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An ecosystems model for integrated production

planning

PHILIP HUSBANDS

Abstract. This paper re-evaluates the job-shop scheduling
problem by showing how the standard definition is far more
restrictive than necessary and by presenting a new technique
capable of tackling a highly generalized version of the problem.
This technique is based on a massively parallel distributed
genetic algorithm and is capable of simultaneously optimizing
the process plans of a number of different components, at the
same time a near-optimal schedule emerges. Underlying the
evolutionary machinery is a specialized feature-based gener-
ative process planner.

1. Introduction

Research on job-shop scheduling (JSS), as the most
general of the classical scheduling problems, has gener-
ated a great deal of literature (Muth and Thomson 1963,
Balas 1969, Garey et al. 1976, Graves 1981, Ow and
Smith 1988, Carlier and Pinson 1989). All of this work
has used a particular definition of the scheduling problem
or very close variants of it. This paper will argue that
the standard definition is far more restrictive than is
necessary. In particular, it is claimed that the relation-
ship between process planning and scheduling has been
largely ignored. A new technique, capable of tackling a
highly generalized JSS, is presented. The algorithm used
is highly parallel and makes use of methods analogous
to those occurring in a natural evolving ecosystem.
Underlying the evolutionary machinery is a specialized
feature-based generative process planner. It is shown
how the technique provides a highly integrated produc-
tion planning system, treating process planning and
scheduling as inextricably interwoven parts of the same
problem,

The very large body of work on solving planning and
scheduling problems has emanated mainly from the fields
of artificial intelligence and operations research. Tra-
ditional AT approaches have had limited success in real-
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world applications, indeed their shortcomings have been
thoroughly explored and documented (Chapman 1985).
The general resource planning, or scheduling, problem is
well known to be NP-complete (Garey and Johnson
1979). Consequently OR techniques have been devel-
oped to give exact solutions to restricted versions of the
problem, but in general, as with Al-based approaches to
the problem, there is a reliance on heuristic-based
methods. Because of the complexity and size of the
search spaces involved, a number of simplifying assump-
tions have always been used in practical applications,
These assumptions are now implicit in what have become
the standard problem formulations. In many instances
this has led to the most general underlying optimization
problem being ignored or, more often, not even acknowl-
edged as existing at all.

The most sweeping of these simplifications involves the
relationship between process planning and scheduling.
Scheduling is traditionally seen as the task of finding an
optimal way of interleaving a number of fixed plans
which are to be executed concurrently and which must
share resources. The implicit assumption is that once
planning has finished scheduling takes over. In fact there
are often many possible choices for the sub-operations in
the plans. Very often the real optimization problem is to
optimize simultaneously all the individual plans and the
overall schedule. This paper describes how manu-
facturing planning has been radically recast to allow
solutions to the simultaneous plan and schedule
optimization problem, a problem previously considered
too hard to tackle at all. A model based on simulated co-
evolution is described and it is shown how complex inter-
actions are handled in an emergent way. Results from an
implementation on a parallel machine are reported. The
potential economic benefits are obvious.

The following section makes clear the domain defini-
tions used in the work described. The core techniques
used in this research are a specialized form of feature-
based process planning and a distributed genetic algor-
ithm. Section 3 gives a brief introduction to genetic
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algorithms and then Section 4 provides an overview of
the whole ecosystems model. Section 5 details the
feature-based process planning elements of the model,
while Sections 6 and 7 describe the parallel genetic algor-
ithm parts. Section 8 presents results from a massively
parallel implementation and Section 9 concludes the
paper with a discussion of the implications of the work.

