

CONFESSIONS OF A LIVE CODER

 Thor Magnusson
 ixi audio &

Faculty of Arts and Media
University of Brighton

Grand Parade, BN2 0JY, UK

ABSTRACT

This paper describes the process involved when a live
coder decides to learn a new musical programming
language of another paradigm. The paper introduces the
problems of running comparative experiments, or user
studies, within the field of live coding. It suggests that
an autoethnographic account of the process can be
helpful for understanding the technological conditioning
of contemporary musical tools. The author is conducting
a larger research project on this theme: the part
presented in this paper describes the adoption of a new
musical programming environment, Impromptu [35],
and how this affects the author’s musical practice.

1. INTRODUCTION

A prominent discourse exists within the philosophy of
technology regarding how the tools we use define our
activities [14, 38]. The neutrality of technology has
been strongly questioned [18]. Although rarely
discussed or analysed, practitioners and researchers in
the field of computer music are conscious of how
specific musical environments encourage certain
practices and prevent others. Connoisseurs report that
they can identify certain musical environments, not only
by how they sound, but also by which musical
patterning or form they afford. Each musical
programming language or software has its own
functional character and the user learns to think
according to its ways [24]. In the research context of
how this technological conditioning takes place, live
coding presents itself as an ideal field for investigation
due to the strong dependency on technology and the
available programming languages in which to think.

But how would one study this influence of the tool or
programming language upon the musician? Experiments
could be set up where experimental groups and control
groups perform some musical tasks in the diverse
programming environments, and then analyse how the
results vary. Unfortunately, this proves to be difficult for
two key reasons: a) the programming environments are
highly complex and based on diverse paradigms of
thinking. It would be hard to find test subjects with
similar programming backgrounds. b) computer music
is an intricate and convoluted field where the test
subject’s knowledge ranges from sound synthesis,
acoustics, psychoacoustics, musical theory, to
computational creativity. Finding people with
comparable backgrounds is a near impossible task.
Additionally, musical goals differ profoundly between
any two practitioners: people typically choose to embark

upon writing music with programming languages for
very specific reasons and those are rarely comparable.

At ICMC 2007, in Copenhagen, I met Andrew
Sorensen, the author of Impromptu and member of the
aa-cell ensemble that performed at the conference. We
discussed how one would explore and analyse the
process of learning a new programming environment
for music. One of the prominent questions here is how a
functional programming language like Impromptu
would influence the thinking of a computer musician
with background in an object orientated programming
language, such as SuperCollider? Being an avid user of
SuperCollider, I was intrigued by the perplexing code
structure and work patterns demonstrated in the aa-cell
performances using Impromptu [36]. I subsequently
decided to embark upon studying this environment and
perform a reflexive study of the process.

This paper is a report of a larger research project on
technological conditioning, in this instance with a
particular focus on how learning a new music
programming environment influences ideas in the areas
of composition and performance. The investigation uses
qualitative research methods to achieve this, through
two strands of enquiry: a) an autoethnographic and
phenomenological first-person account of the author’s
own experience, and b) the study and interviewing of
student and workshop participants learning the same
programming environment. Self-observation and
analysis as described in a) is not common in the field of
music, but there are precedents [3, 39].

2. THE AUTOETHNOGRAPHIC METHOD

Whilst scholarly first person accounts of experience
have existed for millenia – a good example being the
Confessions of St. Augustine, finished in AD 398 and
discussed in the highly reflexive philosophy of Ludwig
Wittgenstein in the 1940s [43] – it has been frowned
upon within the field of science, and for good reasons,
although scientific objectivity has been strongly
questioned by philosophers of science [10, 16]. There
are situations, and indeed discourses, where reflective
first person accounts can give deeper insights, clearer
analysis, and better interpretation than achievable with
traditional objective scientific methodologies. This is
acknowledged in the diverse disciplines [7, 10, 31, 41].

Autoethnography seeks to enable such subjective
investigation through a formal research methodology. It
has been widely used in fields ranging from medicine,
for example where the ethnographer writes about death
and dying [17]; to issues of race, where a black Jew
describes his complicated identity [2]; to anthropology

where, as opposed to traditional ethnography, the
ethnographer actually reports on the experience of being
part of a new culture [1]. It originates from ethnography
and the realisation within that field that the
ethnographer’s persona and interpretation is always
present in the data collection, analysis, and
interpretation of the object of study. One reaction to this
realisation is to acknowledge the personal presence and
actually discuss, in the first person, the researcher’s
experience during the data collection and interpretation.
Although giving space for the subjective, autoethno-
graphy thus adheres to the systematic methodologies
developed in qualitative research, enabling the output to
be more than a mere autobiography.

