Mathematical Concepts (G6012)

Computing Machines

Thomas Nowotny Chichester I, Room CI-105 Office hours: Mondays 10:00-12:00 T.Nowotny@sussex.ac.uk

Last time: Regular languages

- A regular language can be defined like this (over an alphabet $\,\mathcal{S}$):
 - The empty language is regular
 - The singleton language $\{a\}$ is regular ($a \in \mathcal{S}$)
 - If \mathcal{A} and \mathcal{B} are regular languages, then $\mathcal{A} \cup \mathcal{B}$ (union) and $\mathcal{A} \circ \mathcal{B}$ (concatenation) and $\mathcal{A}*$ (Kleene star) are regular.
 - No other languages are regular

BB Example: Determine whether a language is regular

- Take the Alphabet $S = \{a\}$ and language $\mathcal{L} = \{a, aa\}$
- Is \mathcal{L} a regular language?
- Need to show that it can be constructed by legal operations (o, U, *) from (a) regular language(s)
- Start: Singleton language $\mathcal{A} = \{a\}$ is regular by definition
- The language $\mathcal{B} = \{aa\}$ can be generated as $\mathcal{B} = \mathcal{A} \circ \mathcal{A}$
- Finally, $\mathcal{L} = \mathcal{A} \cup \mathcal{B}$
- This proves that \mathcal{L} is a regular language.

Regular expressions

- Regular expressions can be used to define regular languages
- A regular expression describes the legal word in a language by a matching operation:

Regular expressions

- 'a' matches the symbol 'a' in the alphabet
- The 'l' denotes alternatives (Boolean (x)or)
- Brackets '(' and ')' are used for grouping
- '*' matches zero or more of the preceding symbol
- '+' matches one or more of the preceding symbol
- '?' matches 0 or 1 of the preceding symbol

Precedence of operators

Precedence	Operator
Highest	()
Medium	? * +
Lowest	

FINITE STATE AUTOMATA (FSA)

Introduction

- FSA are examples of a model of computing or an (abstract) computing machine
- Models of computing are how computer scientists make sense of the world
- Many models of computing have been suggested
- FSA are in a sense the most simple ones

FSA: General Characteristics

- Discrete inputs & possibly outputs
- System in one of a finite number of internal configurations
- State encodes information about all past inputs needed to determine behaviour of system on subsequent inputs

Typical example 1

- Control mechanism of an elevator
- Input is requests for service
- State is current floor & direction of motion
- Does not record history of satisfied requests
- Unsatisfied input is unordered collection of requests

Typical Example 2

 Lexical Analysis: Transform a string of characters into a sequence of (legal) tokens:

(id(x),plus,num(501),equals,id(foo)

(This is something a compiler needs to do)

Focus on (language) parsing

We are interested in the following type of machine (for now):

Definition of a (deterministic) Finite State Automaton (FSA)

- An FSA consists of a finite number of states q₀, q₁,q₂, ..., q_n and an input "tape" with input symbols or tokens
- The FSA is in one state at a time, there is one initial state and at least one final state
- Symbols on the input tape are consumed one by one
- For each state there is a finite set of rules for input-dependent state transitions (these depend only on the current state and the current input)

Graphic Representation

Idea of FSA

- Description of a decision process
- Is a string acceptable or not?
- All acceptable strings form a language (as we have discussed before)

How it works

Input tape:

What words does this automaton accept?

Protocol of a computation

We can document the computation I just showed as a list of states and input positions:

Outcomes of a FSA computation

Accepting computation:

Computation in which the machine reaches a final state and reads all the input.

 Non-accepting computation: Computation in which either the machine gets stuck before end of input or finishes in a non-final state.

What's accepted -

- An automaton defines a language: Set of all strings which when given as input give rise to an accepting computation
- The family of languages accepted by any FSA:

Collection of all languages which some finite state machine accepts. – Turns out to be the family of regular languages

Some comments

- Getting stuck:
 - no more input available or
 - no transition rule applies
- Input read:
 - Must read past end of the input before accepting a string
- Two choices only:
 - Every input is either rejected or accepted

More examples:

- Accepts any string that has alternating a's and b's that begins and ends with an a
- More precisely: $\{a(ba)^n : n \ge 0\}$
- Using Regular Expression notation: a (ba)*

More examples

- Accepts only one string: *ab*
- More precisely: {*ab*}
- Regular expression: *ab*
- No cycles gives a finite language

- Accepts ab followed by strings of a's 0 or more
- More precisely: $\{ab(a)^n : n \ge 0\}$
- Regular expression: *aba**
- Needs states to remember that the first a and b were found

Another example

- Accepts any string of *a*'s
- More precisely: $\{a^n : n \ge 0\}$
- Regular expression: a*
- Initial state can also be a final state

- Accepts any string of a's, except aa
- More precisely: $\{a^n : n \ge 1 \text{ and } n \ne 2\}$
- Regular Expression: (a)|(aaa+)
- There can be more than one final state

- Either *a* then *b*'s then *c*, or *a* then *c*'s then *b*.
- More precisely: $\{ab^nc:n\geq 0\}\cup\{ac^nb:n\geq 0\}$
- Regular expression: (*ab*c*)|(*ac*b*)
- Nondeterministic!

Non-determinism

- What does it mean?
 - Machine has a choice of more than one legal move
 - Machine is able to explore all options
- Significance
 - Important theoretical idea
 - Nondeterminism arises with many computational models

Deterministic versus nondeterministic FSA

- Deterministic FSA: There is never any choice in the computation
- Equivalence (!):
 - Nondeterministic FSA are equivalent to deterministic FSA, i.e. for every FSA there is an equivalent deterministic FSA
 - Prove by means of a construction:

Construction

• What do we need to do?

 Create deterministic machines that simulate nondeterministic machines

• Let's have a closer look at our nondeterministic example...

Suppose we see an *a* first

Suppose we see a c next

Suppose we see a c next

And finally we see a b

The input is consumed and we are in a final state

Simulating indeterminism

- Finiteness is crucial:
 - Finite number of states
 - Finite number of possible sets of states
 - -2^n possible subsets of *n* objects
 - Use subset to record all possible states that could be reached
 - Run all computations of a nondeterministic machine in parallel

Simulating indeterminism

- Build new deterministic machine
 - One state for every subset
 - New transitions based on original machine
 - Next state determined by what original machine would do

Our example

BB Constructing a deterministic machine

- States: {q₀}, {q₁,q₂}, {q₂,q₃}, {q₁,q₄}, {q₃}, {q₄}
- Transition from $\{q_0\}$ to $\{q_1, q_2\}$ on a
- Transition from $\{q_1,q_2\}$ to $\{q_1,q_4\}$ on c
- Transition from $\{q_1,q_4\}$ to $\{q_3\}$ on b
- Transition from $\{q_1,q_2\}$ to $\{q_2,q_3\}$ on b
- Transition from $\{q_2, q_3\}$ to $\{q_4\}$ on c

BB Constructing a deterministic machine

- Initial state is { q_0 }
- Any set containing q_3 or q_4 is final

Equivalent deterministic FSA

Stepping back ...

- What did we just do?
 - -We showed something very general
 - Two classes of machines are equivalent
 - -Based on a general simulation
 - -This is an important idea