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Last time: Regular languages 

•  A regular language can be defined like this 
(over an alphabet      ): 
– The empty language is regular 

– The singleton language        is regular (           ) 
–  If      and      are regular languages, then 

(union) and            (concatenation) and        
(Kleene star) are regular. 

– No other languages are regular 



BB  Example: Determine 
whether a language is regular 
•  Take the Alphabet                and language 

•  Is     a regular language? 

•  Need to show that it can be constructed by legal 
operations (           ) from (a) regular language(s) 

•  Start: Singleton language                 is regular by 
definition 

•  The language                  can be generated as  

•  Finally,  

•  This proves that     is a regular language. 



Regular expressions 

•  Regular expressions can be used to define 
regular languages 

•  A regular expression describes the legal 
word in a language by a matching 
operation: 



Regular expressions 

–  ‘a’ matches the symbol ‘a’ in the alphabet 
– The ‘|’ denotes alternatives (Boolean (x)or) 
– Brackets ‘(‘ and ‘)’ are used for grouping 

–  ‘*’ matches zero or more of the preceding 
symbol 

–  ‘+’ matches one or more of the preceding 
symbol 

–  ‘?’ matches 0 or 1 of the preceding symbol 



Precedence of operators 

Precedence Operator 
Highest (  )  
Medium ?  *  + 
Lowest | 



FINITE STATE AUTOMATA 
(FSA) 



Introduction 

•  FSA are examples of a model of 
computing or an (abstract) computing 
machine 

•  Models of computing are how computer 
scientists make sense of the world 

•  Many models of computing have been 
suggested 

•  FSA are in a sense the most simple ones 



FSA: General Characteristics 

•  Discrete inputs & possibly outputs 

•  System in one of a finite number of 
internal configurations 

•  State encodes information about all past 
inputs needed to determine behaviour of 
system on subsequent inputs 



Typical example 1 

•  Control mechanism of an elevator 

•  Input is requests for service 

•  State is current floor & direction of motion 

•  Does not record history of satisfied 
requests 

•  Unsatisfied input is unordered collection of 
requests 



Typical Example 2 

•  Lexical Analysis: 
Transform a string of characters into a 
sequence of (legal) tokens: 

“x+501 = foo” 

 

(id(x),plus,num(501),equals,id(foo) 

(This is something a compiler needs to do) 



Focus on (language) parsing 

We are interested in the following type of 
machine (for now): 

Input string 

Machine 

accept reject 

Computation 

? 



Definition of a (deterministic) 
Finite State Automaton (FSA) 
•  An FSA consists of a finite number of states q0, 

q1,q2, …, qn and an input “tape” with input 
symbols or tokens 

•  The FSA is in one state at a time, there is one 
initial state and at least one final state 

•  Symbols on the input tape are consumed one by 
one 

•  For each state there is a finite set of rules for 
input-dependent state transitions (these depend 
only on the current state and the current input) 



Graphic Representation 

q1 q0 

1 

0 

1 

Initial state 
(incoming 
arrow) 

Final state 
(double line) 

Input token 

Transition 
rule 



Idea of FSA 

•  Description of a decision process 

•  Is a string acceptable or not? 

•  All acceptable strings form a language (as 
we have discussed before) 



How it works 

q1 q0 

1 

0 

1 
q0 q1 

1 0 1 0 

Input tape: 

Automaton: 

What words does 
this automaton 
accept? 



Protocol of a computation 

We can document the computation I just 
showed as a list of states and input positions: 



1 0 1 0 

Input: State: 

q0 

1 0 1 0 q1 

1 0 1 0 q1 

1 0 1 0 q1 

1 0 1 0 q1 
Final state –  
machine halts 

Initial state 



Outcomes of a FSA computation 

•  Accepting computation: 
Computation in which the machine 
reaches a final state and reads all the 
input. 

•  Non-accepting computation: 
Computation in which either the machine 
gets stuck before end of input or finishes 
in a non-final state. 