I chose to use autoethnography due to the stated
problems of running reasonably controlled experiments
in studying the effects of different programming
languages on the musical output of such a diverse and
specialised group of people as live coders are. Polanyi’s
work [31] on how knowledge is always personal,
involving tacit dimensions that are unique to the
individual, is pertinent to this project’s research
statement. A method like autoethnography enables the
researcher to make some of that explicit. Some authors
argue that such a first person approach could be of
general benefit as a methodological tool in computer
science [12]. However, the current study is broader than
being a solely first person account, as I teach creative
music programming at a university level, give
workshops internationally, and am part of a wider
community of artists that work with programming
languages as their primary material. The collected data
derives from conversations, surveys [20, 21], and
teaching.

I started my study of Impromptu in June 2010 and
have therefore been working with it for nearly a year, as
much as a busy professional life allows. I kept a journal
of the learning process, communicated on the
Impromptu mailing list, and set up a research blog [23].
I have introduced Impromptu in sessions of computer
music and live coding, and have taken notes of how new
learners deal with this new language that is often
strongly foreign, since it is rare encountering people that
have studied functional programming.

3. SCORING ALGORITHMS

Live coding needs no introduction [4, 5, 6, 29]. It has
become so prominent as a practice within computer
music, that ICMC 2011 has included it explicitly as a
submission category. In live coding performances we
witness the results of the performer’s habituation with a
chosen programming language that enables the coder to
think in specific ways. It is an incorporation of
programming styles, thought patterns, and solutions.
Just as the guitarist embodies the “riff,” the live coder
has assimilated the algorithm. Knowledge of the
language syntax and semantics, as well as practiced
problem solving, and the array of learned algorithms
becomes the toolset or the framework in which the live
coder can think.

Establishing new frameworks of thinking by learning
new programming environments is a familiar experience
to most programmers. What is novel in live coding is
the real-time nature of writing code and the
improvisation of computer music. Additionally,
projecting programming code onto the wall of a club
with the audience following the evolution of the
composition is also innovative. Programming becomes a
performance art with music and/or visual art as its
subject. Moreover, the performers typically use
idiosyncratic systems that are often works of art
themselves [11]. New criteria emerge in the design of
programming languages, e.g., regarding how lay people
can engage with the code.

Live coding is exciting. It forces the composer to
reveal his/her compositional thought pattern, to make
public an intimate process that might result in profound
successes or dire mistakes. Moreover, as the coding is
typically an improvisation, it means that the performer
is rarely able to foresee the result of the performance.
The act of programming obviously requires strong
attention to details; a misplaced comma or a bracket will
result in a failure of execution. Even if highly
rewarding, live coding is therefore a stressful activity
that requires strong focus, practice and luck!

My own live coding practice started with using
SuperCollider as part of improvisation groups with
acoustic and electric instruments. Gradually I became
interested in creating a higher level abstraction for such
improvised playing which resulted in the ixi lang [22].
The idea was to abstract away as much procedural
thinking as possible, moving towards a more declarative
style of programming. The ixi lang has proved
successful in many ways, but I increasingly wanted
more flexibility and became interested in being
challenged with new work patterns. I therefore decided
to explore other systems.

4. THINKING THROUGH TOOLS

Everyone that has tried programming a computer knows
that there is no magic involved: the language consists of
strict semantic elements and syntactic rules. There are
atoms, lists, brackets and curly brackets, full stops,
commas, semi-colons and colons, and keywords that
perform specific functions. Although performance speed
is a primary consideration, most languages aim at
scarcity and readability, focusing on how the language
design can afford powerful ways of thinking in terms of
organisation and manipulation of data. Languages differ
in paradigm: the flow of data through functions in
Haskell might feel natural to one coder, whilst the object
orientated approach presented by Java might be more
appropriate to another’s way of thinking.1 Also of
consideration is layout and style: whilst Scheme might
confuse newcomers with an abundance of brackets,
Python might frustrate others by relying on tabs and
spaces to inline code (i.e., layout becomes syntactic).