2. Domain of application definitions
2.1. Process planning

The technique presented here is generally applicable
but will be described in terms of the manufacture of
medium-complexity prismatic parts requiring the
application of a number of metal-removal processes.
Within this framework a standard definition of process
planning is used (Chang and Wysk 1985), namely estab-
lishing the operations required to manufacture a part, the
appropriate machine tool and machining parameters to
use for each operation and the order in which the oper-
ations should be performed. It will be seen that each
operation in the plan corresponds to processing a manu-
facturing feature or group of features on the work piece.
Hence, in this work, a process plan is essentially
regarded as an ordered set of [feature, machine, process,
tool, setup] tuples. Section 5 gives details of the various
feature types used and how feature interactions are dealt
with.

2.2. The classical definition of JSS

The standard JSS problem definition is taken to be the
following. Consider a manufacturing environment in
which n jobs or items are to be processed by m machines.
Each job will have a set of constraints on the order in
which machines can be used and a given processing time
on ecach machine. The jobs may well be of different
lengths and involve different subsets of the m machines.
The JSS problem is to find the sequence of jobs on each
machine in order to minimize a given objective function.
The latter will be a function of such things as total
elapsed time, weighted mean completion time and
weighted mean lateness under the given due dates for
each job (Christophedes 1979).

2.3. An integrated view of process planning and JSS
Very often complete fixed process plans are presented

as the raw data for the scheduler. However, in many
manufacturing environments there is a vast number of

legal plans for each component. These vary in the order-
ings between operations, the machines used, the tools
used on any given machine and the orientation of the
work-piece given the machine and tool choices. They will
also vary enormously in their costs. Instead of just gener-
ating a reasonable plan to send off to the scheduler, it is
desirable to generate a near optimal one. Clearly this
cannot be done in isolation from the scheduling: a
number of separately optimal plans for different compo-
nents might well interact to cause serious bottlenecks.
Because of the complexity of the overall optimization
problem, that is simultaneously optimizing the individual
plans and the schedule, and for the reasons outlined in
the introduction, up until now very little work has been
done on it. A number of researchers have developed
scheduling techniques that allow a small number of
options in their process plans (Sycara et al. 1991,
Tonshoff ¢f al. 1989), but still they are dealing with only
a tiny fraction of the whole problem. Liang and Dutta
(1990) have also pointed out the need to combine plan-
ning and scheduling, but their proposed solution was
demonstrated on a very small simplified problem. It is
not at all clear if it will scale up to be able to deal with
the kinds of test problems described later. The technique
presented in this paper, developed by viewing the
problem in a completely new way, appears to be the only
piece of work fully addressing this highly generalized
version of the JSS problem.

3. An introduction to genetic algorithms

Genetic algorithms (GAs) are a key technique used in
this work. Since knowledge of the method has not yet
spread to all scientific and technical quarters, a brief
introduction is given here. For further details see
Goldberg (1989), Davis (1990), and Husbands (1992).

We are the existing proof of the astonishing power of
natural evolution, a process of selection acting on small
variations within a species. It is tempting to imagine that
highly effective techniques for optimization, and for the
design of adaptive systems, can be abstracted from the
logic of natural evolution. Over the past 40 or so years a
number of researchers have tried to do just that. The
most powerful and successful methods emerged in the
late 1960s and early 1970s and are based on Holland’s
genetic algorithm (Holland 1975).

Genetic algorithms are adaptive search strategies
based on a highly abstract model of biological evolution.
They can be used as an optimization tool or as the basis
of more general adaptive systems. The fundamental idea
is as follows. A population of structures, representing
candidate solutions to the problem at hand, is produced.
Each member of the population is evaluated according to
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some fitness function. Fitness is equated with goodness of
solution. Members of the population are selectively inter-
bred in pairs to produce new candidate solutions. The
fitter a member of the population is the more likely it is
to produce offspring. Genetic operators are used to facili-
tate the breeding; i.e. operators that result in offspring
inheriting properties from both parents (sexual repro-
duction). The offspring are evaluated and placed in the
population, quite possibly replacing weaker members of
the last generation. The process repeats to form the next
generation. This form of selective breeding quickly
results in those properties that promote greater fitness
being transmitted throughout the population: better and
better solutions appear. Normally some form of random
mutation is also used to allow further variation. A simple
form of this algorithm is illustrated in Figure 1. This
population-based survival-of-the-fittest scheme has been
shown to act as a powerful problem-solving method over
a wide range of complex domains (Grefenstette 1985,
1987, Schaffer 1989, Belew and Booker 1991, Schwefel
and Manner 1991, Davis 1990).

