
Mathematical Concepts (G6012)

Thomas Nowotny

Chichester I, Room CI-105

Office hours: Tuesday 15:00 - 16:45

T.Nowotny@sussex.ac.uk

Lecture 22

mailto:A.K.Seth@sussex.ac.uk

REVISIONS

FUNDAMENTALS

Numbers

• There are several number systems:

 – the natural numbers
 – the integers
 – the rational numbers
 – the real numbers
 – the complex numbers

• They contain each other

Read:

“is contained in”

“is subset of”

a= 0;

for (j=1; j <= 3; j= j + 1) {

 a= a+xj

}

Summation notation (notation)

Definition:

summation index lower limit

upper limit

It is like a “for” loop:

Note: Incre-

ment always

by 1!

The empty sum is 0

Product notation

Definition:

Example:

Think about a for loop, but multiplication inside,

instead of summation:

p= 1;

for (j=1; j <= 5; j= j + 1) {

 p= p*aj

}

The empty product is 1

Manipulating sums

(bracketing is

implied but

doesn’t matter)

(sums can be

“swapped”)

(common factors can

be “pulled out”)

Manipulating sums

• All these rules are the same that you learned
in school without the sigma-notation, e.g.

• If in any doubt, use “…” and do what you
learned earlier

• This also applies to products

PROOF BY CONTRADICTION

Principle

• We want to demonstrate that statement A is
false

• We assume that A is true

• We show that “A true” implies “B true”, where
B is known to be false

• This is called a contradiction which can only be
resolved if A actually is false

• That completes the proof.

Another example

• Claim: For two positive real numbers a and b,

• Proof: Assume

Contradiction!

PROOF BY INDUCTION

Principle

• We would like to show a claim P(n) for all
natural numbers n.

• If we can show that P(1) is true

• And we can show P(n) implies P(n+1)

• Then P(n) is true for all n.

Recipe: Induction

• Write down the claim you are trying to prove

• Induction start: Show the claim is true for n=0
(or n=1 depending on problem)

• Induction assumption: Assume the claim is
true for n. Write it down for n as a reminder.

• Induction step: Show that the claim is true for
n+1 using that it is true for n

Another example
• Claim: 6n-1 is divisible by 5 for all n

• Induction start:
n = 0: 60-1 = 0 which is divisible by 5.

• Induction Assumption:
6n-1 is divisible by 5 for n, i.e. 6n-1 = 5k for some k
∈ ℕ. Or, equivalently, 6n = 5k+1

• Induction Step:Induction step:
Use assumption here

This is divisible by 5!

Tips to remember

• Sometimes it is easiest to “work from both sides”
to complete the Induction Step

• You must use the assumption, otherwise it’s not a
proof by induction (and likely will not work).

• Therefore, when doing the Induction Step, look
for an opportunity to use the assumption

• All three parts must be there: Start, Assumption
& Step – otherwise it is meaningless

SETS

Summary

• Notation to define a set

• Cardinality

• Relationships between sets: Subset,
subsetEqual, superset, supersetEqual

• Set operations: Union, intersection,
subtraction, complement

• Intervals

Dictionary of set theory

Symbol Meaning Symbol Meaning

Element of Set of elements

Subset Subtract, “without”

Superset Complement

Intersection Cardinality

Union Empty set

[a,b] Interval (a,b

included)

]a,b[Interval (a,b

excluded)

Brackets do matter

• Different brackets mean completely different
things!

All numbers of

between x and y,

including x and y.

Infinitely many

numbers!

Literally, just the

numbers x and y.

2 numbers

REGULAR EXPRESSIONS

Fundamentals on Languages

• Alphabet= set of symbols

• Word= a sequence of symbols

• Singleton word= word with one symbol

• Language= set of words

• Regular language= language assembled from
singleton words using

– Union

– Concatenation

– Kleene *

Some examples for the operations

• Union:

• Concatenation:

• Kleene star:

Alphabet Language Language

Regular expressions

• A regular expression describes the legal words in
a language by a matching operation:

– ‘a’ matches the symbol ‘a’ in the alphabet

– The ‘|’ denotes alternatives (Boolean (x)or)

– Brackets ‘(‘ and ‘)’ are used for grouping

– ‘*’ matches zero or more of the preceding symbol

– ‘+’ matches one or more of the preceding symbol

– ‘?’ matches 0 or 1 of the preceding symbol

Precedence of operators

Precedence Operator

Highest ()

Middle ? * +

Low concatenation

Lowest |

Quick test (common mistakes)

• ab+ = ???

1. (ab)+

2. a(b+)

• ab*|ba* = ???