1 Conference series and interest groups are dedicated on the psychology
of programming, e.g., www.ppig.org.

In most cases, spatial organization or colouring of
code is a secondary syntax/notation [27]. It does not
affect how the computer understands the instructions,
but it has various functions for the creator and other
human readers of the code, the audience in the case of
live coding. In a context where the audience might be
unfamiliar with the system used, it is important to be
able to indicate what the key elements of the system are,
such as key musical functions, synthesizers, pattern
generators; classes, variables, arguments or comments.
This can be done through text inlining, syntax
colourisation, capitalisation or font size, and special
symbols instructing the interpreter to ignore text written
as comments. In live coding the visual component is an
important element in connecting with the audience. As
McLean et al. show there are systems where the visual
become primary syntax for code interpreters. Most
dataflow languages, such as Pure Data, do not fall into
this category, as visual layout does not affect function.
However, systems like Scheme Bricks [27], Texture
[26], Scratch [27] and more do indeed rely on the spatial
to organise code. (See Figure 1).

Figure 1. A collage of four different programming
languages used in live coding that all address space
differently. Clockwise depicting Scheme Bricks, Pure
Data, Texture, and Python.

The person embarking upon the practice of live
coding music is therefore faced with countless
decisions. What language to use, at what level of
abstraction, whether to work in the textual or the
graphical domain, which sound engine or what musical
pattern algorithms? Artists choose to work in languages
that can deliver what they intend, but the inverse is also
true, that during the process of learning a programming
environment, it begins to condition how the artist thinks.
As Latour states, there is no shooting without a person
pulling the trigger, but neither is there shooting without
the gun. What emerges is a hybrid, a gun-person, which
becomes the actor [18]. Underpinning this research
project is my interest in how, by extending my thought
patterns through the use of a new tool, I would become a
new kind of hybrid, making fresh creative decisions.

5. THE WAYS OF THE LANGUAGE

Learning a new programming language for musical
creation involves personal adaptation on various fronts:
the environment has an unfamiliar culture around it, the
language has unique characteristics, and the assimilation
process might change ones musical goals. Below I will
discuss these three topics.

5.1. The Culture of Impromptu
For the learner of any new musical programming
language, whether an experienced programmer or not,
the availability of tutorials, help files, mailing lists and
forums is extremely important. This initial encounter
with the tool will either create the perception that there
is a straightforward path to progressing and mastering
the language, or result in confusion, disappointment, and
eventually the resignation to failure.

Impromptu performs this initial invitation very well
through its website (http://impromptu.moso.com.au).
Since it uses the Scheme programming language, links
are provided to free online books on Scheme. There is a
clear introduction tutorial that enables the user to create
a simple melody within minutes, and other tutorials are
divided into topics such as audio, graphics and video,
OpenGL coding, and on extending the language with
Objective-C. Examples of code are provided both online
and distributed with the application, and these will take
the user through an engaging journey displaying the
power of Impromptu. Most impressively, Sorensen has
recorded coding sessions as video screen casts, both
step-by-step tutorials and live coding, and placed them
online. All together, this makes the experience of
learning Impromptu quite pleasurable.

There is no online forum, but a mailing list exists.
The list is low traffic and the level of discussion on it
shows that the majority of people subscribed are
experienced Scheme programmers that have been
enticed by Impromptu for its use of that language. There
are very few, if any, programming novices active on the
list, so questions are posted mostly on the environment
and not the language. Compared to the SuperCollider
list, the main difference is in the volume of traffic and
the speed in which answer to a posted question is
received. (Normally minutes on the SuperCollider list,
but can take a few days on the Impromptu list). Both
lists are very friendly to newcomers.

The high skill entry level of Impromptu might be
explained if we look at the history of the relevant
programming languages and the culture of its usage.
Scheme is a Lisp variant, a functional language that is
considered very elegant by many scholars in computer
science, but it is rarely used in industry or by self-taught
web-based programmers [42]. Many young people
today have dabbled with programming through creating
their own website, coded in JavaScript, experimented
with Flash or Processing, or perhaps bought an
“introduction to programming” book, but Scheme is
hardly the next logical step on the path to mastery of
coding. Functional programming is simply not used

much in the industry, even though it is highly valued by
many skilled programmers.

Figure 2. Code from the recent introduction to
Impromptu 2.5, where signal processing code can be
written in real-time.

