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I Course outline

Lecture 1: Olfaction — The sense of smell

Lecture 2: The connectionist approach |: Tools
Lab session 1: Statistical modeling

Lecture 3: The connectionist approach lI:
Modelling insect olfaction;
Hopfield's model of olfaction

Lab session 2: Hopfield's olfaction model
Lecture 4: Rate models of the antennal lobe;

Heteroc

Lecture 5: Heteroc
with Hodgkin H

inic dynamics

iIninc Dynamics in a model
uxley neurons;

The pheromone sub-system
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I Course material & Lab sessions

I * You will learn twice as much if you practice
some of what we talk about

* The sessions are Wednesday, 10:00-13:00
and Thursday, 10:00-13:00

| have put up the schedule and a reading list on
my homepage:
http://www.informatics.sussex.ac.uk/users/tn41

* You will also find the material for the Labs there
(but | will also bring printouts for these!)

Dr. Thomas Nowotny, IE
Centre for Computational Neuroscience and Robotics
University of Sussex
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I Short Course: Computation of Olfaction
Lecture 1

I Lecture 1: Introduction
Olfaction — the sense of smell

Dr. Thomas Nowotny
University of Sussex
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I Olfactory space

I * To smell is the process of detecting volatile
chemicals

* The “olfactory space” of all possible stimuli is
I very different from other senses:

- Many “chemical degrees of freedom”

— No clear similarity structure

- No absolute scale of concentration

— No clear definition of objects

Let's have a closer look:

Dr. Thomas Nowotny, IE
Centre for Computational Neuroscience and Robotics

University of Sussex



I Olfactory space — degrees of freedom

I Schmuker et al. (20006) list about *Visual space

90 chemical descriptors, so-called

I “odotopes™ o 2 (3) spatial dof
» Number of aromatic atoms * Frequency (color)
- Number of hydrophobic atoms * Intensity
* Number of carbon atoms
« Number of hydrogen atoms Auditory Space
* Number of oxygen atoms
e Sum of the atomic polarizabilities . Frequency
 Number of rotatable single bonds ° (2 (3) spatial dOf)
 Fraction of rotatable single bonds . Intensity

Intensity (inhomogeneous)
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I Olfactory space — structure

*Visual space

I * No clear neighborhood

structure
* Euclidean distance
| S I A of points
! R Lol - Distance of colors in

frequency space

Auditory Space
w—e o Ll * Frequency distance
o Non Non 1 I
| - * (Euclidean distance
" of sound sources)
/N\H
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I Olfactory space — human perception
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smell smell
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L. Turin, F. Yoshii, Structure odor relations: a
modern perspective,
http://www flexitral.com/research/review_final.pdf
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Theories of odor perception

* There are (at least) two theories of odor
perception:

» Odotope theory: The odotopes (e.g. Functional
groups) determine smells

* Vibrational theory: The resonance spectra of
chemicals as witnessed by infrared
spectrometry determine smells

... From Human Psychophysics both seem
wrong.
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I Olfactory space: Additional complexity

I * “Odors” are typically complex mixtures of
chemicals, e.g., the smell of coffee is believed
to have about 1000 components, similarly, the
I smell of a rose etc.

* Animals (and humans) can, however, also
recognize the components in a mixture (to
some extent)

* Odors need to be recognized over large ranges
of concentrations; However it is known that this
ability sometimes breaks down
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I Olfactory systems

Let's now check on the existing
olfactory systems and what
IS known about them
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Olfactory system — insects

Lateral horn Calyx Kenyon cell

Peduncle
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I Two olfactory systems

I * There are two separate olfactory systems the
general olfactory system and the pheromone

system
* In mammals:

- General: Olfactory epithelium — olfactory bulb —
Piriform cortex

- Pheromone: Vomeronasal organ — acessory
olfactory bulb — amygdala / hypothalamus

Dr. Thomas Nowotny, IE
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I Two olfactory systems

I * In Insects:

- General: Antenna — antennal lobe — mushroom
I body/ lateral protocerebrum

- Pheromone: Antenna — Macroglomerular complex
— lateral protocerebrum

We will first focus on the general olfactory system
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Olfactory transduction pathway (mammal)

Olfactory Bt i
bulb \ Ll Ly '-'\:-'-l'.\.u.-\.

*Stages

Mitral cell Axons of mitral cells ¢
—==_ * Mucus, odor binding\
| Glomerulus A proteins \ >-§
.. » Olfactory receptor O
- neurons J 5
. | . _
omgtd 4] | + Mitral cells/ granule ¢ -2
| cells in the olfactory | 9
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I Olfactory transduction pathway

I Insect Mammal
» Sensillum on the » Olfactory epithelium
I antenna (sensillum in the nose (mucus,
lymph, OBP) OBP)
* ORN  ORN
* Glomeruli, projection * Glomeruli, mitral cells,
neurons (PN), local granule cells
neurons (LN) (periglomerular cells)
* Mushroom body, * Piriform cortex

lateral protocerebrum
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Antenna and sensilla

Sensillae

Antenna
detail (moth)
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Sensillum detail

Air

Sensillum liquor ——

Sensory cell (outer segment)

Cuticle Sheath

wfveptare "

Sensory cell —oepta
junction

inner segment)

Formative cells

Fpi’thelium

Basal membranc
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Sensillum recording

)

Y/
{1y

F{f.

