
	

Artist-aware,	zero	install	immersive	virtual	environment	
for	collaborative	live	performances	

Nikolai	Suslov	

Fund	for	Supporting	Development	of	Russian	Technology,	Vologda,	Russia	
SuslovNV@krestianstvo.org	

	

Abstract.	The	prototype	of	immersive	virtual	environment	for	collaborative	live	performances	based	on	Krestianstvo	SDK	
will	be	shown.	This	environment	is	developed	using	Virtual	World	Framework	(VWF)	and	ADL	Sandbox	project.	The	
prototype	will	show	how	the	Virtual	World	Framework	being	extended	with	Ohm	(OMeta)	language	a	new	object-
oriented	language	for	pattern	matching	and	OSC	support	could	be	turned	into	the	artist-aware	zero	install	collaborative	
virtual	environment.	An	artist	could	easily	create	tools,	own	domain	specific	languages,	parsers	for	OSC	messages	and	
simulations	inside	highly	distributed	computational	environment.	Several	running	browsers	or	desktop	versions	with	
running	prototypes	define	the	replicated	state	of	the	whole	computation.	Using	an	avatar,	an	artist	interacts	with	the	
virtual	world	and	adjusts	the	properties	of	its	virtual	content.	Artists	share	exactly	their	online	activities	and	
computation	within	a	united	simulation	space.	They	could	interact	with	virtual	world’s	content	by	using	real	physical	
objects	sending	OSC	messages.		

Keywords:	virtual	world,	human-computer	Interaction,	performance	art	

Introduction	
Let’s	look	at	today’s	software	paradigms,	which	are	available	to	a	modern	artist.	In	simple	words	these	would	be:	
“Tools”,	“Programming	languages”	and	“Simulations”.	Actually,	none	of	them	are	artist-aware	by	itself.	And	only	the	
fundamental	interconnection	of	all	of	them	may	leads	to	the	new	entity,	which	we	could	name	“Virtual	Environment”,	
propagating	itself	in	an	artistic	conformable	immersive	form.		

Tools	

Why	not	“Tools”?	The	best	case	of	using	tools	in	an	art	context	is	when	an	artist	could	modify	the	tool	implementation	
at	runtime.	And	there	is	no	distinction	between	development	and	runtime	modes.	For	example,	the	tools	programmed	
using	dynamic	software	like	Pure	Data,	Max/MSP,	VVVV	or	SuperCollider	include	such	mode	by	default,	if	an	artist	
distributes	the	tool	with	the	interactive	development	environment.	But,	these	tools	still	stay	isolated	each	of	other	or	
grow	into	a	huge	complex	one	interconnected	engineering	tool.	Mostly	only	experts	can	supply	and	support	such	tools.	
Sometimes	there	is	no	any	possibility	for	reconfiguration	or	adaptation	of	them	by	a	people	from	other	disciplines,	like	
artists.	In	other	words,	such	systems	provide	a	static	hardware	and	software	templates	for	filling	them	up	with	the	
artistic	generated	content.	That	forces	an	end-user	to	create	artistic	scenarios	in	a	form	of	dynamic	data	using	a	static	
computational	paradigm.	Finally,	these	systems	are	used	like	static	viewers	with	rich	human-computer	interactive	
interfaces.	The	ability	of	making	changes	of	a	tool	at	runtime	leads	artists	to	use	more	or	less	“Programming	languages”	
in	a	form	of	live	coding	in	common.	

Programming	languages	

Why	not	“Programming	languages”?	As	with	tools	the	best	case	of	using	programming	languages,	will	be	programming	
by	an	artist	his	own	domain	specific	language	(DSL).	In	other	case,	an	artist	forced	to	learn	a	general	purpose	
programming	language	with	a	set	of	art-specific	libs	and	APIs.	For	example,	highly	dynamic	Self	and	Smalltalk	
programming	languages	are	considered	to	be	the	simplest	languages	with	the	best	self-explorative	environments.	But	



	

even	they	are	about	prototype	and	object	oriented	paradigms.	And	they	disclosed	their	features	only	in	using	
reflectivity,	homoiconicity	and	meta	properties	while	experimenting	with	constructing	the	new	languages.		

Simulations	

So,	the	last	thing	“Simulations”	throws	an	artist	into	the	paradigm	of	simulating,	modelling	and	gaming.	Simulation	
behaves	like	an	artefact	closed	in	itself	and	introduces	a	biological	inspired	propagating	mechanism.	An	artist	feels	more	
comfortable	performing	inside	simulation,	as	this	paradigm	completely	blurs	the	border	between	development	and	
runtime	modes	in	software	or	software	at	all.		

Virtual	Environment	

Things	would	change	if	we	look	at	“Tools”,	“Programming	languages”	and	“Simulations”	as	self-exploratory	elements	of	
the	virtual	worlds	and	the	computation-centric	live	programming	environments.	The	virtual	worlds	represent	the	new	
computational	paradigm	and	the	new	form	of	software,	where	everything	is	just	some	form	of	a	computation.	End-user	
could	generate	or	change	the	content	of	a	virtual	world	in	real-time	(Figure	1).	The	user	also	is	represented	in	a	virtual	
world	as	a	computational	process,	an	object	known	as	avatar/software	agent.	Moreover,	user-defined	programming	
languages	hold	up	all	interactions	inside	a	virtual	world	in	the	form	of	live	programming.	A	full-body	immersion	
environment,	which	is	built	using	virtual	worlds,	scales	conformal	up	to	the	unlimited	number	of	hardware	and	software	
nodes.	