One of the initial questions I asked myself was how
the adaption of a new musical environment would affect
my musical habits. In this context, the culture around
the environment is important. One goes through
tutorials, help files, runs code from the list, experiments,
and asks questions on the list. All these activities
involve the habituation of the language as applied by
experienced users. Learning the environment thus
involves the initiation into a specific cultural practice. I
found this experience oddly analogous to Sudnow’s
description of him learning the jazz piano [39], except in
my case the learning had less to do with embodiment,
and more about learning new ways of thinking.2 During
this process my musical thoughts changed significantly
and I found myself trying to achieve new musical goals.
Inadvertently I paid less attention to synthesis and sonic
texture, but focused more on musical phrases and form.
I do think that Impromptu encouraged this change in my
practice and this influence comes partly from the culture
around the tool, but it is equally clear that the language
constructs encourage this as well.

What is immediately noticeable is the lack of user
contribution in terms of sharing, posting of code or
pieces, or libraries. Scheme is in a way a meta-language
that enables easy creation of impressive additions or
alternative language structures, so there could be a
strong motivation to share one’s creations. Many
reasons could be the cause of this: there might not be

2 The statement that live coding does not involve embodied
performance patterns can be questioned. In a personal communication
with Sorensen, he says: “the act of learning to quickly touch type
define, and finding the bracket keys quickly, and learning to tab
complete etc. are all embodied. Indeed I would argue that for much of
my live coding these days many of the structures I build are embodied
in the sense that I think to myself "I need to make a minor 7th chord
here" and my hands just make it happen - in other words I don't really
have to *think* about it - it's "under the fingers" in jazz speak.”

many users who have written such libraries, they might
be proud programmers that don’t want to publicise
imperfect code, or they might be unsure about the
quality of their music. Or simply that such sharing
hasn’t been encouraged on the list (it is notoriously
difficult to build up a good mailing list ambiance).

Not to be overlooked is the fact that Impromptu is
closed source, which projects one immediately as a user,
the receiver of goods, and not a potential developer.
There are striking similarities between SuperCollider 2
and Impromptu here. Before 2002, SuperCollider was
closed source and had a much smaller user community,
where the mailing list was primarily maintained
(answering questions and so on) by James McCartney.

Interestingly, Sorensen has recently announced that
he is working on a new system, Extempore, which is
open source and cross-platform [34]. This is welcomed
since it will enable people to become more involved and
invest time and learning into a system that will continue
developing, gain developer base, and develop outside
the interests of a single developer. It also eliminates the
danger of the software becoming an abandonware. It
should be noted here though that Impromptu is a very
powerful tool for audio-visual composition and it would
be difficult to find areas that have not been addressed by
the author.

5.2. Learning Impromptu
The biggest challenge for me when aiming to write
music in Impromptu was to learn Scheme. The language
paradigm was foreign to me, even if SuperCollider
affords functional programming. It involved me ceasing
to think of musical data as something one stores in
objects with state variables, parameters and methods,
and instead think of functions that parse data in a
stateless manner. Functional languages frown upon state
variables that can be overwritten through time, and this
arguably results in fewer bugs [13]. This also means
that instead of for-loops, one has recursion. Starting to
think in recursion and the lack of objects was for me the
hardest nut to crack in learning Scheme. It drastically
changed my way of thinking programming, or rather
added to the array of techniques, and I am thoroughly
enjoying that experience. One is reminded of Perlis’
quote “A language that doesn’t affect the way you think
about programming, is not worth knowing” [30].

After some considerable frustrations with the
unfamiliar nature of functional programming as written
in Scheme, I slowly began to appreciate the language.
Functions can be written and redefined in real-time,
allowing one to redefine parts of the program in the
middle of a performance. This is a liberation from the
chores of many object orientated languages, where
classes have to be recompiled for every change made.
Furthermore, by applying macros one can use Scheme
as a meta-language in which one can build one’s own
language structures. A user that works in Scheme for
some time invariably will have built his/her own
libraries or even sublanguages for the tasks specific to
the user. For the composer with highly idiosyncratic

needs, Scheme is an ideal language. This particular
nature of Lisp, or Lisp-based languages such as Scheme,
is identified and discussed thoroughly in Taube’s key
work on computational music [40].