* One can record from single
sensillae

e |f the ORN respond to a
stimulating chemical, one sees
strongly elevated firing (bar =
odor stimulation)

e R AL
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I Electrical transduction in odor receptors

I * About 350 odor receptor genes known in humans,
1000 in mice, about 43 in Drosophila

I » Receptors are expressed in ORNSs

Mucus /
w sensillum

Ca?" (a2+

Cells are activated by
a second messenger
cascade

The influx of Na® makes
the spikes.

Dr. Thomas Nowotny, lls
Centre for Computational Neuroscience and Robotics

University of Sussex



Response profile of receptors

Odorant Receptor
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Glomerular map (honeybee)

S. Sachse, A. Rappert, C. G. Galizia, Europ. J. Neurosci.
11: 3970 — 3982 (1999)
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Ca imaging of activity in glomeruli

1-Pentanol 1-Heptanol 1-Nonanol

‘J‘f j Ca imaging in the olfactory

a' .! bulb of honeybee.

S. Sachse, A. Rappert, C. G.
Galizia, Europ. J. Neurosci.
11: 3970 — 3982 (1999)
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Glomerular response maps

alkanes

prim. alcohols

aldehydes

S. Sachse, A. Rappert, C. G.
Galizia, Europ. J. Neurosci.
11: 3970 — 3982 (1999)

0 20 40 60 80 100 %
response intensity

sec. ketones
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I Glomerular activity maps (moth)
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Different odors activate different sets of glomeruli
which can be overlapping.
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I Olfactory pathway - connectivity

I Confirmed by Linda Buck and Richard Axel in mammals and
Drosophila (using genetic tools):

Receptor | e Each receptor neuron —
newors ST ton one receptor type

neurons

Receptor
type A

* No spatial organization of
receptor neurons

Receptor
type B

N\

Receptor
type C

Mushroom body

>/
b

L o>

« Each ORN type projects
to the same glomerulus

:

. N y * Projection neurons (PN)
Antenna Antennal Lobe typ|Ca”y Sample Only
one glomerulus

Dr. Thomas Nowotny, IE
Centre for Computational Neuroscience and Robotics

University of Sussex



Projection neurons (moth)

 Projection neurons (PNs)
are usually uniglomerular

* A: Three stained PN
* B: PN arborizing in g2

« C&D: PNs arborizing in
g1 and g3 at different
magnification

X.J. Sun L.P. Tolbert,
J.G. Hildebrand, J. Comp.
Neurol. 379:2—-20 (1997)
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Local neurons (moth)
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I Local neurons

Local neurons (LN) have been found in all
species

“local” means no axon to brain structures
outside the antennal lob (AL)

LN are spiking neurons in most insects (moths,
honeybees, flies, ...)

LN are non-spiking in locust
LN can be excitatory or inhibitory

Some LN arborize in specific glomeruli, others
In a few, some everywhere

Dr. Thomas Nowotny, IE
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I Antennal lobe circuitry

I * The connectivity shown before is a minimal
picture, reality is much more complicated:

— There are LNs
— LNs can be excitatory or inhibitory
- LNs receive inputs from ORN, PN and other LN

- LNs project to PN, LN, within and between
glomeruli
* The circuits can look very different between
species (whether they are functionally dif-
ferent is an open question), e.g. Locust: 1000
microglomeruli; Moth, Honeybee, Fly, etc: Few
(10s) of macroglomeruli
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I Mushroom body

I » Mushroom body are the secondary olfactory
information processing center -

I « Many, small Kenyon cells

* Much less output cells in
the lobes

* Have been implied heavily
In learning and memory

e.g. Dubnau J et al. Disruption of neurotransmission in
Drosophila mushroom body blocks retrieval but not
acquisition of memory. Nature. 2001 May
24;411(6836):476-80
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Locust

* One of the best characterized system due to the
work of Gilles Laurents lab

» Let's use this as an initial overview how things
may work

 We will later build real models based on these
ideas

ntenna Antennal lobe Mushroom body
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PN responses to odor stimulation (locust)
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Complex slow patterning

PN1 PN2
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Javier Perez-Orive, et al., Oscillations and Sparsening of
Odor

Representations in the Mushroom Body,

Science 297: 359 (2002)
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I PN responses (locust)

» Different for different odors

* Not just tonic elevation of firing rate during odor
pulse

- Sub-structure in the firing

- Late or early onset

- Some PN are inhibited rather than excited

- Some PN react with inhibition first, then rebound

Dr. Thomas Nowotny, IE
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I LN responses

I * Non-spiking in locust

» Spiking in other insects (bee, moth)
I . Are excited by ORN, PN

* Not as well studied as PN

Dr. Thomas Nowotny, IE
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I KC in the mushroom bodies

KC1 KC3
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Javier Perez-Orive, et al., Oscillations and Sparsening of
Odor

Representations in the Mushroom Body,

Science 297: 359 (2002)
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Local field potential (LFP) (locust)
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Similar oscillations have also been observed in most species,
In particular mammals/ humans
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Antenna

(sensillae, ORN)
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I Next time ...

I | will discuss the connectionist approach to
modeling neuronal systems

* We will use it on an interesting example
(synchrony in feedforward networks)

* Wednesday: Connectionist modeling of the
olfactory system of insects

m List of references

Dr. Thomas Nowotny, IE
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