
Mathematical Concepts (G6012)

Thomas Nowotny

Chichester I, Room CI-105

Office hours: Mondays 10:00-12:00

T.Nowotny@sussex.ac.uk

Computing Machines II

mailto:A.K.Seth@sussex.ac.uk

Graphic Representation

q1 q0

1

0

1

Initial state

(incoming

arrow)

Final state

(double line)

Input token

Transition

rule

1 0 1 0

Input tape

Outcomes of a FSA

computation

• Accepting computation:

Computation in which the machine

reaches a final state and reads all the

input.

• Non-accepting computation:

Computation in which either the machine

gets stuck before end of input or finishes

in a non-final state.

Indeterministic

FSA

q0

q4

c

q2
a

q3 a q1

b

b

c

• Either a then zero or more c’s then b, or a then

zero or more b’s then c.

• More precisely:

• Regular expression: (ab*c)|(ac*b)

• Nondeterministic!

Non-determinism

• What does it mean?

– Machine has a choice of more than one legal

move

– Machine is able to explore all options

• Significance

– Important theoretical idea

– Nondeterminism arises with many

computational models

Deterministic versus

nondeterministic FSA

• Deterministic FSA: There is never any

choice in the computation

• However: Equivalence (!):

– Nondeterministic FSA are equivalent to

deterministic FSA, i.e. for every FSA there is

an equivalent deterministic FSA

– Prove by means of a construction:

Construction

• What do we need to do?

– Create deterministic machines that simulate

nondeterministic machines

• Let’s have a closer look at our

nondeterministic example...

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

Suppose we see an ‘a’ first

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

Suppose we see a ‘c’ next

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

Suppose we see a ‘c’ next

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

And finally we see a ‘b’

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

The input is consumed and we are in a final

state

Simulating indeterminism

• Finiteness is crucial:

– Finite number of states

– Finite number of possible sets of states

– 2n possible subsets of n objects

– Use subset to record all possible states that

could be reached

– Run all computations of a nondeterministic

machine in parallel

Simulating indeterminism

• Build new deterministic machine

– One state for every subset

– New transitions based on original machine

– Next state determined by what original

machine would do

Our example

q0

q4

c

q2
a

q3 a q1

b

b

c

BB Constructing a deterministic

machine

• States: {q0}, {q1,q2}, {q2,q3}, {q1,q4}, {q3},

{q4},{q1},{q2}

• Transition from {q0} to {q1, q2} on a

• Transition from {q1,q2} to {q1,q4} on c

• Transition from {q1,q4} to {q3} on b

• Transition from {q1,q2} to {q2,q3} on b

• Transition from {q2,q3} to {q4} on c

• And so on …

BB Constructing a deterministic

machine

• Initial state is { q0 }

• Any set containing q3 or q4 is final

Equivalent deterministic FSA

q0

q1,q4 q1

q2,q3

a
q1,q2

b

c

b

b

q2

c

c

q4

q3
b

c
c

b

Stepping back …

• What did we just do?

– We showed something very general

– Two classes of machines are equivalent

– Based on a general simulation

– This is an important idea

Finite State Automata (FSA)

Particular FSA

“FSA Space”

Languages

Particular strings

Particular languages

Particular

language family

Universe of all languages

FSA
Languages

FSA
Regular

Languages

FSA accept Regular Languages,

and only Regular Languages

DFSA

NFSA

Regular

Languages

FSA

Non-deterministic FSA (NFSA) and deterministic FSA

(DFSA) accept the same family of languages – all

Regular Languages

FSA summary 1

• FSA recognize (accept) the class of

regular languages

(which are closed under union,

intersection, complement, and

concatenation)

• FSA are equivalent to regular expressions

• But FSA have limited power (more on this

later)

Finite State Memory

• An FSA makes decisions about the entire

input

• But it cannot look again at any input that it

already has consumed

• Needs to remember & can only use states

to do that

• Memory limit: Finite number of states

Two State Memory

a

q1 q0 b

a

• In state q0 when seen some a’s

• In state q1 when seen some a’s then b

and (possibly) more a’s

• Each state constitutes a memory of what

has been seen

Three State Memory

q2 q0
b

q1

a

a

• In q0 when seen even number of a’s

• In q1 when seen odd number of a’s

• In q2 when seen odd a’s then b

• “Three memory items”

Four State Memory

q3 q2

a a

q0 q1

a a

b

b

b

b

• q0: even a’s and even b’s; q1 even a’s and odd b’s

• q2: odd a’s and even b’s; q3 odd a’s and odd b’s

Finite State Memory

• We see that FSA can remember properties

of the input

• However, the maximum number of

memories is limited by the number of

states

FINITE STATE TRANSDUCERS

Finite State Transducers

• Slightly enhance machine

• Also known as Mealy’s automata

• Each input symbol is mapped to an output

symbol, i.e. we have two tapes: Input tape

and output tape

• Machine becomes a translator

Example FS Transducer

q0 q1
a/b

a/

• Reminder: is the empty string

• What does it do?

• … translates strings of a’s into strings of

b’s with half the length.

input output

Another example

q0 q1

0/0
0/0

s/

1/1

s/s

1/1

• What does it do?

• Cleans up white space: Removes all

but one space from input

Stands for

“space”

Application: Two phases of

compilation

• Lexical analysis:

– Identifying the sequence of tokens of characters in

input file: Finite State Transducers are adequate for

this

• Syntax analysis:

– Checking syntax and determining structure: Finite

State Machines/Transducers are not adequate due to

possible nesting of statements

– Needs more powerful machines – see later.

FSA summary 2

• Finite state machines are not only relevant to

language processing

• State can be interpreted in a general sense:

Current status of a system (but must be a finite

number of states)

• What happens next can only depend on current

state and next input

• Inputs could be non-linguistic: This can be

applied in a variety of situations