In terms of musical timing Impromptu performs well.
Functions are scheduled in time through a solid callback
system and will have calculated code before it is needed.
From my tests, Impromptu is not as fast as Python or
SuperCollider, but timing has never proved to be a
problem. The audio is calculated in a different thread as
Impromptu is an Audio Unit host, which means that one
does not have the same control from the language over
the audio synthesis. However, the latest release of
Impromptu has implemented a LLVM [19] compiler
which allows one to write computationally heavy code,
such as audio synthesis, through the definec function
[37]. This is equivalent to writing SuperCollider UGens
or Max/MSP externals on the fly. I have yet to properly
explore the power of this recent addition, although I
successfully managed to write a square wave in a
performance.

Having used Impromptu for some time, I began to
perceive the main difference between object oriented
programming and functional programming as being a
metaphysical one, i.e., whereas the OOP approach is
Platonic in that there are objects, prototypes, properties
and methods, the functional approach is Heracleitean,
emphasizing flow, process, and the lack of objects with
inherent properties. This is manifested in multiple ways,
for example, in how I would write dynamic functions to
populate lists with note values and recursively through
other functions, empty those lists during playing, until
they needed populating again. There was never a static
entity one could denote as the piece’s “melody.”

5.3. Musicking with Impromptu
As an Audio Unit host, Impromptu is set up such that
Scheme functions interact with the AUs. Any published
synth parameter of the AU can be controlled from
Impromptu, but in practice I typically find myself
controlling the synths from the note level, i.e., by
sending MIDI note values to the synth. It has forced me
to work more at an intermediate level than I’m used to,
the level between synthesis and the meta levels of
generative composition or application development. I
imagine that this is liberating to many composers since,
instead of a terminology typically characterised with
words such as “frequency,” “amplitude,” “envelopes”
and such, one is operating with “notes”, “scales”,
“beats”, “bars”, and “metronomes”. Of course one
cannot generalise here, since the Pattern system in
SuperCollider can be very high level and one can also
choose to work at the synthesis level in Impromptu.
However, there is a clear difference in emphasis,
deriving equally from the language foundations and the
culture around the environment. I speak as a
SuperCollider user, but I do understand the background
to this: SuperCollider derives from the field of audio
synthesis – it was initially designed as a synthesizer that
could be algorithmically controlled – whereas

Impromptu, through languages such as Lisp and
Scheme, traces its origins more from the field of AI, as
represented by Taube’s book [40].

These two distinct origins, I perceive, result in
distinct musical practice: whereas SuperCollider users
focus largely on synthesis, signal processing, and
generative audio, Impromptu users operate more on the
more traditional compositional level. This is also
manifested in the way each environment is presented in
its initiatory literature: whereas the SuperCollider
student starts with synthesis and might end up using the
more musical Pattern libraries, the student of Impromptu
begins with writing note-level compositions and perhaps
going into synthesis from there. This can be studied with
evidence on a recent Computer Music Journal DVD on
live coding systems [28] where it is clear how
SuperCollider and Impromptu users differ with regards
to levels of operation.

Personally, I have enjoyed working at the
“metalevel” and Impromptu has profoundly inspired my
thinking and compositional approach. However, I could
not get accustomed to the use of Audio Units: I found
the sounds often too synthetic, stale and lacking life.
Moreover, the lack of control, understanding, and design
of their parameters frustrated me. I realised that I much
prefer to understand my sound sources perfectly to the
minor details, even if the sound might be less
sophisticated than achievable with an Audio Unit synth.
I therefore decided to write an Impromptu client for the
SC Server that would adhere perfectly to the way
Impromptu works, but one would be controlling synths,
groups, nodes and busses on the SuperCollider server.
This client is called SCIMP.

6. SCIMP

The SuperCollider Server is designed with the aim of
being a highly effective and streamline synthesis engine
with a simple interface controlled with Open Sound
Control (OSC). The idea was to separate the
composition language from the synthesis engine [25].
The synth can therefore be controlled from any software
that supports the OSC protocol, whether it is
SuperCollider, Java or indeed some specific hardware.

There already exist various types of SuperCollider
clients [32]. Most of them have made an effort to make
abstractions of Synths, Nodes, Groups and Busses, as
modelled in the object orientated SuperCollider
language. Initially this seemed to me to be the most
natural way to proceed. However, since one does not
really write classes in Scheme and there is no inherent
object orientated system, this proved to be strenuous. Of
course, the flexibility of Scheme allows one to create an
object orientated system if required. After a discussion
on the mailing list, Sorensen posted such a system and I
considered using that in my client. Having implemented
various tests, it slowly dawned upon me that my
Impromptu SC client should rather conform to the
functional design philosophy of Scheme and the way the
Impromptu play-note function works. Having designed
small functions that represent each of the commands the

SuperCollider synth accepts, composition with
Impromtu using SC Server as the synthesis engine
turned out to be relatively simple and mirrors well the
way one works with Audio Units.

