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Outcomes of a FSA 

computation 

• Accepting computation: 

Computation in which the machine 

reaches a final state and reads all the 

input. 

• Non-accepting computation: 

Computation in which either the machine 

gets stuck before end of input or finishes 

in a non-final state. 
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• Either a then zero or more c’s then b, or a then 

zero or more b’s then c. 

• More precisely:  

• Regular expression: (ab*c)|(ac*b) 

• Nondeterministic! 



Non-determinism 

• What does it mean? 

– Machine has a choice of more than one legal 

move 

– Machine is able to explore all options 

• Significance 

– Important theoretical idea 

– Nondeterminism arises with many 

computational models 



Deterministic versus 

nondeterministic FSA 

• Deterministic FSA: There is never any 

choice in the computation 

• However: Equivalence (!): 

– Nondeterministic FSA are equivalent to 

deterministic FSA, i.e. for every FSA there is 

an equivalent deterministic FSA 

– Prove by means of a construction: 



Construction 

• What do we need to do? 

– Create deterministic machines that simulate 

nondeterministic machines 

• Let’s have a closer look at our 

nondeterministic example... 



Example revisited 
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Suppose we see an ‘a’ first 
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Suppose we see a ‘c’ next 
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And finally we see a ‘b’ 



Example revisited 
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The input is consumed and we are in a final 

state 



Simulating indeterminism 

• Finiteness is crucial: 

– Finite number of states 

– Finite number of possible sets of states 

– 2n possible subsets of n objects 

– Use subset to record all possible states that 

could be reached 

– Run all computations of a nondeterministic 

machine in parallel 



Simulating indeterminism 

• Build new deterministic machine 

– One state for every subset 

– New transitions based on original machine 

– Next state determined by what original 

machine would do 



Our example 
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BB Constructing a deterministic 

machine 

• States: {q0}, {q1,q2}, {q2,q3}, {q1,q4}, {q3}, 

{q4},{q1},{q2} 

• Transition from {q0} to {q1, q2} on a 

• Transition from {q1,q2} to {q1,q4} on c 

• Transition from {q1,q4} to {q3} on b 

• Transition from {q1,q2} to {q2,q3} on b 

• Transition from {q2,q3} to {q4} on c 

• And so on … 



BB Constructing a deterministic 

machine 

• Initial state is { q0 } 

• Any set containing q3 or q4 is final 



Equivalent deterministic FSA 
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Stepping back … 

• What did we just do? 

– We showed something very general 

– Two classes of machines are equivalent 

– Based on a general simulation 

– This is an important idea 



Finite State Automata (FSA) 

Particular FSA 

“FSA Space” 



Languages 

Particular strings 

Particular languages 

Particular 

language family 

Universe of all languages 
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Languages 



FSA 
Regular 

Languages 

FSA accept Regular Languages, 

and only Regular Languages 



DFSA 

NFSA 

Regular 

Languages 

FSA 

Non-deterministic FSA (NFSA) and deterministic FSA 

(DFSA) accept the same family of languages – all 

Regular Languages 



FSA summary 1 

• FSA recognize (accept) the class of 

regular languages  

(which are closed under union, 

intersection, complement, and 

concatenation) 

• FSA are equivalent to regular expressions 

• But FSA have limited power (more on this 

later) 



Finite State Memory 

• An FSA makes decisions about the entire 

input 

• But it cannot look again at any input that it 

already has consumed 

• Needs to remember & can only use states 

to do that 

• Memory limit: Finite number of states 



Two State Memory 

a 
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• In state q0 when seen some a’s 

• In state q1 when seen some a’s then b 

and (possibly) more a’s 

• Each state constitutes a memory of what 

has been seen 



Three State Memory 
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• In q0 when seen even number of a’s 

• In q1 when seen odd number of a’s 

• In q2 when seen odd a’s then b 

• “Three memory items” 



Four State Memory 
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• q0: even a’s and even b’s; q1 even a’s and odd b’s 

• q2: odd a’s and even b’s; q3 odd a’s and odd b’s 



Finite State Memory 

• We see that FSA can remember properties 

of the input 

• However, the maximum number of 

memories is limited by the number of 

states 



FINITE STATE TRANSDUCERS 



Finite State Transducers 

• Slightly enhance machine 

• Also known as Mealy’s automata 

• Each input symbol is mapped to an output 

symbol, i.e. we have two tapes: Input tape 

and output tape 

• Machine becomes a translator 



Example FS Transducer 
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• Reminder:     is the empty string  

• What does it do? 

• … translates strings of a’s into strings of 

b’s with half the length. 

input output 



Another example 
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• What does it do? 

• Cleans up white space: Removes all 

but one space from input 

Stands for 

“space” 



Application: Two phases of 

compilation 

• Lexical analysis: 

– Identifying the sequence of tokens of characters in 

input file: Finite State Transducers are adequate for 

this 

• Syntax analysis: 

– Checking syntax and determining structure: Finite 

State Machines/Transducers are not adequate due to 

possible nesting of statements 

– Needs more powerful machines – see later. 



FSA summary 2 

• Finite state machines are not only relevant to 

language processing 

• State can be interpreted in a general sense: 

Current status of a system (but must be a finite 

number of states) 

• What happens next can only depend on current 

state and next input 

• Inputs could be non-linguistic: This can be 

applied in a variety of situations 


