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I Course outline

I e Lecture 1: Olfaction — The sense of smell

» Lecture 2: The connectionist approach I
I Tools
Exercises 1: Statistical modeling

» Lecture 3: The connectionist approach II:
Modelling insect olfaction

« Lecture 4. Rate models of the antennal lobe;
Hopfield's model of olfaction
Exercises 2: Hopfield's olfaction model

» Lecture 5: The pheromone sub-system
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I Exercises

I * You will learn twice as much if you practice
some of the stuff we talk about

I e | will review the material from the Exercises in a
later Lecture
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Short Course: Computation of Olfaction
Lecture 1

| ecture 1: Introduction
Olfaction — the sense of smell

Dr. Thomas Nowotny
University of Sussex
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I Olfactory space

I » To smell is the process of detecting volatile
chemicals

I » The “olfactory space” of all possible stimuli is
very different from other senses:
- Many “chemical degrees of freedom”
- No clear similarity structure
— No absolute scale of concentration
- No clear definition of objects

Let's have a closer look:
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I Olfactory space — degrees of freedom

Schmuker et al. (2006) list about
90 chemical descriptors, so-called

“odotopes”:
« Number of aromatic atoms

* Number of hydrophobic atoms

* Number of carbon atoms

« Number of hydrogen atoms

* Number of oxygen atoms

« Sum of the atomic polarizabilities
« Number of rotatable single bonds
» Fraction of rotatable single bonds

Inté'nsity (inhomogeneous)
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Visual space

o 2 spatial dof
* Frequency (color)
* Intensity

Auditory Space

* Frequency
e (2 spatial dof)
* Intensity
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I Olfactory space — structure

I * No clear neighborhood

Visual space
structure
\ o o  Euclidean distance
e L S of points
v o  Similarity of colors
| - b on .
T YT T Auditory Space
O R » Frequency distance
) Lo o 1l o e (Euclidean distance

of sound sources)
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I Olfactory space — human perception

Enantiomers of Musky odors
carvone

1 2 5 3
: [ o MO
; ozwf;@(
HO™ ]
H
4 3 NO,
0 0 ; :

caraway spearmlnt
smell smell

L. Turin, F. Yoshii, Structure odor relations: a

modern perspective,
http://www.flexitral.com/research/review_final.pdf
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I Theories of odor perception

* There are (at least) two theories of odor
perception:

» Odotope theory: The functional groups
(odotopes) determine smells

 Vibrational theory: The resonance spectra of
chemicals as witnessed by infrared
spectrometry determine smells

Dr. Thomas Nowotny, IE

Centre for Computational Neuroscience and Robotics Dt
University of Sussex



I Olfactory space: Additional complexity

I « “Odors” are typically complex mixtures of
chemicals, e.g., the smell of coffee is believed

I to have about 1000 components, similarly, the
smell of a rose etc.

« Animals (and humans) can, however, also
recognize the components in a mixture (to
some extent)

» Odors need to be recognized over large ranges
of concentrations; However it is known that this
ability sometimes breaks down
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Olfactory system — insects

Lateral horn Calyx Kenyon cell

Peduncle
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I Two olfactory systems

I * There are two separate olfactory systems the
general olfactory system and the pheromone
I system
* In mammals:

- General: Olfactory epithelium — olfactory bulb —
Piriform cortex

- Pheromone: Vomeronasal organ — acessory
olfactory bulb — amygdala / hypothalamus
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I Two olfactory systems

I * |In Insects:

- General: Antenna — antennal lobe — mushroom
I body/ lateral protocerebrum

- Pheromone: Antenna — Macroglomerular complex
— lateral protocerebrum

We will first focus on the general olfactory system
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I Olfactory transduction pathway (mammal)

Olfactory Bt i
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I Olfactory transduction pathway

I Insect Mammal
» Sensillum on the  Olfactory epithelium
I antenna (sensillum in the nose (mucus,
lymph, OBP) OBP)
 ORN  ORN
« Glomeruli, projection « Glomeruli, mitral cells,
neurons (PN), local granule cells
neurons (LN) (periglomerular cells)
* Mushroom body,  Piriform cortex

lateral protocerebrum
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Antenna and sensilla

Sensillae

Female
moth

Antenna
detail (moth)
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I Sensillum detail

Air

Sensillum liquor ——

Sensory cell (outer segment)

Cuticle Sheath
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Sensillum recording
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* One can record from single
sensillae

« If the ORN respond to a
stimulating chemical, one sees
strongly elevated firing (bar =
odor stimulation)
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I Electrical transduction in odor receptors

I » About 350 odor receptor genes known in humans,
1000 in mice, about 43 in Drosophila

I  Receptors are expressed in ORNs

Mucus /
sensillum

Ca?*

Na*

~c-HM Cells are activated by
y- a second messenger
cascade

The influx of Na* makes
the spikes.
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Response profile of receptors

Odorant Receptor
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Glomerular map (honeybee)

S. Sachse, A. Rappert, C. G. Galizia, Europ. J. Neurosci.
11:3970 — 3982 (1999)
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I Ca imaging of activity in glomeruli

I 1-Pentanol 1-Heptanol 1-Nonanol

I SR A - imaging in the olfactory

! a .‘ bulb of honeybee.
7.2
- l- i-
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S. Sachse, A. Rappert, C. G.
. .! Galizia, Europ. J. Neurosci.

