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REVISIONS 



FUNDAMENTALS 



Numbers 

• There are several number systems: 

     – the natural numbers 
    – the integers 
    – the rational numbers 
    – the real numbers 
    – the complex numbers 

• They contain each other 
 

 

Read:  

“is contained in” 

“is subset of” 



a= 0; 

for ( j=1; j <= 3; j= j + 1) { 

    a= a+xj  

} 

Summation notation (     notation) 

Definition: 

summation index lower limit 

upper limit 

It is like a “for” loop: 

Note: Incre- 

ment always 

by 1! 

The empty sum is 0 



Product notation 

Definition: 

Example: 

Think about a for loop, but multiplication inside, 

instead of summation: 

p= 1; 

for ( j=1; j <= 5; j= j + 1) { 

    p= p*aj  

} 

The empty product is 1 



Manipulating sums 

(bracketing is 

implied but 

doesn’t matter) 

(sums can be 

“swapped”) 

(common factors can 

be “pulled out”) 



Manipulating sums 

• All these rules are the same that you learned 
in school without the sigma-notation, e.g. 
 
 

• If in any doubt, use “…” and do what you 
learned earlier 

• This also applies to products 



PROOF BY CONTRADICTION 



Principle 

• We want to demonstrate that statement A is 
false 

• We assume that A is true 

• We show that “A true” implies “B true”, where 
B is known to be false 

• This is called a contradiction which can only be 
resolved if A actually is false 

• That completes the proof. 



Another example 

• Claim: For two positive real numbers a and b, 
 

 

• Proof: Assume  

Contradiction! 



PROOF BY INDUCTION 



Principle 

• We would like to show a claim P(n) for all 
natural numbers n. 

• If we can show that P(1) is true 

• And we can show P(n) implies P(n+1) 

• Then P(n) is true for all n. 



Recipe: Induction 

• Write down the claim you are trying to prove 

• Induction start: Show the claim is true for n=0 
(or n=1 depending on problem) 

• Induction assumption: Assume the claim is 
true for n. Write it down for n as a reminder. 

• Induction step: Show that the claim is true for 
n+1 using that it is true for n 



Another example 
• Claim: 6n-1 is divisible by 5 for all n  

• Induction start: 
n = 0:   60-1 = 0 which is divisible by 5. 

• Induction Assumption:  
6n-1 is divisible by 5 for n, i.e. 6n-1 = 5k for some k 
∈ ℕ. Or, equivalently, 6n = 5k+1 

• Induction Step:Induction step: 
Use assumption here 

This is divisible by 5! 



Tips to remember 

• Sometimes it is easiest to “work from both sides” 
to complete the Induction Step 

• You must use the assumption, otherwise it’s not a 
proof by induction (and likely will not work). 

• Therefore, when doing the Induction Step, look 
for an opportunity to use the assumption 

• All three parts must be there: Start, Assumption 
& Step – otherwise it is meaningless 



SETS 



Summary 

• Notation to define a set 

• Cardinality 

• Relationships between sets: Subset, 
subsetEqual, superset, supersetEqual 

• Set operations: Union, intersection, 
subtraction, complement 

• Intervals 



Dictionary of set theory 

Symbol Meaning Symbol Meaning 

Element of Set of elements 

Subset Subtract, “without” 

Superset Complement 

Intersection Cardinality 

Union Empty set 

[a,b] Interval (a,b 

included) 

]a,b[ Interval (a,b 

excluded) 



Brackets do matter 

• Different brackets mean completely different 
things! 

All numbers of      

between x and y, 

including x and y. 

Infinitely many 

numbers! 

Literally, just the 

numbers x and y. 

2 numbers 



REGULAR EXPRESSIONS 



Fundamentals on Languages 

• Alphabet= set of symbols 

• Word= a sequence of symbols 

• Singleton word= word with one symbol 

• Language= set of words 

• Regular language= language assembled from 
singleton words using 

– Union 

– Concatenation 

– Kleene * 



Some examples for the operations 

• Union: 
 

• Concatenation: 
 

• Kleene star: 

Alphabet Language Language 



Regular expressions 

• A regular expression describes the legal words in 
a language by a matching operation: 

– ‘a’ matches the symbol ‘a’ in the alphabet 

– The ‘|’ denotes alternatives (Boolean (x)or) 

– Brackets ‘(‘ and ‘)’ are used for grouping 

– ‘*’ matches zero or more of the preceding symbol 

– ‘+’ matches one or more of the preceding symbol 

– ‘?’ matches 0 or 1 of the preceding symbol 

 



Precedence of operators 

Precedence Operator 

Highest  (  )  

Middle  ?  *  + 

Low  concatenation 

Lowest  | 



Quick test (common mistakes) 

• ab+ = ??? 

1. (ab)+ 

2. a(b+) 
 

• ab*|ba* = ??? 