The population of structures to undergo adaptation
generally consists of strings (chromosomes) of a fixed
length. Each element (gene) of the string represents some
aspect of the solution and will have a set of possible
values (alleles) mapped to various attributes. The fitness
of such a string is measured by some objective function
that costs the particular combination of attributes pre-
sent. Hence the chromosomes may be, for instance,
strings of real numbers, strings of integers, bit strings
(string of 1s and Os to be decoded into a set of parameter
values), a permutation of some set of elements, a list of
rules or some combination of these representations.

The set of genetic operators developed by Holland,
and the one generally used (possibly with domain-specific
modifications), consists of three operators: crossover,
inversion and mutation. Simple crossover involves
choosing at random a crossover point (some position
along the string) for two mating chromosomes, then two
new strings are created by swapping over the sections
lying after the crossover point. Multi-point crossovers are
also frequently used. Inversion is simply a matter of
reversing a randomly chosen section of a single string.
Mutation changes the value of a gene to some other poss-
ible value. The genetic operators are applied at the
breeding stage according to a routine like the following.
When two strings are selected for breeding, first apply
crossover (with some high probability) and randomly
choose one of the two new strings thus formed. Next
apply inversion (with a medium probability) to this
string. Each gene on the resulting string undergoes
mutation (with a very low probability) and the outcome
is taken as the offspring. The basic operators and the
breeding process are illustrated in Figure 2. Note the

Create initial population
of strings (genotypes)

.. each string of symbols
(genes) is a candidate
solution to the problem

Assign a fitness value to
P> cach string in the population

Y

Pick a pair of (parent) strings
Yo for breeding. The fitter the string
the more likely it is to be picked

Y

Put offspring produced in a
temp_population

. ?

temp_population full?

yes
Replace population with

——t temp_population

Figure 1. A simple genetic algorithm.

stochastic nature of this process. All operators are applied
probabilistically and crossover and inversion points are
chosen randomly.

The overall effect is to emphasize combinations of
basic building blocks (groups of genes) that produce
maximum fitness.

In some problem domains it may be beneficial to allow
dynamic length strings. This can be achieved by ran-
domly selecting different crossover points on each parent
rather than forcing them to be the same, although recent
arguments (Harvey 1992) strongly suggest that changes
in length should be restricted to be small and gradual.
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N

mutation here

Figure 2. Application of the genetic operators.

Other operators, such as translocation (moving a section
of the string to a new location), may also be useful.

There are many variations on and extensions to the
basic algorithm. In particular, highly parallel implemen-
tations of GAs, with ‘geographically’ distributed popula-
tions and local selection only, appear to be the most
powerful (Husbands 1992).

Because Holland and his students developed GAs to
serve as adaptive problem-solving strategies able to
operate over a large range of environments, their GAs
have qualities that make them suitable for many large
combinatorial problems and string-representable search
tasks. By a combination of selection and reproduction via
genetic operators, they are able to find very fit structures
by searching only a tiny proportion of the whole problem
space. As long as the string representations and the cost
function are accurate, GAs can conduct a successful
search without recourse to any special domain-specific
heuristics. The subtlety of their action prevents them
from getting stuck on local optima and ensures that they
simultaneously search widely separated parts of the
problem space. This is largely due to the random
elements in the action of the genetic operators. No
assumptions need to be made about the search space,
often in contrast to the situation with branch and bound

and various heuristic search techniques, Because GAs
manipulate populations of legal solutions, they do not
suffer from exponential memory usage like many ver-
sions of branch and bound and dynamic programming,
which attempt to build up gradually a single optimal sol-
ution. These qualities make GAs an extremely robust
problem-solving method. It is this robustness that makes
them an attractive and useful search technique.

