Computational Neuroscience of Olfaction

Dr. Thomas Nowotny

Centre for Computational Neuroscience and Robotics, Informatics, Biology & Environmental Sciences University of Sussex, Brighton, UK

23-27 March 2009 Universidad Autónoma de Madrid

Course outline

- Lecture 1: Olfaction The sense of smell
- Lecture 2: The connectionist approach I: Tools

Exercises 1: Statistical modeling

- Lecture 3: The connectionist approach II: Modelling insect olfaction
- Lecture 4: Rate models of the antennal lobe;
 Hopfield's model of olfaction

Exercises 2: Hopfield's olfaction model

Lecture 5: The pheromone sub-system

Exercises

- You will learn twice as much if you practice some of the stuff we talk about
- I will review the material from the Exercises in a later Lecture

Short Course: Computation of Olfaction Lecture 1

Lecture 1: Introduction Olfaction — the sense of smell

Dr. Thomas Nowotny University of Sussex

Olfactory space

- To smell is the process of detecting volatile chemicals
- The "olfactory space" of all possible stimuli is very different from other senses:
 - Many "chemical degrees of freedom"
 - No clear similarity structure
 - No absolute scale of concentration
 - No clear definition of objects

Let's have a closer look:

Olfactory space – degrees of freedom

Schmuker et al. (2006) list about **90** chemical descriptors, so-called "odotopes":

- Number of aromatic atoms
- Number of hydrophobic atoms
- Number of carbon atoms
- Number of hydrogen atoms
- Number of oxygen atoms
- Sum of the atomic polarizabilities
- Number of rotatable single bonds
- Fraction of rotatable single bonds

•

Intensity (inhomogeneous)

Visual space

- 2 spatial dof
- Frequency (color)
- Intensity

Auditory Space

- Frequency
- (2 spatial dof)
- Intensity

Olfactory space – structure

No clear neighborhood structure

$$H - C - C$$

Visual space

- Euclidean distance of points
- Similarity of colors

Auditory Space

- Frequency distance
- (Euclidean distance of sound sources)

Olfactory space – human perception

Enantiomers of carvone

caraway spearmint smell smell

Musky odors

L. Turin, F. Yoshii, Structure odor relations: a modern perspective, http://www.flexitral.com/research/review_final.pdf

Theories of odor perception

- There are (at least) two theories of odor perception:
- Odotope theory: The functional groups (odotopes) determine smells
- Vibrational theory: The resonance spectra of chemicals as witnessed by infrared spectrometry determine smells

Olfactory space: Additional complexity

- "Odors" are typically complex mixtures of chemicals, e.g., the smell of coffee is believed to have about 1000 components, similarly, the smell of a rose etc.
- Animals (and humans) can, however, also recognize the components in a mixture (to some extent)
- Odors need to be recognized over large ranges of concentrations; However it is known that this ability sometimes breaks down

Olfactory system - humans

Olfactory system – insects

Heisenberg, Nat Rev Neurosci 4 266 (2003)

Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

Two olfactory systems

- There are two separate olfactory systems the general olfactory system and the pheromone system
- In mammals:
 - General: Olfactory epithelium olfactory bulb –
 Piriform cortex
 - Pheromone: Vomeronasal organ acessory olfactory bulb – amygdala / hypothalamus

Two olfactory systems

- In Insects:
 - General: Antenna antennal lobe mushroom body/ lateral protocerebrum
 - Pheromone: Antenna Macroglomerular complex
 - lateral protocerebrum

We will first focus on the general olfactory system

Olfactory transduction pathway (mammal)

Stages

- Mucus, odor binding proteins
- Olfactory receptor neurons
- Mitral cells/ granule cells in the olfactory bulb
- Piriform cortex

electrical chemica

Olfactory transduction pathway

Insect

- Sensillum on the antenna (sensillum lymph, OBP)
- ORN
- Glomeruli, projection neurons (PN), local neurons (LN)
- Mushroom body, lateral protocerebrum

Mammal

- Olfactory epithelium in the nose (mucus, OBP)
- ORN
- Glomeruli, mitral cells, granule cells (periglomerular cells)
- Piriform cortex

Antenna and sensilla

Anten-

Male

Female moth

Antenna detail (moth)

Sensillae

Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

Sensillum detail

Sensillum recording

- One can record from single sensillae
- If the ORN respond to a stimulating chemical, one sees strongly elevated firing (bar = odor stimulation)

Electrical transduction in odor receptors

- About 350 odor receptor genes known in humans,
 1000 in mice, about 43 in *Drosophila*
- Receptors are expressed in ORNs

Cells are activated by a second messenger cascade

The influx of Na⁺ makes the spikes.

