Mathematical Concepts (G6012)

Lecture 22

Thomas Nowotny Chichester I, Room CI-105 Office hours: Tuesday 15:00 - 16:45 T.Nowotny@sussex.ac.uk

REVISIONS

FUNDAMENTALS

Numbers

• There are several **number systems**: \mathbb{N} – the **natural** numbers \mathbb{Z} – the **integers** \mathbb{Q} – the **rational** numbers \mathbb{R} – the **real** numbers Read[.] \mathbb{C} – the **complex** numbers "is contained in" "is subset of" They contain each other

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \stackrel{\prime}{\subset} \mathbb{C}$$

Summation notation (\sum notation)

The empty sum is 0

Product notation

Definition:
$$\prod_{j=1}^{5} a_j := a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5$$

Think about a for loop, but multiplication inside, instead of summation:

Example:

$$\prod_{j=1}^{5} j = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$$

The empty product is 1

Manipulating sums

(bracketing is implied but doesn't matter)

$$=\sum_{j=1}^{m}\left(\sum_{i=1}^{n}x_{ij}\right)$$

(sums can be "swapped")

 $k \cdot \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} k \cdot x_i$

(common factors can be "pulled out")

Manipulating sums

• All these rules are the same that you learned in school without the sigma-notation, e.g.

$$k \cdot (x_1 + x_2) = k \cdot x_1 + k \cdot x_2$$

- If in any doubt, use "..." and do what you learned earlier
- This also applies to products

PROOF BY CONTRADICTION

Principle

- We want to demonstrate that statement A is false
- We assume that A is true
- We show that "A true" implies "B true", where B is known to be false
- This is called a contradiction which can only be resolved if A actually is false
- That completes the proof.

Another example

- Claim: For two positive real numbers a and b, $a+b \ge 2\sqrt{ab}$
- Proof: Assume $a + b < 2\sqrt{ab}$

$$\Rightarrow (a+b)^2 < 4ab$$

$$\Rightarrow a^2 + b^2 + 2ab < 4ab$$

$$\Rightarrow a^2 + b^2 - 2ab < 0$$

$$\Rightarrow (a-b)^2 < 0$$
 Contradiction

PROOF BY INDUCTION

Principle

- We would like to show a claim P(n) for all natural numbers n.
- If we can show that P(1) is true
- And we can show P(n) implies P(n+1)
- Then P(n) is true for all n.

Recipe: Induction

- Write down the claim you are trying to prove
- Induction start: Show the claim is true for n=0 (or n=1 depending on problem)
- Induction assumption: Assume the claim is true for n. Write it down for n as a reminder.
- Induction step: Show that the claim is true for n+1 using that it is true for n

Another example

- Claim: 6ⁿ-1 is divisible by 5 for all n
- Induction start:

n = 0: $6^{0}-1 = 0$ which is divisible by 5.

- Induction Assumption:
 6ⁿ-1 is divisible by 5 for n, i.e. 6ⁿ-1 = 5k for some k
 ∈ N. Or, equivalently, 6ⁿ = 5k+1
- Induction Step:Induction step: $6^{n+1} - 1 = 6 \cdot 6^n - 1$ Use assumption here $= 6(5k+1) - 1 = 6 \cdot 5k + 6 - 1$ $= 6 \cdot 5k + 5 = 5(6k + 1)$ This is divisible by 5!

Tips to remember

- Sometimes it is easiest to "work from both sides" to complete the Induction Step
- You must use the assumption, otherwise it's not a proof by induction (and likely will not work).
- Therefore, when doing the Induction Step, look for an opportunity to use the assumption
- All three parts must be there: Start, Assumption
 & Step otherwise it is meaningless

SETS

Summary

- Notation to define a set
- Cardinality
- Relationships between sets: Subset, subsetEqual, superset, supersetEqual
- Set operations: Union, intersection, subtraction, complement
- Intervals

Dictionary of set theory

Symbol	Meaning	Symbol	Meaning
\in	Element of	{}	Set of elements
\subset, \subseteq	Subset	\	Subtract, "without"
⊃, ⊇	Superset	C	Complement
\cap	Intersection	card	Cardinality
U	Union	Ø	Empty set
[a,b]	Interval (a,b included)]a,b[Interval (a,b excluded)

Brackets do matter

Different brackets mean completely different things!

[x, y]

All numbers of \mathbb{R} between x and y, including x and y. Infinitely many numbers!

$$\{x, y\}$$

Literally, just the numbers x and y. 2 numbers

REGULAR EXPRESSIONS

Fundamentals on Languages

- Alphabet= set of symbols
- Word= a sequence of symbols
- Singleton word= word with one symbol
- Language= set of words
- Regular language = language assembled from singleton words using
 - Union
 - Concatenation
 - Kleene *