Although the basic algorithm is computationally
trivial, it should be noted that a great deal of ingenuity
is often needed to derive a suitable encoding for a
problem and to provide it with an appropriate set of
genetic operators and a sufficiently discriminating fitness
function. This point will be illustrated later in this paper
when the somewhat more complex GA used in this work
is described.

4. Overview of ecosystems model

This paper concentrates on two core aspects of a com-
plete framework for dealing with a certain class of design
and manufacturing problems. The overall approach is
now briefly presented. This is captured, at a very high
level, in Figure 3. A design system, whose description is



modules of this system are dealt with here (for further
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Design Plan Space Ecosystems Parallel
System -  Generation = Optimisation

Figure 3. Overall approach.

outside the scope of this paper, produces component and
blank representations. These representations are com-
pared in order to find out which component features are
to be machined and which, if any, already exist in the
blank. The complete space of plans for each component
is implicitly generated. (This refers to the fact that all the
data needed to construct explicitly the search space point
by point is made available. This amount of data is of
course quite manageable, whereas the explicitly gener-
ated search space would certainly not be. Enumerative
search on this kind of problem is quite out of the ques-
tion.) These spaces are searched in parallel, taking into
account interactions between and within plans, using an
ecosystem model. From this emerges a solution to the
simultaneously optimal plans and schedule problem. The
earlier, knowledge-based, parts of the systemn determine
the boundaries and structure of the search space that the
emergent optimization techniques work in. The last two
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details of other aspects of the system see Husbands e al.
1990, and Mill e al. 1992).

The idea behind the ecosystems, or coevolving species,
model is shown in Figure 4. The genotype (genetic en-
coding) of each species represents a feasible process plan
for a particular component to be manufactured in the
machine shop. Separate populations evolve under the
pressure of selection to find near-optimal process plans
for each of the components. However, their fitness func-
tions take into account the use of shared resources in
their common world (a model of the machine shop). This
means that without the need for an explicit scheduling
stage, a low-cost schedule will emerge at the same time
as the plans are being optimized.

The data provided by the plan space generator are
used randomly to construct initial populations of struc-
tures representing possible plans, one population for each
component to be manufactured. An important part of
this model is the population of arbitrators, again initially
randomly generated. The arbitrators’ job is to resolve
conflicts between members of the other populations; their
fitness depends on how well they achieve this. Each
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Figure 4. The ecosystems model.
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population, including the arbitrators, evolves under the
influence of selection, crossover and mutation. It is
important to note that the environment of each popula-
tion includes the influence of all the other populations.
The following three sections will fill in the details of this
sketch, starting with the plan space generator.

5. The plan space generator

The plan space generation algorithm attempts to break
the manufacture of a component down into a number of
nearly independent stages. The entire space of possible
plans can then be generated by finding all the possible
operations to carry out each stage along with the ordering
constraints which must exist between the stages. Essen-
tially a stage refers to a finishing operation on a single
feature or super-feature (a group of features treated as
one due to some network of constraints binding them
together) or a roughing operation on an intermediate
feature (defined later). So cach stage of the plan has a
unique feature, super-feature or intermediate feature
associated with it. The operations found to manufacture
these are described in terms of [machine/process/tool
setupfcost] combinations. The setup refers to the orien-
tation of the workpiece and the cost refers to the
machining cost associated with that operation. Along
with this information the planner gencrates a separate
network representing the partial orderings it has deduced
hold between the stages of the plan.