Figure 3. Scimp example. This code shows how a node
is created and used to create a synth that is passed
through an effect synth.

The Scimp client is therefore different to common
client design for SC Server, where complex Synth,
Node, Group and Bus classes are created. In Scimp, the
only state variables stored on the Impromptu side are
node numbers, i.e., the reference to the synth or the
group on the server UGen graph tree.3

7. THE IXI LANG MATRIX

Working with Impromptu for some months has changed
the way I think about programming and how I solve
computational or musical problems. Gradually, a new
metaphorical landscape presented itself. An example of
this influence on my thinking can be found in a recent
addition to the ixi lang [22], the matrix, which is directly
inspired by functional programming. The matrix can be
called up from ixi lang, accessing the same instruments
and effects. It is simply a matrix with rows and columns
where each of the elements store instructions and code.
Each vector is given a direction, speed, instrument, note,
and maybe some SuperCollider code interpret, thus
giving ixi lang access to the much more expressive
SuperCollider language.

As each cell of the matrix is effectively a vector with
a direction and speed, the matrix has to be populated
with actors that move through the matrix and play the
instruments or run the code. These actors run from the
default tempo clock of the ixi lang, and stay temporally
in sync with all tempo changes in other ixi lang scores
and between different matrices. Storing code in such
vectors is a design feature inspired by functional
programming, where programming structures can be
represented as nodes in a network of dynamic flows.
This enables quick design of code that can be included

3 It should be noted that Rohan Drape has written a Scheme client for
SC Server (www.slavepianos.org/rd/sw/rsc3/), but it does not work
within Impromptu and it presents a slightly different design ideology.

in an already running program, or musical score, in a
temporally sound way by inheriting the ixi lang’s
default tempo clock. All these features are inspired by
Impromptu in some way or another.

Figure 4. A screenshot of the ixi lang matrix. The
matrix of the left consists of characters that contain
instruments and SuperCollider code. Agents (@) run
through the matrix and trigger code stored in the cells.

8. EVALUATING CODING SYSTEMS

For many of the practitioners of live coding, it is
compelling to frame the compositional process as an
improvisation by revealing to the audience not only their
musical, programming, and typing skills, but also
thought patterns. This poses the question of the
similarity between computer games and music, perhaps
with the general distinction that the former tend to have
winning as a goal, therefore focusing on the end,
whereas the latter embraces collaboration, emphasizing
the process. Regardless, we are immediately presented
with the etymology where people “play games” and
“play music,” where these activities take place in a
medium famous for blurring most traditional
distinctions in music.

Live coding as an electrifying performative and
improvisational act is in more than one way related to
the excitement of playing computer games. Firstly, there
is a shared underlying thinking in terms of software
design and the inclusion of objects that are capable of
changing state. Secondly, the conceptual and visual
metaphors in live coding are often borrowed from
computer games. Finally, the concepts of gameplay [9]
and playability [33] are important in live coding: some
of the measurement criteria of playability apply
strongly, e.g., satisfaction, learning, efficiency, emotion,
immersion and so on. Live coding thus sits solidly at the
intersections of music, performance, computer science,
and games, and should be experienced and evaluated as
such.

With the ever increasing flora of live coding
environments available [28], it is timely to investigate
the usability of live coding languages and explore their
design from a HCI and game design point of view.
There are good heuristic measurements available [8, 15]

but what might possibly come out of such research is
that every live coding system is highly idiosyncratic and
that it is difficult and complicated to compare the users.
Live coding systems often require strong programming
skills of diverse programming paradigms (e.g.,
imperative or functional programming) making neutral
user testing, in the form of game testing or HCI usability
studies, very difficult. The approach proposed in this
paper is to engage with this problem by applying
selected qualitative research methodologies.

9. CONCLUSION

In the introduction I stated that this paper is a
progress report. One never finishes learning a language
and the topic of technological conditioning is a key
research interest of mine. Therefore, more observations
are due to follow from this research project where I will
report on studies of other people’s learning processes.
However, this paper has elucidated how a specific
programming language defines the musical thinking of a
composer and changes the ways of thinking through the
habituation of learning it. This is evident when I have
gone back to working in object oriented languages. I
have started to write code that exhibits patterns derived
from functional languages and I realise in many
occasions that I think differently about software design.

