Mathematical Concepts (G6012)

Lecture 10

Thomas Nowotny

Chichester I, Room CI-105

Office hours: Tuesdays 15:00-16:45
T.Nowotny@sussex.ac.uk

Church/Turing Thesis

« Every computable function can be computed by
a Turing Machine

* |.e.: Turing Machines are universal computing
machines

* Every problem that can be solved by an
algorithm can be solved by a Turing machine

* Where is the power coming from?
The read/write input/output tape !

More about TM

* The tape can be used to record any data
for later access

* There is always space available after last
non-blank location

* There is no limit how often the tape is
accessed

* Your PC is less powerful than a TM —
why”? Because it has finite memory

Efficiency

« TM are universal but not efficient
* Progress can be really slow

* Looking up memory involves sequential
access — the opposite of efficiency

Managing complexity

* One can encapsulate useful functionality
In “separate” sub-routines

* Collection of states set aside for each
subroutine

* (similar to structured programming
approach)

 However, TM are mainly useful as a
theoretical concept, not for solving real
world problems!

Variations

e There are common variants of TM:

— Multiple tapes
— Single-side infinite tape
— Non-deterministic TM

* |t can be shown that these have all
equivalent power to the TM discussed
here.

Example: Non-deterministic TM

 To simulate a non-deterministic TM:

— 3 tapes:

— One tape for original input

— One tape for the choice sequence: (2,3,1,2)
— One tape to run on current choice sequence

* For this to work we need to enumerate all
possible sequences of choices (0k, as
states are finite)

Another equivalence

* The “2 pushdown” automaton is equivalent
to the Turing Machine:

— One pushdown holds tape contents to left of
tape head

— One pushdown holds tape contents to the
right of tape head

— As tape head moves, symbols shift across
from one pushdown to another

More generally ...

 Chomsky Hierarchy (for language
classes):

— Type 0: Languages accepted by Turing
Machines

— Type 1: Languages accepted by Turing
Machines with linear bounded storage

— Type 2: Languages accepted by Pushdown
Automata

— Type 3: Languages accepted by Finite State
Automata

Alternative Characterization

* Equivalent grammar formalisms:

— Type 0: Languages generated by unrestricted
grammars

— Type 1: Languages generated by context-
sensitive grammars

— Type 2: Languages generated by context-free
grammars

— Type 3: Languages generated by regular
grammars

Equivalence and Inclusions

BB: Full names and acronyms

TM = Turing Machine

LBTM = Linearly bounded Turing
Machine

PDA = Pushdown Automaton
FSA = Finite State Automaton

UG = Unrestricted Grammar

CSG = Context Sensitive
Grammar

CFG = Context Free Grammar

RG = Regular Languages

VECTORS AND MATRICES

Why matrix algebra?

« Multimedia/Design/Art.: Computer graphics are
90% vectors and matrices

 Al: Artificial Neural Networks heavily depend on
vectors and matrices.

* Music: Discretised sound spectra are vectors;
digital filtering & enhancement depend on
matrices; modern compression (mp3 etc) is one
of the most maths-heavy problems in Informatics

VECTORS AND MATRICES

Vectors & Matrices

* A matrix or a vector is simply a way of
representing a structured collection of

numbers.

» Vectors are order 1 (rows, columns) and

can be used to represent

e points in space
* sound samples » directions in space
* general arrays » velocity

* lists of things
e datasets ...

Vectors & Matrices

» Matrices are order 2 (rectangles) and can
be used to represent

* Images

Datasets

Transformations of vectors

Parameters of Artificial Neural Networks

Vector Notations

arrow underline

—1 \ \ T

3 c R? T =X=2 = x9 c R3
9 / T
bold .

column vector r; € R

“component” —

(<5 3 1.1) € R3
:) € R Similar for all R"™
1 I2 I3

Row vector

Geometric interpretation

Vectors are (arrows to) points in space:
p 1
(1)

<?>15/£ |

-1 -05 0.5 1 x

O =
N

Multiplying numbers with vectors

FE€ER? and a € R

then a-Z € R’

1 a-xIr
a-r = a- o = a- To
I3 a- I3

Interpretation: BB

BB Interpretation

Multiplying with @ € R means

stretching (a > 1) or shortening (-1<a < 1)
and/or mirroring through
the center (a < 0)

Adding vectors

.I:—" 3
¥ € R® and i € R’

then £+ 9 € R°

- Y1
- Y2

- Y3

Example & Interpretation

Basis vectors

Every vector can be expressed as a combination
of basis vectors

1 0 0
eg1=1 0 e = | 1 es= 1| O
0 0 1
L1
Xo =21 -€1+ To €9+ x3€3

Geometric interpretation

Vectors are (arrows to) points in space:

1>=1~51+1°52

X, This just formalises
that if going from O to
a point you can go in
9 x direction first, then
-1t R . T
In y direction instead
of going diagonal ...

