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Introduction 
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Smile … 

• I will record all lectures and make 

recordings available on Study Direct 

• Don’t worry – only I will be visible in the 

recordings 

 

• We do record attendance – please fill in 

the attendance sheet 



Notes 

• Taking notes? – Yes, but don’t copy the 

slides: Slides will always be provided 

• Note taking is good to  

– Note down questions 

– Note down something you understood that is not on 

the slides 

– Note down if you need to think about something later 

– Try something while I am doing it on the blackboard / 

camera 



About the Blackboard / Camera 

• I will use the blackboard to develop stuff, 

because it is easier to follow along 

• Most of the stuff I do on the blackboard is 

in the lecture notes. 

• But I will also use the blackboard to 

answer questions in detail – some of that 

material might not be in the notes 



Blackboard 

• In the slides I will mark content that I have 

prepared for the blackboard with BB, and there 

are (sometimes hidden!) slides with the content 

(also, sometimes added after lecture) 

• Lectures will be final & available on study direct 

on the evening of the day they were given. 

• If you see the mark BG it is additional 

BackGround 



Course structure 

• 2 Lectures/week (1 hour each), 1 hour 

“Seminar” in 5 groups, 2 “Problem Sets” 
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Problem sets due on Thursdays, 16:00 in the School Office 



Course Content 

• What is this course going to cover? 

– Basic minimum maths skills that you will need 

to study computer science effectively 

– “Models of computing”: Automata theory 



Topics 

Math Fundamentals 

Introduction  

Numbers 

Set theory, intervals 

Proof by induction   

Vectors and matrices   

Norms and distances 

Functions    

Differentiation & Integration 

Numerical integration 

Probability theory 

Statistics 

 

Automata 

Regular Expressions 

Finite state models  

Pushdown automata 

Turing machines 

The RAM model  



Seminars 

• Are there to answer questions 

• Will cover more examples 

• Will discuss coursework solutions 

• Will discuss problems similar to 

coursework problems and similar to 

unseen exam 

• Lab classes will be given by myself and 

GTAs. Attendance will be recorded.  



Assessment 

• Problem sets: 50%  

• 2 sets, due weeks 6 and 12 

• 25% weighting each. 

• Unseen exam: 50% 

• In the January assessment period. 



Coursework: Problem sets 

• Problem sets for course work will be posted 

online on Study Direct.   

• You should work on the problems on your own 

and in your own time and submit problem sets 

on Thursdays before 16:00 in the School office. 

• “Last retrieval date” will be the Friday (one day 

late) after the coursework was due 

• Model answers will be available from Tuesday 

 



Matlab 

• Matlab can be very useful 

• But: You will not be required to use matlab in 

this course 

• You are welcome to use it to cross-check your 

workings but expected to do them on your 

own first 

• I might occasionally provide an example you can 

run in matlab for demonstration or additional 

exercises that may be fun 



How to use Matlab … 

• Matlab is installed on all Informatics 

computers 

• Start -> All programs -> Matlab R2013a* 

• I have put a small tutorial on study direct 

• Built-in Matlab help is excellent 

 

*search for “matlab” in “Start” if you can’t find it 



Textbook(s) 

• Everyone learns differently 

• In principle, you can do this module 

without textbook. I will provide online 

resources and full lecture notes on Study 

Direct. 

• If you do like to work with a textbook: I 

have reserved copies of three books in the 

library: 

 



Textbook(s) 

• David Makinson: Sets, Logic and Maths for Computing 

(Undergraduate Topics in Computer Science), Springer 

2nd ed. (2012) 

(for the first parts and some of the Calculus) 

• John A. Vince: Mathematics for Computer Graphics 

(Undergraduate Topics in Computer Science), Springer 

(for the linear Algebra, i.e. vectors and matrices)  

• John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman: 

Introduction to Automata Theory, Languages, and 

Computation, Addison-Wesley 

(for the automata content) 



Important 

• Please check your email regularly (daily) as 

important messages may be distributed 

exclusively by email 

• Please do not collude or plagiarise when working 

on assessed coursework* 

• If you are having difficulties please let me know 

sooner rather than later 

*If in any doubt about this, see 

sussex.ac.uk/academicoffice/resources/misconduct 

and links therein. 