This paper discussed how it is not only the language
that affects the user’s musical creativity, but the culture
around it as well. A comparative study would be
interesting in this context, since here the focus was on
Impromptu. Even if it is difficult to find a musical style
that is common with the users of each environment,
there are strong practices of coding that influence the
way people conceive of their work. As an example,
Impromptu has much stronger focus on live coding as a
musical practice than one finds in SuperCollider. An
informal study shows that there is an unusually high
percentage of Impromptu users who live code.

This project has been musically inspiring, as it has
forced me to strengthen the mental compartmentali-
sation of the note and the synthesis level. Having a note
level control in Impromptu, and a sound engine either as
Audio Units or as SC Server, represents a strong
separation between what in Max Matthews’ MusicN
systems was called the score and the orchestra.
SuperCollider 3 blurs this distinction in many ways,
although not as perfectly as one found in SuperCollider
2. Having said that, with the recent definec function in
Impromptu, one can write DSP code in realtime through
the JIT compilation into LLVM. I have yet not explored
this interesting feature fully, but it provides a further
effacement of the artificial distinction between musical
events and synthesis [37].

In the introduction I described the difficulties, or the
near impossibility, of comparatively studying live
coding environments due to the markedly different
background of the participants and the diverse musical
goals of the live coders themselves. However, we can
learn much from theorists in computer games and
human-computer interaction. Studies and surveys can be

performed, although strong quantifiable results should
not be expected. This research project aims at gaining an
understanding of how people engage with these
“machines for thinking” through teaching, giving
workshops, surveys, and importantly, by acknowledging
what a first person reflective account can give in terms
of valuable data for analysis and interpretation.

10. REFERENCES

[1] Anderson, B. G. Around the World in 30
Years: Life as a Cultural Anthropologist.
Waveland Press, Long Grove, IL, 1999.

[2] Azoulay, K. B. Black, Jewish, and interracial:
it's not the color of your skin, but the race of
your kin : and other myths of identity. Duke
University Press, Durham, 1997.

[3] Bartleet, B-L. & Ellis, C. (eds.) Music
Autoethnographies: Making Autoethnography
Sing/Making Music Personal. Australian
Academic Press, Bowen Hills, Qlnd, 2009.

[4] Brown, A. R. & Sorensen, A. "Interacting with
Generative Music through Live Coding",
Contemporary Music Review. Vol. 28 (1).
2009, pp. 17–29.

[5] Collins, N. "Live coding of Consequence",
Leonardo Journal. Vol. 44 (3). 2011.

[6] Collins, N., McLean, A., Rohrhuber, J. &
Ward, A. "Live Coding Techniques for Laptop
Performance", Organised Sound, vol. 8 (3).
2003. pp. 321–30.

[7] Dennett, D. Against Method: Outline of an
Anarchistic Theory of Knowledge, University
of Minnesota Press, Minneapolis, 1970.

[8] Desurvire, H., Caplan, M. & Toth, J. A. "Using
heuristics to evaluate the playability of games",
Proceedings of CHI '04. ACM, New York,
2004.

[9] Ermi, L. and Mäyrä, F. "Fundamental
components of the gameplay experience:
Analysing immersion", S. de Castell & J.
Jenson (eds.), Changing Views: Worlds in
Play. DiGRA Second International Conference,
2005.

[10] Feyerabend, P. Against Method. New Left
Books. 1975.

[11] Goriunova, O. & Shulgin, A. read_me -
Software Art and Cultures. Aarhus University
Press. 2004.

[12] Heidelberger, C. A. and Uecker, T. W.
"Scholarly Personal Narrative as Information
Systems Research Methodology", MWAIS
2009 Proceedings. 2009.

[13] Hughes, J. "Why Functional Programming
Matters", Research Topics in Functional
Programming. ed. D. Turner, Addison-Wesley,
1990, pp 17–42.

[14] Ihde, D. Technology and the Lifeworld: From
Garden to Earth. Bloomington: Indiana
University Press. 1990.

[15] Korhonen H., Paavilainen J., Saarenpää H.,
"Expert Review Method in Game Evaluations -
Comparison of Two Playability Heuristic Sets",
Academic MindTrek 2009 Conference, ACM
Press. 2009. pp. 74-81.