Some examples for the operations

Alphabet $S = \{a, b\}$

Language $\mathcal{A} = \{ ext{a}, ext{aa}\}$

Language $\mathcal{B} = \{b, bb\}$

- Union:
 - $\mathcal{A} \cup \mathcal{B} = \{a, aa, b, bb\}$
- Concatenation:
 - $\mathcal{A} \circ \mathcal{B} = \{ ab, abb, aab, aabb \}$
- Kleene star:

$$\mathcal{A}*=\{a,aa,aaa,aaaa,\ldots\}$$

Regular expressions

- A regular expression describes the legal words in a language by a matching operation:
 - 'a' matches the symbol 'a' in the alphabet
 - The '|' denotes alternatives (Boolean (x)or)
 - Brackets '(' and ')' are used for grouping
 - '*' matches zero or more of the preceding symbol
 - '+' matches one or more of the preceding symbol
 - '?' matches 0 or 1 of the preceding symbol

Precedence of operators

Precedence	Operator
Highest	()
Middle	? * +
Low	concatenation
Lowest	

Quick test (common mistakes)

- ab+ = ???
 - 1. (ab)+
 - 2. a(b+)
- ab*|ba* = ???
 - 1. ((ab)*)|((ba)*)
 - 2. (a(b*))|(b(a*))
 - 3. a(b*|b)a*
 - 4. ((((ab)*)|b)a)*

FINITE STATE AUTOMATA

Finite State Automata (FSA)

- Finite number of states
- One Initial state
- One ore more final states
- Input tape
- Transitions defined by an input symbol that is "consumed"

DSA: Graphic Representation

FSA and regular expressions

FSA accept regular languages Regular expressions define regular languages

For any regular expression we can find a FSA that accepts the corresponding language

Accepting computation

- FSA must be in a final state
- The input must have been consumed

Error states

- No rule applies for input symbol (stuck)
- Tape is empty but not in a final state

Other things about FSA

- Deterministic/ indeterministic
- Input symbols are consumed/disappear
- Can use empty string for indeterministic FSA

Non-determinism

- Occurs whenever the same "situation" has several possible transitions
- For FSA: A state has two rules with the same input symbol or a rule with the empty string which is not the only rule of the state.
- Non-deterministic automata examine all possible computations to find a successful one
- For FSA we showed that non-deterministic FSA are not more powerful than deterministic ones

FINITE STATE TRANSDUCERS

FST

- FST are like FSA with one addition: Each input symbol is mapped to an output symbol, i.e. we have two tapes: Input tape and output tape
- The output tape is filled left-to-right
- Output tape has unlimited length
- We allow the empty string as output, i.e. rules like a/
- Everything else as FSA, e.g. determinism, nondeterminism etc.

PUSHDOWN AUTOMATA

Pushdown (storage)

- A special kind of list
- Provides (in principle) unbounded storage
- Last in, first out (LIFO)
- Add/remove items only from one end ("top")
- Push add an element to the top of PD
- Pop remove and element from the top of PD
- No other editing or browsing allowed

Example

 It's like a stack of paper where you stack stuff on the top and take it away from the top:

Alternative notation:

push 'a' push 'b' pop () \rightarrow (a) \rightarrow (aa) \rightarrow (baa) \rightarrow (aa) 'b' (aa)

Pushdown Automata (PDA)

- FSA + pushdown storage (unlimited size)
- Much more powerful than FSA
- Can build a PDA to accept any context free language (language defined by a context free grammar see below for summary)
- The empty string can be used both for input and for pushdown
- There is no output
- Non-determinism adds power here

Graphical representation

Accepting computation

- Must be in a final state
- The input must have been consumed
- The pushdown must be empty

Error states

- No rule applies for input symbol (stuck)
- Cannot pop correct symbol (error) (includes trying to pop a symbol other than *€* from empty pushdown)

Context-free grammar

- Is defined through
 - one or more no-final symbols (one of them initial symbol), we always used 'S'
 - Productions (replacement rules)
- A context free grammar defines a context-free language: All strings that can be produced by it
- When asked to define a context-free grammar for a particular language, it must produce all words of the language and nothing else.

Example

- Grammar given by S with productions
 - 1. $S \mapsto aSb$
 - 2. $S \mapsto ab$
- Generates the language $\{a^nb^n : n > 0\}$
- While
 - 1. $S \mapsto aSb$
 - 2. S $\mapsto \epsilon$

Generates the language $\{a^n b^n : n \ge 0\}$

• (one contains the empty string, the other not)

Example mistake

- Define a context-free grammar for
 - $\{a^n b^{2n} : n \ge 0\}$
- Wrong solution:
 - 1. S \mapsto aS
 - 2. $S \mapsto bS$
 - 3. S $\mapsto \epsilon$
- These rules generate all needed words, but also a lot of illegal ones

Derivation tree

• Generating a word can be visualised as a tree:

Back to PDA: Protocol of Computation

- Can give "protocol of computation" by making a list of
 - States
 - Input tape content
 - Pushdown content

Example protocol of a computation

State Input tape

$$(q_0, aabb, \epsilon) \mapsto (q_0, abb, 1)$$

 $\mapsto (q_0, bb, 11)$
 $\mapsto (q_1, b, 1)$
 $\mapsto (q_1, \epsilon, \epsilon)$

 Pushdown here represented as a string of pushdown symbols