NUMBER SYSTEMS 



What is a number? 

• Leopold Kronecker:  “God created the natural 

numbers, and all the rest is the work of man.” 

• There are several number systems: 

     – the natural numbers 

    – the integers 

    – the rational numbers 

    – the real numbers 

    – the complex numbers 

… (e.g. quaternions) 



    : The natural numbers 

•    = {1,2,3 …}, operations “+”, “-”, “∙”, “/” 

• If one adds or multiplies two natural 

numbers, the result is another natural 

number: 

“     is closed under addition and 

multiplication.” 

•     is not closed under subtraction or 

division: 53 3/1



Formal definition 

      can be generated with a successor 

relation: 

Any natural number may be obtained 

from 1 by applying the ‘successor 

relation’ [S(n) = n+1] a finite number of 

times. 

If 0 is included one (often) writes   



   : The integers 

•     = { …,-2, -1, 0, 1,2, … } 

•      stands for ‘Zahlen’, German for ‘numbers’. 

• Unlike     , the integers      are closed under 

subtraction. 

• But, something is lost: It is not true that any 

integer can be obtained from 1 by applying  the 

‘successor relation’ [S(n) = n+1] a finite number 

of times. 

Rather, both successors and predecessors must 

be considered. 



   : The rational numbers 

•      = all those numbers that can be written in the 

form a / b, where a  and b are integers 

a = “nominator”, b = “denominator” 

• Unlike     ,      is closed under division (so long as 

b ≠0 ). 

• Unlike      and     ,       has an ordering (“less 

than” or “greater than” relation) but no successor 

relation: 

Between any two rational numbers there is 

another. Proof: BB 

 



Quick refresher: Manipulating 

fractions (rational numbers) 

• Multiplying: 

 

 

• Dividing: 

 

 



Quick refresher: Manipulating 

fractions (rational numbers) 

• Addition & Subtraction: 

 



BB  Between and two rational 

numbers lies another 
 

• Given two rational numbers, we can write 

them      and      and assume without 

 

loss of generality that            .  

• We can rewrite these as   



 

• But then we also know 

 

• … and therefore 

 

• In other words               is between    and  

 

BB  Between and two rational 

numbers lies another 



   : The real numbers 

• There are many numbers that you know 

that are not rational numbers 

• They have quite simple “physical 

(geometrical) interpretations”  

• Can you think of any? 



   : The real numbers 

• There are many numbers that have physical 

interpretations but which are not rational 

numbers. 

 

• For example: 

           , 
 

 

 

1 

1 

1 



Proof by contradiction: 

 

•       is not a rational number: BB 



BB: Lemma on even numbers 

Lemma: “    is even” implies “     is even” 

Proof: 

Assume    is odd, i.e.                      for   

Then,  

 

Therefore,     is odd. 

Inverting “    is odd” implies “     is odd”, we obtain: 

“    is even” implies “      is even”. 

q.e.d. 



BB: Note 

• We have used logic in the last part, the so-

called contra-positive: 

A implies B is equivalent to (not B) implies 

(not A) 

• In symbols: 



BB:            : Proof by contradiction 

• Assume        is rational, i.e.,                 , where a 

and b are integers, expressed in lowest terms (in 

irreducible form). 

• Then,                  , and  

• Since      is an integer,       is even. 

• Since the square of any odd number is odd, and 

     is even, then    must be even. 

• So we can write             , then               , hence    

is even and, as before    is even. 



BB: Proof continued … 

• If both     and     are even,          wasn’t  

expressed in lowest terms! 

• This is a contradiction. 

 

        is not a rational number! 


