
Mathematical Concepts (G6012)

Thomas Nowotny
Chichester I, Room CI-105
Office hours: Mondays 10:00-12:00
T.Nowotny@sussex.ac.uk

Computing Machines

Last time: Regular languages

•  A regular language can be defined like this
(over an alphabet):
– The empty language is regular

– The singleton language is regular ()
–  If and are regular languages, then

(union) and (concatenation) and
(Kleene star) are regular.

– No other languages are regular

BB Example: Determine
whether a language is regular
•  Take the Alphabet and language

•  Is a regular language?

•  Need to show that it can be constructed by legal
operations () from (a) regular language(s)

•  Start: Singleton language is regular by
definition

•  The language can be generated as

•  Finally,

•  This proves that is a regular language.

Regular expressions

•  Regular expressions can be used to define
regular languages

•  A regular expression describes the legal
word in a language by a matching
operation:

Regular expressions

–  ‘a’ matches the symbol ‘a’ in the alphabet
– The ‘|’ denotes alternatives (Boolean (x)or)
– Brackets ‘(‘ and ‘)’ are used for grouping

–  ‘*’ matches zero or more of the preceding
symbol

–  ‘+’ matches one or more of the preceding
symbol

–  ‘?’ matches 0 or 1 of the preceding symbol

Precedence of operators

Precedence Operator
Highest ()
Medium ? * +
Lowest |

FINITE STATE AUTOMATA
(FSA)

Introduction

•  FSA are examples of a model of
computing or an (abstract) computing
machine

•  Models of computing are how computer
scientists make sense of the world

•  Many models of computing have been
suggested

•  FSA are in a sense the most simple ones

FSA: General Characteristics

•  Discrete inputs & possibly outputs

•  System in one of a finite number of
internal configurations

•  State encodes information about all past
inputs needed to determine behaviour of
system on subsequent inputs

Typical example 1

•  Control mechanism of an elevator

•  Input is requests for service

•  State is current floor & direction of motion

•  Does not record history of satisfied
requests

•  Unsatisfied input is unordered collection of
requests

Typical Example 2

•  Lexical Analysis:
Transform a string of characters into a
sequence of (legal) tokens:

“x+501 = foo”

(id(x),plus,num(501),equals,id(foo)

(This is something a compiler needs to do)

Focus on (language) parsing

We are interested in the following type of
machine (for now):

Input string

Machine

accept reject

Computation

?

Definition of a (deterministic)
Finite State Automaton (FSA)
•  An FSA consists of a finite number of states q0,

q1,q2, …, qn and an input “tape” with input
symbols or tokens

•  The FSA is in one state at a time, there is one
initial state and at least one final state

•  Symbols on the input tape are consumed one by
one

•  For each state there is a finite set of rules for
input-dependent state transitions (these depend
only on the current state and the current input)

Graphic Representation

q1 q0

1

0

1

Initial state
(incoming
arrow)

Final state
(double line)

Input token

Transition
rule

Idea of FSA

•  Description of a decision process

•  Is a string acceptable or not?

•  All acceptable strings form a language (as
we have discussed before)

How it works

q1 q0

1

0

1
q0 q1

1 0 1 0

Input tape:

Automaton:

What words does
this automaton
accept?

Protocol of a computation

We can document the computation I just
showed as a list of states and input positions:

1 0 1 0

Input: State:

q0

1 0 1 0 q1

1 0 1 0 q1

1 0 1 0 q1

1 0 1 0 q1
Final state –
machine halts

Initial state

Outcomes of a FSA computation

•  Accepting computation:
Computation in which the machine
reaches a final state and reads all the
input.

•  Non-accepting computation:
Computation in which either the machine
gets stuck before end of input or finishes
in a non-final state.

What’s accepted -

•  An automaton defines a language:
Set of all strings which when given as
input give rise to an accepting computation

•  The family of languages accepted by any
FSA:
Collection of all languages which some
finite state machine accepts. – Turns out
to be the family of regular languages

Some comments

•  Getting stuck:
– no more input available or
– no transition rule applies

•  Input read:
– Must read past end of the input before

accepting a string
•  Two choices only:

– Every input is either rejected or accepted

More examples:

q0 q1
a

b

•  Accepts any string that has alternating a’s and b’s
that begins and ends with an a

•  More precisely:
•  Using Regular Expression notation: a (ba)*

More examples

q0 q2 b q1 a

•  Accepts only one string: ab
•  More precisely: {ab}
•  Regular expression: ab
•  No cycles gives a finite language

Adding a cycle

q0 q2 b q1 a

a

•  Accepts ab followed by strings of a’s – 0 or
more

•  More precisely:
•  Regular expression: aba*
•  Needs states to remember that the first a and b

were found

Another example

q0

a

•  Accepts any string of a’s
•  More precisely:
•  Regular expression: a*
•  Initial state can also be a final state

Several final states

q0 q1 a q2 a q3 a

a

•  Accepts any string of a’s, except aa
•  More precisely:
•  Regular Expression: (a)|(aaa+)
•  There can be more than one final state

Indeterministic
FSA

q0

q4

c

q2
a

q3 a q1

b

b

c

•  Either a then b’s then c, or a then c’s then b.
•  More precisely:
•  Regular expression: (ab*c)|(ac*b)
•  Nondeterministic!

Non-determinism

•  What does it mean?
– Machine has a choice of more than one legal

move
– Machine is able to explore all options

•  Significance
–  Important theoretical idea
– Nondeterminism arises with many

computational models

Deterministic versus
nondeterministic FSA
•  Deterministic FSA: There is never any

choice in the computation
•  Equivalence (!):

– Nondeterministic FSA are equivalent to
deterministic FSA, i.e. for every FSA there is
an equivalent deterministic FSA

– Prove by means of a construction:

Construction

•  What do we need to do?
– Create deterministic machines that simulate

nondeterministic machines

•  Let’s have a closer look at our
nondeterministic example...

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

Suppose we see an a first

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

Suppose we see a c next

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

Suppose we see a c next

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

And finally we see a b

Example revisited

q0

q4

c

q2
a

q3 a q1

b

b

c

The input is consumed and we are in a final
state

Simulating indeterminism

•  Finiteness is crucial:
– Finite number of states
– Finite number of possible sets of states
– 2n possible subsets of n objects
– Use subset to record all possible states that

could be reached
– Run all computations of a nondeterministic

machine in parallel

Simulating indeterminism

•  Build new deterministic machine
– One state for every subset
– New transitions based on original machine
– Next state determined by what original

machine would do

Our example

q0

q4

c

q2
a

q3 a q1

b

b

c

BB Constructing a deterministic
machine
•  States: {q0}, {q1,q2}, {q2,q3}, {q1,q4}, {q3},

{q4}
•  Transition from {q0} to {q1, q2} on a
•  Transition from {q1,q2} to {q1,q4} on c
•  Transition from {q1,q4} to {q3} on b
•  Transition from {q1,q2} to {q2,q3} on b
•  Transition from {q2,q3} to {q4} on c

BB Constructing a deterministic
machine

•  Initial state is { q0 }
•  Any set containing q3 or q4 is final

Equivalent deterministic FSA

q0

q1,q4 q1

q2,q3

a
q1,q2

b

c

b
b

q2

c
c

q4

q3
b

c
c

b

Stepping back …

•  What did we just do?
– We showed something very general
– Two classes of machines are equivalent
– Based on a general simulation
– This is an important idea