	

Figure	1.	Virtual	learning	environment	Krestianstvo	SDK	

Virtual	worlds	provide	all-in-one	solution	and	the	ability	for	the	programming	code	to	be	delivered	in	a	lightweight	
manner	through	the	network.	They	support	easy	synchronisation	for	many	users	to	interact	with	common	objects	and	
environments.	These	objects	can	be	programmed	on	quite	different	languages.	In	addition,	they	can	coexist	alongside	
with	each	other	in	the	same	replicated	virtual	world	and	holding	the	same	simulation.	

	



	

Prototype	demonstration	
The	prototype	will	show	an	immersive	virtual	environment	for	collaborative	live	performances	based	on	Krestianstvo	
SDK.	This	environment	is	developed	using	Virtual	World	Framework	(VWF)	and	ADL	Sandbox	project.	VWF	provides	a	
synchronised	collaborative	3D	environment	for	the	web	browser.	Continuing	the	Open	Croquet	research	effort,	VWF	
allows	easy	application	creation,	and	provides	a	simple	interface	to	allow	multiple	users	to	interact	with	the	state	of	the	
application	that	is	synchronised	across	clients,	using	the	notion	of	virtual	time	(Smith	2003).	A	VWF	application	is	made	
up	of	prototype	components,	which	are	programmed	in	JavaScript,	which	allows	a	shared	code	and	behaviours	used	in	
distributed	computation,	to	be	modified	at	runtime.	

	

Figure	2.	Virtual	environment	in	web	browser	

The	prototype	shows	how	the	virtual	world	framework	being	extended	with	Ohm	(OMeta)	language	(Suslov	2015)	a	new	
object-oriented	language	for	pattern	matching	(Warth	2007)	and	OSC	support	could	be	turned	into	the	artist-aware,	
zero	install	immersive	virtual	environment	for	collaborative	live	performances.	An	artist	could	easily	create	tools,	own-
domain	specific	languages,	parsers	for	OSC	messages	and	simulations	inside	highly	distributed	computational	
environment	(Figure	2).	Several	running	browsers	or	desktop	versions	with	running	prototypes	define	the	replicated	
state	of	the	whole	computation	(Figure	3).	Any	modification	in	a	source	code	is	replicated	immediately	to	all	instances	of	
it.	Adding	new	nodes	is	done	just	by	starting	the	new	browsers	and	connecting	them	to	the	already	running	virtual	
world.	Using	an	avatar,	an	artist	interacts	with	the	virtual	world	and	adjusts	the	properties	of	its	virtual	content.	Artists	
share	exactly	their	online	activities	and	computation	within	a	united	simulation	space	(Suslov	2012).	They	could	interact	
with	virtual	world’s	content	by	using	real	physical	objects	as	controllers	sending	OSC	messages	(Figure	4).	The	virtual	
world’s	architecture	takes	everything	on	a	distributed	computation.	Artists	do	not	need	to	think	about	an	underlying	
software	program	architecture	while	preparing	their	content	inside	virtual	environment.	



	

	

Figure	3.	The	CAVE	prototype	using	desktop	version	of	virtual	environment	

	

Figure	4.	An	experiment	with	a	virtual	light	source	controlling	with	Wii	remote	

	



	

Acknowledgements.	I	would	like	to	express	thanks	for	the	valuable	insights	that	Victor	Suslov,	Tatiana	Soshenina,	Sergey	
Serkov,	and	to	all	others,	who	have	helped	in	the	realization	of	the	prototype,	described	in	this	paper.		

References	
Smith,	D.	A.,	Kay,	A.,	Raab,	A.,	and	Reed,	D.	P.	2003.	Croquet	—	A	Collaboration	System	Architecture.	In	Proceedings	of	
the	First	Conference	on	Creating,	Connecting,	and	Collaborating	through	Computing	(C5’	03),	pages	2–9.	IEEE	CS.		

Warth,	A.	and	Piumarta,	I.	2007.	OMeta:	an	Object-Oriented	Language	for	Pattern-Matching.	In	OOPSLA	’07:	Companion	
to	the	22nd	ACM	SIGPLAN	Conference	on	Object-Oriented	Programming	Systems,	Languages,	and	Applications,	New	
York,	NY,	USA.	ACM	Press.		

Suslov,	Nikolai	and	Soshenina,	Tatiana.	“From	Live	Coding	to	Virtual	Being”,	Proceedings	of	the	First	International	
Conference	on	Live	Coding	(ICLC2015),	Leeds,	UK,	13-15	July	2015,	Zenodo.		

Suslov,	Nikolai.	2012.	“Krestianstvo	SDK	Towards	End-user	Mobile	3D	Virtual	Learning	Environment”.	In	Proceedings	of	
the	Conference	on	Creating,	Connecting	and	Collaborating	through	Computing	(C5)	2012,	Institute	for	Creative	
Technologies,	University	of	Southern	California,	Playa	Vista,	California,	USA,	IEEE,	Page(s):	9	-	14		