1. ((ab)*)|((ba)*) 

2. (a(b*))|(b(a*)) 

3. a(b*|b)a* 

4. ((((ab)*)|b)a)* 

 



FINITE STATE AUTOMATA 



Finite State Automata (FSA) 

• Finite number of states 

• One Initial state 

• One ore more final states 

• Input tape 

• Transitions defined by an input symbol that is 
“consumed” 



DSA: Graphic Representation 

q1 q0 

1 

0 

1 

Initial state 

(incoming 

arrow) 

Final state 

(double line) 

Input token 

Transition 

rule 

1 0 1 0 

Input tape 



FSA and regular expressions 

FSA accept regular languages 

Regular expressions define regular languages 

 
For any regular expression we can find a FSA 

that accepts the corresponding language 

Some pointers: 

a*… 
qi 

a 

… 



More hints 

a+… 
qi 

a 

qj 
a 

a?… 
qi 

qj a 

qk … 

… 

… 



One more … 

(a|b)… 
qi 

qj a 

qk 
b 

… 

… 



Accepting computation 

• FSA must be in a final state 

• The input must have been consumed 

Error states 

• No rule applies for input symbol (stuck) 

• Tape is empty but not in a final state 



Other things about FSA 

• Deterministic/ indeterministic 

• Input symbols are consumed/disappear 

• Can use empty string for indeterministic FSA 



Non-determinism 

• Occurs whenever the same “situation” has 
several possible transitions 

• For FSA: A state has two rules with the same 
input symbol or a rule with the empty string 
which is not the only rule of the state. 

• Non-deterministic automata examine all 
possible computations to find a successful one 

• For FSA we showed that non-deterministic FSA 
are not more powerful than deterministic 
ones 



FINITE STATE TRANSDUCERS 



FST 

• FST are like FSA with one addition: 
Each input symbol is mapped to an output 
symbol, i.e. we have two tapes: Input tape and 
output tape 

• The output tape is filled left-to-right 

• Output tape has unlimited length 

• We allow the empty string as output, i.e. rules 
like a/ 

 

• Everything else as FSA, e.g. determinism, non-
determinism etc. 



FST: Graphical Representation 

q1 q0 

1/a 

0/ 

1/a 

Initial state 

(incoming 

arrow) 

Final state 

(double line) 

Input token 

Transition 

rule 

1 0 1 0 

Input tape Output tape 

Output token 



PUSHDOWN AUTOMATA 



Pushdown (storage) 

• A special kind of list 

• Provides (in principle) unbounded storage 

• Last in, first out (LIFO) 

• Add/remove items only from one end (“top”) 

• Push – add an element to the top of PD 

• Pop – remove and element from the top of PD 

• No other editing or browsing allowed 



Example 

• It’s like a stack of paper where you stack stuff on the 
top and take it away from the top: 

push ‘a’ 

a 

push ‘a’ 

a 

a push ‘b’ 

b 

a 

a 

pop 

a 

a 

‘b’ 

etc 

• Alternative notation: 

( ) 

push ‘a’ 

(a) 

push ‘a’ 

(aa) 

push ‘b’ 

(baa) 

pop 

‘b’ 

(aa) 



Pushdown Automata (PDA) 

• FSA + pushdown storage (unlimited size) 

• Much more powerful than FSA 

• Can build a PDA to accept any context free 
language (language defined by a context free 
grammar see below for summary) 

• The empty string can be used both for input 
and for pushdown 

• There is no output 

• Non-determinism adds power here 



Graphical representation 

a,   /1 

q1 q0 
b, 1/ 

b, 1/ 

input 

Symbol 

popped Symbol 

pushed 



Accepting computation 

• Must be in a final state 

• The input must have been consumed 

• The pushdown must be empty 

Error states 

• No rule applies for input symbol (stuck) 

• Cannot pop correct symbol (error) 

(includes trying to pop a symbol other than 

from empty pushdown) 



Context-free grammar 

• Is defined through  

– one or more no-final symbols (one of them initial 
symbol), we always used ‘S’ 

– Productions (replacement rules) 

• A context free grammar defines a context-free 
language: All strings that can be produced by 
it 

• When asked to define a context-free grammar 
for a particular language, it must produce all 
words of the language and nothing else. 



Example 

• Grammar given by S with productions 

1. S        aSb 

2. S        ab 

• Generates the language 

• While 

1. S        aSb 

2. S         

Generates the language  

• (one contains the empty string, the other not) 

 



Example mistake 

• Define a context-free grammar for  

 

• Wrong solution: 

1. S        aS 

2. S        bS 

3. S       

• These rules generate all needed words, but 
also a lot of illegal ones 



Derivation tree 

• Generating a word can be visualised as a tree: 

S 

S 

S 

a 

a 

a 

b 

b 

b 



Back to PDA: Protocol of Computation 

• Can give “protocol of computation” by making 
a list of  

– States 

– Input tape content 

– Pushdown content 



(q0, aabb,   )   ↦ (q0, abb, 1) 

     ↦ (q0, bb, 11) 

     ↦ (q1, b, 1) 

     ↦ (q1,    ,    ) 

Example protocol of a computation 

• Pushdown here represented as a string 

of pushdown symbols 

State 
Input tape 

Content of PD 


