### Orbits and phase transitions in the multifractal spectrum

**Authors:**
Nowotny T, Patzlaff H and Behn U (Institut fur Theoretische Physik, Universitat Leipzig)

**Comments:** to appear in J. Phys.
A; 25 pages, 11 figures, LaTeX2e

#### Abstract

We consider the one dimensional classical Ising model in a symmetric
dichotomous random field. The problem is reduced to a random iterated function
system for an effective field. The D_q-spectrum of the invariant measure of
this effective field exhibits a sharp drop of all D_q with q < 0 at some
critical strength of the random field. We introduce the concept of orbits which
naturally group the points of the support of the invariant measure. We then
show that the pointwise dimension at all points of an orbit has the same value
and calculate it for a class of periodic orbits and their so-called offshoots
as well as for generic orbits in the non-overlapping case. The sharp drop in
the D_q-spectrum is analytically explained by a drastic change of the scaling
properties of the measure near the points of a certain periodic orbit at a
critical strength of the random field which is explicitly given. A similar
drastic change near the points of a special family of periodic orbits explains
a second, hitherto unnoticed transition in the D_q-spectrum. As it turns out, a
decisive role in this mechanism is played by a specific offshoot. We
furthermore give rigorous upper and/or lower bounds on all D_q in a wide
parameter range. In most cases the numerically obtained D_q coincide with
either the upper or the lower bound. The results in this paper are relevant for
the understanding of random iterated function systems in the case of moderate
overlap in which periodic orbits with weak singularity can play a decisive
role.