What’s accepted -  

•  An automaton defines a language: 
Set of all strings which when given as 
input give rise to an accepting computation 

•  The family of languages accepted by any 
FSA: 
Collection of all languages which some 
finite state machine accepts. – Turns out 
to be the family of regular languages 



Some comments 

•  Getting stuck: 
– no more input available or 
– no transition rule applies 

•  Input read: 
– Must read past end of the input before 

accepting a string 
•  Two choices only: 

– Every input is either rejected or accepted 



More examples: 

q0 q1 
a

b 

•  Accepts any string that has alternating a’s and b’s 
that begins and ends with an a 

•  More precisely:  
•  Using Regular Expression notation: a (ba)* 



More examples 

q0 q2 b q1 a 

•  Accepts only one string: ab 
•  More precisely: {ab} 
•  Regular expression: ab 
•  No cycles gives a finite language 



Adding a cycle 

q0 q2 b q1 a 

a 

•  Accepts ab followed by strings of a’s – 0 or 
more 

•  More precisely:  
•  Regular expression: aba* 
•  Needs states to remember that the first a and b 

were found 



Another example 

q0 

a 

•  Accepts any string of a’s 
•  More precisely:  
•  Regular expression: a* 
•  Initial state can also be a final state 



Several final states 

q0 q1 a q2 a q3 a 

a 

•  Accepts any string of a’s, except aa 
•  More precisely:  
•  Regular Expression: (a)|(aaa+) 
•  There can be more than one final state 



Indeterministic 
FSA 

q0 

q4 

c 

q2 
a 

q3 a q1 

b 

b 

c 

•  Either a then b’s then c, or a then c’s then b. 
•  More precisely:  
•  Regular expression: (ab*c)|(ac*b) 
•  Nondeterministic! 



Non-determinism 

•  What does it mean? 
– Machine has a choice of more than one legal 

move 
– Machine is able to explore all options 

•  Significance 
–  Important theoretical idea 
– Nondeterminism arises with many 

computational models 



Deterministic versus 
nondeterministic FSA 
•  Deterministic FSA: There is never any 

choice in the computation 
•  Equivalence (!): 

– Nondeterministic FSA are equivalent to 
deterministic FSA, i.e. for every FSA there is 
an equivalent deterministic FSA 

– Prove by means of a construction: 



Construction 

•  What do we need to do? 
– Create deterministic machines that simulate 

nondeterministic machines 

•  Let’s have a closer look at our 
nondeterministic example... 



Example revisited 

q0 

q4 

c 

q2 
a 

q3 a q1 

b 

b 

c 

Suppose we see an a first 



Example revisited 

q0 

q4 

c 

q2 
a 

q3 a q1 

b 

b 

c 

Suppose we see a c next 



Example revisited 

q0 

q4 

c 

q2 
a 

q3 a q1 

b 

b 

c 

Suppose we see a c next 



Example revisited 

q0 

q4 

c 

q2 
a 

q3 a q1 

b 

b 

c 

And finally we see a b 



Example revisited 

q0 

q4 

c 

q2 
a 

q3 a q1 

b 

b 

c 

The input is consumed and we are in a final 
state 



Simulating indeterminism 

•  Finiteness is crucial: 
– Finite number of states 
– Finite number of possible sets of states 
– 2n possible subsets of n objects 
– Use subset to record all possible states that 

could be reached 
– Run all computations of a nondeterministic 

machine in parallel 



Simulating indeterminism 

•  Build new deterministic machine 
– One state for every subset 
– New transitions based on original machine 
– Next state determined by what original 

machine would do 



Our example 

q0 

q4 

c 

q2 
a 

q3 a q1 

b 

b 

c 



BB Constructing a deterministic 
machine 
•  States: {q0}, {q1,q2}, {q2,q3}, {q1,q4}, {q3}, 

{q4} 
•  Transition from {q0} to {q1, q2} on a 
•  Transition from {q1,q2} to {q1,q4} on c 
•  Transition from {q1,q4} to {q3} on b 
•  Transition from {q1,q2} to {q2,q3} on b 
•  Transition from {q2,q3} to {q4} on c 



BB Constructing a deterministic 
machine 

•  Initial state is { q0 } 
•  Any set containing q3 or q4 is final 



Equivalent deterministic FSA 

q0 

q1,q4 q1 

q2,q3 

a 
q1,q2 

b 

c 

b 
b 

q2 

c 
c 

q4 

q3 
b 

c 
c 

b 



Stepping back … 

•  What did we just do? 
– We showed something very general 
– Two classes of machines are equivalent 
– Based on a general simulation 
– This is an important idea 