Response profile of receptors

Odorant Receptor

Glomerular map (honeybee)

S. Sachse, A. Rappert, C. G. Galizia, Europ. J. Neurosci. 11: 3970 – 3982 (1999)

Ca imaging of activity in glomeruli

Ca imaging in the olfactory bulb of honeybee.

S. Sachse, A. Rappert, C. G.Galizia, Europ. J. Neurosci.11: 3970 – 3982 (1999)

Glomerular response maps

Rappert, C. (p. J. Neurosc 3982 (1999) Sachse, A. Galizia, 1: 3970

1-Hexanol

(+/-) Linalool

Grey – active glomeruli: Different odors activate different sets of glomeruli which can be overlapping.

(2005)Masante-Roca et al. J Exp Biol 208: 1147

Olfactory pathway - connectivity

Confirmed by Linda Buck and Richard Axel in mammals and *Drosophila* (using genetic tools):

- Each receptor neuron –
 one receptor type
- No spatial organization of receptor neurons
- Each ORN type projects to the same glomerulus
- Projection neurons (PN) typically sample only

Dr. Thomas Nowotny, One glomerulus Centre for Computational Neuroscience and Robotics

Projection neurons (moth)

- Projection neurons (PNs) are usually uniglomerular
- A: Three stained PN
- B: PN arborizing in g2
- C&D: PNs arborizing in g1 and g3 at different magnification

X.J. Sun L.P. Tolbert,

J.G. Hildebrand, J. Comp.

Neurol. 379:2-20 (1997)

Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

Local neurons (moth)

A. Christensen, G. D'Alessandrob, Hildebrand, 143-153 (2001) J. Legac, J. G. Biosystems 6: Ġ

Dr. Thomas Nowotny, Centre for Computational Neuroscience and Robotics

Local neurons

- Local neurons (LN) have been found in all species
- "local" means no axon to brain structures outside the antennal lob (AL)
- LN are spiking neurons in most insects (moths, honeybees, flies, ...)
- LN are non-spiking in locust
- LN can be excitatory or inhibitory
- Some LN arborize in specific glomeruli, others in a few, some everywhere

Antennal lobe circuitry

- The connectivity shown before is a minimal picture, reality is much more complicated:
 - There are LNs
 - LNs can be excitatory or inhibitory
 - LNs receive inputs from ORN, PN and other LN
 - LNs project to PN, LN, within and between glomeruli
- The circuits *can* look very different between species (whether they are functionally different is an open question), e.g. Locust: 1000 *microglomeruli*; Moth, Honeybee, Fly, etc. Few (10s) of *macroglomeruli*tional Neuroscience and Robotics

Mushroom body

Mushroom body are the secondary olfactory information processing centers

- Many, small Kenyon cells
- Much less output cells in the lobes
- Have been implied heavily in learning and memory

e.g. Dubnau J et al. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature. 2001 May

24;411(6836):476-80 homas Nowotny, Centre for Computational Neuroscience and Robotics

Locust

- One of the best characterized system due to the work of Gilles Laurents lab
- Let's use this as an initial overview how things may work
- We will later build real models based on these ideas

PN responses to odor stimulation (locust)

24:263-29 Stopfer, R. A. Volkovskii, H. D. I. Annu. Rev. Neurosci. (2001)

Complex slow patterning

Javier Perez-Orive, et al., Oscillations and Sparsening of Odor

Representations in the Mushroom Body,

Science 297: 359 (2002)

PN responses (locust)

- Different for different odors
- Not just tonic elevation of firing rate during odor pulse
 - Sub-structure in the firing
 - Late or early onset
 - Some PN are inhibited rather than excited
 - Some PN react with inhibition first, then rebound

LN responses

- Non-spiking in locust
- Spiking in other insects (bee, moth)
- Are excited by ORN, PN
- Not as well studied as PN

KC in the mushroom bodies

Javier Perez-Orive, et al., Oscillations and Sparsening of Odor

Representations in the Mushroom Body,

Science 297: 359 (2002)

Local field potential (LFP) (locust)

Similar oscillations have also been observed in most species, in particular mammals/ humans

Summary

Next time ...

- I will discuss the connectionist approach to modeling neuronal systems
- We will use it on an interesting example (synchrony in feedforward networks)
- Wednesday: Connectionist modeling of the olfactory system of insects