Subtraction

7N s S\
- i =%
N—
N—
|
\}, d;\ b
— O
~ e ~~—
™ 1
W o
- “ "
3
N <
S — .
N—
| AN

IS N N NS

Matrices

-1 5 —4
91 3 —45 | € M(3,3) isa3x3 matrix.
7 01 V2

capital letter / “entry”, "element’
/ ailp a2 Qs
A=A=| aan a2 axs |= (aij) € M(3,3)
\ a3z1 a32 as33

double \

underscore index: row first, column second

Tensors

Generalization:
Vector: 1-tensor
Matrix: 2-tensor

Example: 3-tensor

A = (aijk)
1=1,...,3
17=1,...,3 IS a 3x3x3 tensor
k=1,...,3 with 27 entries

(If you write it out it would be a cube of numbers)

Adding and subtracting matrices

« Same as for vectors ...

BB

* Interpretation not so direct: Operations on
vectors — next time.

BB Example: Subtractring a
matrix from an other matrix

Properties of +, -

A B, C € M(m,n)

Associativity
A+B+C=(A+B)+C=A+(B+ ()

Commutativity A+ B =B+ A

Properties of scalar
multiplication

A B, CeM(m,mn rseR

Compatibility with scalar operations
(multiplying with numbers)

r-(A+B)=r-A+r-B
(r+s)-A=r-A+s-A

Matrix-Vector Multiplication

A € M(@3,3) and 7% € R?
aix ai2 Qs X1

A- =\ a21 a2 as3 o | =
a1 @a32 as3 3

BB

BB Matrix-vector multiplication

11 Q12 a3 X1
Ax = | a1 a2 a3 xo| | =
asp as2 ass I3
111 T A12X2 T Q1373
a21r1 T A22X2 T Q2373
31Xy T+ az2r2 T a33x3

The result is again a vector!

BB Matrix-vector multiplication

aip ai2 ais X1
Axr = | |a21 a22 a3 T2 —
aszy az2 ass X3

ai1i1x1 +~aij2x2 + ai13xr3

a21rx1 + a22x2 + A231x3

azi1xri1 +— a3z2xr2 +— aA33x3

The result is again a vector!

BB Matrix-vector multiplication

11 Q12 a3 X1
Ax = | a1 a2 a3 xo| | =
aszy asz2 ass I3
111 T A12X2 T 1373
2121 T A22X2 T Q2373
a31x1 T+ a3z2r2 T A33x3

The result is again a vector!

Properties of Matrix-Vector
Multiplication

Linear (both ways)
A(Z +) = AT + Af
(A+ B)# = A% + BZ
Associative:

(A- B)# = A(B?)

Interpretation

Matrices are transformations (linear functions)

aip ai2 ais

A=A=| az a2 azz | € M@33)
a3y az2 ass
A-R3 s R A maps vectors from R? to
vectors in R?
—» — A

> Matrix- vector multiplication

Matrix as a transformation:
Can we see what it does?

a1 a12 Q13 1
a1 @22 G23 0 =
asz1 @32 a33 0

BB

BB Matrix as a transformation

aii
a1
asi
aii
a1
asi
aii
a1
asi

Column of the
matrix are

the images of the
basis vectors!

Matrix as a transformation

The columns of the matrix are the vectors
the basis vectors

are mapped to!

Example: BB

BB What does this matrix do?

. 0
es=1 O
1

Rotation by 90° around z axis!

Remember: Basis vectors “span”
the space

Every vector can be expressed as the sum
of basis vectors:

1 1 0 0
xo2 | =21 | 0 | +22| 1 | +23| O
I3 0 0 1

X = T1€] + T2€2 + T3€3

So we can see how a matrix defines a mapping
of the whole space.

Reminder: Summation notation

_— upper limit

3
Definition: Z Tj =1+ T2+ T3
=l ~ o Note: Incre-
summation index lower limit ment always
by 1! /

It is like a “for” loop: | a= 0; /
for(j=1;j<=3;j=j+1){
Some alternative a= a+X
notations BB ;

Matrix-vector Multiplication

3

(AZ), E aijTj = Qi1T1 + Q22 + A;3T3
1=1

.. simplifies many calculations.