11: 3970 — 3982 (1999)
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I Glomerular response maps
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I Glomerular activity maps (moth)

I 1-Hexanol (+/-) Linalool

active

J Exp Biol 208: 1147 (2005)

Masante-Roca et al.

Grey — active glomeruli:

Different odors activate different sets of glomeruli
which can be overlapping.
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I Olfactory pathway - connectivity

I Confirmed by Linda Buck and Richard Axel in mammals and
Drosophila (using genetic tools):

Receplor « Each receptor neuron —
Glomeruli

Projection one receptor type
Receptor neurons
type A
how o \ﬁ\ 5 ° No spatial organization of
Receptor A v.k -g reCeptOF neurons
type C a l' _ j

(‘»-««_ =

W « Each ORN type projects
b L4
w«‘-. to the same glomerulus
e, e’ ~ p v
Antenna Antennal Lobe ® PrOJeCtlon neurons (PN)
typically sample only
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Projection neurons (moth)

 Projection neurons (PNs)
are usually uniglomerular

» A: Three stained PN
* B: PN arborizing in g2

» C&D: PNs arborizing in
g1 and g3 at different
magnification
X.J. Sun L.P. Tolbert,
J.G. Hildebrand, J. Comp.
Neurol. 379:2—20 (1997)
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Local neurons (moth)
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I Local neurons

Local neurons (LN) have been found in all
species

“local” means no axon to brain structures
outside the antennal lob (AL)

LN are spiking neurons in most insects (moths,
honeybees, flies, ...)

LN are non-spiking in locust
LN can be excitatory or inhibitory

Some LN arborize in specific glomeruli, others
In a few, some everywhere
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I Antennal lobe circuitry

I » The connectivity shown before is a minimal
picture, reality is much more complicated:

I - There are LNs
- LNs can be excitatory or inhibitory
- LNs receive inputs from ORN, PN and other LN
- LNs project to PN, LN, within and between
glomeruli

* The circuits can look very different between
species (whether they are functionally dif-
ferent is an open question), e.g. Locust: 1000
microglomeruli; Moth Hg)neybee, Fly, etc: Few

Dr. Thomas N’owotn ,
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I Mushroom body

I * Mushroom body are the secondary olfactory
iInformation processing centers %

I « Many, small Kenyon cells

» Much less output cells In
the lobes

« Have been implied heavily
in learning and memory

e.g. Dubnau J et al. Disruption of neurotransmission in
Drosophila mushroom body blocks retrieval but not
acquisition of memory. Nature. 2001 May
24;411(6836):476-8Qnomas Nowoiny, US

entre for Computational Neuroscience and Robotics Dt
University of Sussex



Locust

* One of the best characterized system due to the
work of Gilles Laurents lab

 Let's use this as an initial overview how things
may work

 We will later build real models based on these
ideas
VAntenna  Antennal lobe Mushroom body
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PN responses to odor stimulation (locust)
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Complex slow patterning

PN1 PN2 . PN3
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Javier Perez-Orive, et al., Oscillations and Sparsening of
Odor

Representations in the Mushroom Body,

Science 297: 359 (2002)
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I PN responses (locust)

I » Different for different odors

* Not just tonic elevation of firing rate during odor
pulse
- Sub-structure in the firing
- Late or early onset
- Some PN are inhibited rather than excited
- Some PN react with inhibition first, then rebound

Dr. Thomas Nowotny, IE
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I LN responses

I * Non-spiking in locust
« Spiking in other insects (bee, moth)
« Are excited by ORN, PN
* Not as well studied as PN
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I KC in the mushroom bodies
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Javier Perez-Orive, et al., Oscillations and Sparsening of
Odor

Representations in the Mushroom Body,

Science 297: 359 (2002)
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Local field potential (LFP) (locust)
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Similar oscillations have also been observed in most species,
In particular mammals/ humans
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I Summary

Antenna

(sensillae, ORN)

Lateral Proto—
cerebrum
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I Next time ...

I * | will discuss the connectionist approach to
modeling neuronal systems

I  We will use it on an interesting example
(synchrony in feedforward networks)

» Wednesday: Connectionist modeling of the
olfactory system of insects
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