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Why olfaction of insects?

 Biological sensory systems have an amazing
performance

* Insect olfaction is a good model to understand
Sensory processing

- The systems are comparably small and
experimentally accessible

— Structure is very similar across species
- Many recent advances (Nobel prize 2004)
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Main olfactory pathway anatomy
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I Olfactory Receptors

I Odorant Receptor
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I Early processing

» Each olfactory receptor neuron expresses one
receptor type

* All olfactory receptor neurons of the same type
converge onto the same glomerulus

* Projection neurons receive inputs from one
glomerulus

Odors are encoded as overlapping patterns of
projection neuron activity.
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I In Richard Axel's words

I “The elucidation of an olfactory map [...] leaves

us with a different order of problems. Though we
may look at these odor-evoked images with our
brains and recognize a spatial pattern as unique
and can readily associate the pattern with a
particular stimulus, the brain does not have
eyes. ”

_ Richard Axel, Nobel lecture
In other words:

The algorithm of olfactory information

processing remains to be found.
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I A classical pattern recognition solution

Plastic

I | synapses A simple perceptron rule:

Train A to respond to odor X
(call it class 1)

... and hope that A does not
respond to any other odor

iInput
Y

)

(call it class -1)
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I The perceptron is a linear classifier

The hyperplane is
adjusted through
the training and
Hebbian learning

class 1

separating =
hyperplane w-T >k
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I Support Vector Machines (SVM)

I Cortes and Vapnik 1992,95: Support vector machine:
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I Linear Classification can fail

There is no line that

can separate green

Activity neuron x,

g from red.
O
Activity neuron X,

Dimension = number of neurons
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I Thomas Cover, 1965

“Classification is much more probable if the input

IS first cast into a high-dimensional space by a
non-linear transformation.”

Cover, T. (1965). Geometric and statistical properties of systems

of linear inequalities with applications in pattern recognition. |[EEE
T Elect. Comput., 14, 326.

This can be done by using a non-linear “Kernel function”
instead of the scalar productW * &

When used like this it is known as the “kernel trick”.

M. Aizerman, E. Braverman, and L. Rozonoer (1964).

"Theoretical foundations of the potential function method in pattern
recognition learning". Automation and Remote Control 25: 821-837
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Kernel trick
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I Typical kernels (transformations) used

I Polynomial (homogeneous): K (w, ) = (w0 - 3;)3'
I Polynomial (inhomogeneous): K(w,Z)=(w-2+ 1)’

Radial Basis Function (general):

K U.T) = — - S 2
Gaussian RBF: (W, %) = exp(—y [Z — w[")
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Hypothesis: The locust uses this idea
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Random input patterns
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Random connections
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McCulloch-Pitts neurons
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Classify one pattern from the rest

vk (t) =

—

Ny
projection
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Hebbian” connections
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I Classify one pattern from the rest

I McCulloch-Pitts neuron

2(t) = @(Zj vy (t — 1) — 0)

Induce a spike for 1 trained pattern
Don’t do anything for 99 others

N
— K(X,nyon —
cells
N, N, =1
projection outputs
neurons
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Example calculation

Probability for a Kenyon cell to be active, given n =k projection neurons fire

k
k _
Pl =11ne= k)= Y- () phes L=y )

=0
Probability for the number of active Kenyon cells, given ...

N.
P(ny:r|nx:k):(ry

e &

)P(yi —1|n, = k)" (1 - Plyi = 1| ng = k)™

Then the unconditioned probability is
(ny =) ZP ny =r|ng =k) P(ng = k)
Leading (after some simplification) to

E Ny = Ny pa:py<—a:(1 — pa:py<—x)
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Example result: Classification needs
sparse code

... and nature uses it!
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“Have many, but onIy Perez-Orive et al., Science (2002)

use a few”

Dr. Thomas Nowotny, IE

Centre for Computational Neuroscience and Robotics Dt
University of Sussex



I Classify classes of inputs

I « 10 classes of inputs, 10 patterns each class

* “Winner-take-all” ouputs:
The output neuron with the strongest input

spikes

« Simulations in “Drosophila size”

_’h

100
projection
neurons

2500
Kenyon —
cells
100
outputs
Dr. Thomas Nowotny, IE

Centre for Computational Neuroscience and Robotics Dt
University of Sussex



Input pattern space




I There are “optimal design parameters”™
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I Summary

» Random connectivity is enough for
classification

I  This suggests support vector machines with
random kernels and local, “Hebbian” learning

* An optimal, sparse level of activity is
postulated and observed in biology

» These systems are freely scalable & our
analysis provides the parameters of choice

» These systems are extremely robust

Dr. Thomas Nowotny, IE

Centre for Computational Neuroscience and Robotics Dt
University of Sussex



I Shortcomings

I » The winner-take-all competition between output
neurons has to be implemented artificially

I « Gain control in the MB has to be implemented
artificially

These issues can be resolved with more realistic
spiking neuron models.
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Spiking nheuron models
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I Process of recognition: Naive locust

Random o 2500
@ CONNECLIONS o TRaSatit Sl Kenyon

Antennal lobe:
100 projection
neurons

“Hebbian”
ﬁxconnecﬂons

B> 100 Output neurons:
All-to-all inhibition
Created with neuranim
http://sourceforge.net/projects/neuranim
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Experienced locust

Created with neuranim
http://sourceforge.net/projects/neuranim
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Quantitative Analysis
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Quantitative Analysis
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Automatic detection of input set structure
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I Summary

I « More realistic biophysical models demonstrate

that the system can self-organize to recognize
I odors

» The system detects the structure of the input
pattern set autonomously
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I Future directions

I  Apply the McCulloch-Pitts/ spiking neuron
“random SVM” to pattern classification

I problems (OCR, ...)
Huerta R & Nowotny T, Fast and robust learning by
reinforcement signals: explorations in the insect
brain, Neural Comput., in press
» Use of non-linear dynamics for information
preprocessing in the antennal lobe

« Use of lateral excitation in the mushroom body
to generalize to classification of sequences

» Feed-forward inhibition/ gain control
Nowotny et al., In preparation
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I Future directions

I  Reward systems and associative learning

» Other sensory input to mushroom bodies/
multimodal associations

» Implementations on massively parallel

hardware

Nowotny T, Muezzinoglu KM & Huerta R, Biomimetic
classification on parallel hardware: Implementations
in Nvidia™ CUDA™, submitted

Dr. Thomas Nowotny, IE

Centre for Computational Neuroscience and Robotics Dt
University of Sussex



	Title
	Why olfaction of insects?
	Main olfactory pathway anatomy
	Olfactory Receptors
	Early processing
	The main problem
	A classical pattern recognition solution
	Slide 8
	Slide 9
	Classification is easier in higher dimensional space (SVM)
	Slide 11
	Slide 12
	Slide 13
	Hypothesis: The locust uses this idea
	Classify one pattern from the rest
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Example calculation
	Example result: Classification needs sparse code
	Classify classes of inputs
	Classes of input patterns
	There are “optimal design parameters”
	Recap
	Slide 26
	Spiking neuron models
	Process of recognition: Naïve locust
	Experienced locust
	Quantitative Analysis
	Slide 31
	Automatic detection of input set structure
	Slide 33
	Future directions
	Slide 35