1. ((ab)*)|((ba)*)

2. (a(b*))|(b(a*))

3. a(b*|b)a*

4. ((((ab)*)|b)a)*

FINITE STATE AUTOMATA

Finite State Automata (FSA)

• Finite number of states

• One Initial state

• One ore more final states

• Input tape

• Transitions defined by an input symbol that is
“consumed”

DSA: Graphic Representation

q1 q0

1

0

1

Initial state

(incoming

arrow)

Final state

(double line)

Input token

Transition

rule

1 0 1 0

Input tape

FSA and regular expressions

FSA accept regular languages

Regular expressions define regular languages

For any regular expression we can find a FSA

that accepts the corresponding language

Some pointers:

a*…
qi

a

…

More hints

a+…
qi

a

qj
a

a?…
qi

qj a

qk …

…

…

One more …

(a|b)…
qi

qj a

qk
b

…

…

Accepting computation

• FSA must be in a final state

• The input must have been consumed

Error states

• No rule applies for input symbol (stuck)

• Tape is empty but not in a final state

Other things about FSA

• Deterministic/ indeterministic

• Input symbols are consumed/disappear

• Can use empty string for indeterministic FSA

Non-determinism

• Occurs whenever the same “situation” has
several possible transitions

• For FSA: A state has two rules with the same
input symbol or a rule with the empty string
which is not the only rule of the state.

• Non-deterministic automata examine all
possible computations to find a successful one

• For FSA we showed that non-deterministic FSA
are not more powerful than deterministic
ones

FINITE STATE TRANSDUCERS

FST

• FST are like FSA with one addition:
Each input symbol is mapped to an output
symbol, i.e. we have two tapes: Input tape and
output tape

• The output tape is filled left-to-right

• Output tape has unlimited length

• We allow the empty string as output, i.e. rules
like a/

• Everything else as FSA, e.g. determinism, non-
determinism etc.

FST: Graphical Representation

q1 q0

1/a

0/

1/a

Initial state

(incoming

arrow)

Final state

(double line)

Input token

Transition

rule

1 0 1 0

Input tape Output tape

Output token

PUSHDOWN AUTOMATA

Pushdown (storage)

• A special kind of list

• Provides (in principle) unbounded storage

• Last in, first out (LIFO)

• Add/remove items only from one end (“top”)

• Push – add an element to the top of PD

• Pop – remove and element from the top of PD

• No other editing or browsing allowed

Example

• It’s like a stack of paper where you stack stuff on the
top and take it away from the top:

push ‘a’

a

push ‘a’

a

a push ‘b’

b

a

a

pop

a

a

‘b’

etc

• Alternative notation:

()

push ‘a’

(a)

push ‘a’

(aa)

push ‘b’

(baa)

pop

‘b’

(aa)

Pushdown Automata (PDA)

• FSA + pushdown storage (unlimited size)

• Much more powerful than FSA

• Can build a PDA to accept any context free
language (language defined by a context free
grammar see below for summary)

• The empty string can be used both for input
and for pushdown

• There is no output

• Non-determinism adds power here

Graphical representation

a, /1

q1 q0
b, 1/

b, 1/

input

Symbol

popped Symbol

pushed

Accepting computation

• Must be in a final state

• The input must have been consumed

• The pushdown must be empty

Error states

• No rule applies for input symbol (stuck)

• Cannot pop correct symbol (error)

(includes trying to pop a symbol other than

from empty pushdown)

Context-free grammar

• Is defined through

– one or more no-final symbols (one of them initial
symbol), we always used ‘S’

– Productions (replacement rules)

• A context free grammar defines a context-free
language: All strings that can be produced by
it

• When asked to define a context-free grammar
for a particular language, it must produce all
words of the language and nothing else.

Example

• Grammar given by S with productions

1. S aSb

2. S ab

• Generates the language

• While

1. S aSb

2. S

Generates the language

• (one contains the empty string, the other not)

Example mistake

• Define a context-free grammar for

• Wrong solution:

1. S aS

2. S bS

3. S

• These rules generate all needed words, but
also a lot of illegal ones

Derivation tree

• Generating a word can be visualised as a tree:

S

S

S

a

a

a

b

b

b

Back to PDA: Protocol of Computation

• Can give “protocol of computation” by making
a list of

– States

– Input tape content

– Pushdown content

(q0, aabb,) ↦ (q0, abb, 1)

 ↦ (q0, bb, 11)

 ↦ (q1, b, 1)

 ↦ (q1, ,)

Example protocol of a computation

• Pushdown here represented as a string

of pushdown symbols

State
Input tape

Content of PD

