b * a a a … … B B q3

B b b b * a a B … … B B

B b b b * a a B … … B B

B b b b * a a B … … B B

B b b a * a a B … … B B

B b a a * a a B … … B B

B a a a * a a a … … B B

q3

q0

q4

q4

q4

q4

B a a a * a a a … … B B q5

Final State

B a a a * B B B … … B B q0

Initial State was:

• The machine makes a copy of n a’s and

puts them behind the *

Multiplication

• We can use this machine to do “unary

multiplication”:

• Multiply “number” before * by “number” between

* and % (3 times 2 here):

• Can be done by adapting the discussed

machine and using it repeatedly

B a a a * a a % … … B B q0 B B B B B

B a a a * a a % … … a a qfinal a a a B a

Church/Turing Thesis

• Every computable function can be computed by

a Turing Machine

• I.e.: Turing Machines are universal computing

machines

• Every problem that can be solved by an

algorithm can be solved by a Turing machine

• Where is the power coming from?

The read/write input/output tape !

More about TM

• The tape can be used to record any data

for later access

• There is always space available after last

non-blank location

• There is no limit how often the tape is

accessed

• You PC is less powerful than a TM – why?

Because it has finite memory

Efficiency

• TM are universal but not efficient

• Progress can be really slow

• Looking up memory involves sequential

access – the opposite of efficiency

Managing complexity

• One can encapsulate useful functionality

in “separate” sub-routines

• Collection of states set aside for each

subroutine

• (similar to structured programming

approach)

• However, TM are mainly useful as a

theoretical concept, not for solving real

world problems!

Variations

• There are common variants of TM:

– Multiple tapes

– Single-side infinite tape

– Non-deterministic TM

• It can be shown that these have all

equivalent power to the TM discussed

here.

Example: Non-deterministic TM

• To simulate non-deterministic TM:

– 3 tapes:

– One tape for original input

– One tape for the choice sequence: (2,3,1,2)

– One tape to run on current choice sequence

• For this to work we need to enumerate all

possible sequences of choices (ok, as

states are finite)

Another equivalence

• The “2 pushdown” automaton is equivalent

to the Turing Machine:

– One pushdown holds tape contents to left of

tape head

– One pushdown holds tape contents to the

right of tape head

– As tape head moves, symbols shift across

from one pushdown to another

More generally …

• Chomsky Hierarchy (for language

classes):

– Type 0: Languages accepted by Turing

Machines

– Type 1: Languages accepted by Turing

Machines with linear bounded storage

– Type 2: Languages accepted by Pushdown

Automata

– Type 3: Languages accepted by Finite State

Automata

Alternative Characterization

• Equivalent grammar formalisms

– Type 0: Languages generated by unrestricted

grammars

– Type 1: Languages generated by context-

sensitive grammars

– Type 2: Languages generated by context-free

grammars

– Type 3: Languages generated by regular

grammars

Equivalence and Inclusions

DPDA FSA

PDA

LBTM

TM

DPDA RG

CFG

CSG

UG