[16] Kuhn, T. "Objectivity, Value Judgment, and
Theory Choice", The Essential Tension:
Selected Studies in Scientific Tradition and
Change. University of Chicago Press. 1977.

[17] Kübler-Ross, E. The Wheel of Life: A Memoir
of Living and Dying. Simon & Schuster, 1998.

[18] Latour, B. Pandora's Hope: Essays on the
Reality of Science Studies. Harvard University
Press. 1999. p. 178.

[19] Lattner, C. & Vikram A., "LLVM: A
Compilation Framework for Lifelong Program
Analysis & Transformation", International
Symposium on Code Generation and
Optimization. 2004.

[20] Magnusson, T. "Expression and Time: The
Question of Strata and Time Management in
Art Practices using Technology", The FLOSS +
Art Book, Poitiers: goto10, 2009.

[21] Magnusson, T. "The Acoustic, the Digital and
the Body: A Survey on Musical Instruments",
The NIME 2007 Conference Proceedings. New
York: New York University. 2007.

[22] Magnusson, T. "The ixi lang: A SuperCollider
Parasite for Live Coding", Proceedings of
ICMC, 2011.

[23] Magnusson, T. Improgramming:
http://improgramming.wordpress.com/

[24] McCartney, J. "A Few Quick Notes on
Opportunities and Pitfalls of the Application of
Computers in Art and Music", Proceedings of
Ars Electronica, 2003.

[25] McCartney, J. "Rethinking the Computer
Music Language: SuperCollider", Computer
Music Journal, vol. 26 (4), 2002. pp. 61 – 68.

[26] McLean, A. & Wiggins, G. "Texture: Visual
Notation for Live Coding of Pattern",
Proceedings of ICMC, 2011.

[27] McLean, A., Griffiths, D., Collins, N &
Wiggins, G. "Visualisation of Live Code",
Proceedings of Electronic Visualisation and
the Arts Conference, London. 2010.

[28] McLean, A., Magnusson, T. & Collins, N. Live
Coding DVD supplement. Computer Music
Journal, vol. 35 (4). 2011. Forthcoming.

[29] Nilson, C. "Live Coding Practice", The
Proceedings of NIME. 2007.

[30] Perlis, A. "Epigrams on Programming",
Sigplan Notices. Vol. 17 (9), 1982. pp. 7 – 13.

[31] Polanyi, M. The Tacit Dimension. Garden City,
New York: Anchor Books, 1967.

[32] Rutz, H. H. "Rethinking the SuperCollider
Client…", Proceedings of the SuperCollider
2010 Symposium, Berlin, Germany. 2010.

[33] Sánchez, J. L. G., Zea, N. P., Gutiérrez, F. L.,
Cabrera, M. J. & Rodríguez, P. P. "Playability:
The Secret of the Educational Videogame
Design", Proceedings of the 2nd European
Conference on Games-Based Learning.
Barcelona, Spain, 2008.

[34] Sorensen, A. http://lists.moso.com.au/pipermail
/impromptu/2011-January/000789.html

[35] Sorensen, A. "Impromptu : an interactive
programming environment for composition and
performance", Proceedings of the Australasian
Computer Music Conference. 2005.

[36] Sorensen, A & Brown, A. "aa-cell in Practice:
An Approach to Musical Live Coding",
Proceedings of ICMC, 2007.

[37] Sorensen, A. & Gardner, H. "Programming
with time: cyber-physical programming with
impromptu", Proceedings of the ACM
international conference on Object oriented
programming systems languages and
applications. 2010.

[38] Stiegler, B. Technics and Time, 1: The Fault of
Epimetheus. Stanford: Meridian. Stanford
University Press. 1998.

[39] Sudnow, D. Ways of the Hands. Cambridge,
MA: MIT Press. 2001.

[40] Taube, H. Notes from the Metalevel. Taylor &
Francis Group, London, 2004.

[41] Varela, F. J. and Shear, J. "First-person
Methodologies: What, Why, How?", Journal of
Consciousness Studies, vol. 6 (2–3), 1999, pp.
1–14.

[42] Wadler, P. "Functional Programming: Why no
one uses functional languages", SIGPLAN
Notices. Vol. 33 (8) pp. 23-27, 1998.

[43] Wittgenstein, L. Philosophical Investigations.
Oxford: Blackwell, 1994.