The simplest way to describe the algorithm in more

feature
(goal node)

detail is to start with the highest level structures it builc
and manipulates. These are planning networks like th
one shown in Figure 5. In common with most generativ
process planners, the manufacturing processes al
treated as material addition operations, whereas
course they actually involve material removal., Th
overall strategy is to start with those features deepest i
the component and work out towards the surface. Th
process is guided by a set of ‘critics’ constantly on tl
look out for possible feature interactions, which m:
result in deferring work on part of the componel
(Husbands et al. 1990), and by high-level consideratio
regarding datums and such like. Once a feature has be
chosen, a finishing process to achieve its desired fin
state is inferred. The details of this are discussed late
This finishing process leaves an intermediate feature wi
various inexact properties, such as a range of possik
surface finishes. This models the fact that most finishis
processes can only sensibly be started from a state wi
a given range of properties. For instance, it is high
undesirable to end up grinding down a very rou
uneven surface. A roughing process is then chosen

manufacture the intermediate feature. Rememberi
that an exhaustive set of possible manufacturing routes
required. for any given finishing process. any number
compatible roughing processes may exist. Thus

network like the one shown in Figure 5 is built u
keeping track of the interactions between finishing a
roughing processes for ecach feature. These networks ¢
be readily extended to allow an arbitrary number of st
finishing and sub-roughing processes, and hence int

— N\

Finishing

finished on MCN with
PRSS using TOOL
setups {SET}

intermediate feature

Roughing Roughing
roughed on M2 with P2
using T67 setups {1,3,5}

roughed on M1 with P3
using T67 setups {1,3,5,16}

Roughing
roughed on M6 with P1
using T61 setups {1,2,3,5}

starting conditions

Figure 5. Fragment of planning network.
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mediate features, to be handled. Each route on the
network, from starting conditions to final feature, has its
own subsidiary information attached, such as machining
parameters and cost. In complex cases it may be
desirable to weight the different routes or to remove
certain nodes or connections. It is often found, when
building up the network, that a possible roughing oper-
ation is exactly the same as the finishing operation it is
connected to via an intermediate feature. In this case the
roughing node and its connections are removed and a
connection made directly from the starting conditions to
the finishing node. This tells us that it is feasible to
machine out the feature by using the single process.
Various kinds of links between the sub-networks of
different features are built up by the planner.

A full description of the plan space generation
algorithm is outside the scope of this paper but see
Husbands et al. (1990). The latest implementation is in
C + + (hence object-oriented) and makes use of the ACIS
solids modeller. The component model is continually
updated as features, intermediate features and super-
features are dealt with. The core mechanism for process,
machine, tool and setup selection is as follows. Feature
objects have a list of possible manufacturing processes
associated with them; process objects are interrogated by
the feature objects to see if they are suitable. Process
objects have a list of machine types usually capable of
performing them; process objects interrogate the
machine class to find actual machines that can be used.
In a similar way the tools and possible setups for a given
[featurefprocess/machine] combination are found. The
solid model is used to check for access and possible
feature interactions,

The output from this process is a large number of
interconnected networks like the one shown in Figure 3.
A manufacturing plan for the sub-goal described by the
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Figure 6. Anteriority constraints.

fragment of network shown is a route from the starting
conditions node to the goal conditions node. Implicit in
the representation are functional dependencies between
sub-operations. The algorithm also discovers ordering
constraints in the processing of the various features,
intermediate features and super-features. This results in
the output of a partial ordering graph like the one shown
in Figure 6. Each of the symbols refers to a particular
feature, intermediate feature or super-feature.

6. GAs for process plan optimization

The next step in understanding the details of the full
ecosystems model is to look at the GA-based optimization
of a single process plan. For the rest of this paper only
machining and setup costs will be considered. This is to
simplify the formulae. There is no loss in generality, it is
straightforward to see how tool change and machine
transfer costs could be included, but for the moment a
machine sclection implies a given process and tool too.

6.1. An obvious approach

An obvious string encoding of a process plan is:
Simusifamasa ... fimisi ... Exmysn

This is a simple order-based encoding to be read from left
to right: f; refers to the ith feature to be processed and m;
and s; refer to the machine and setup to use for that
operation. Each f; could take on the value of any of the
actual features (intermediate features, super-features) in
the component as long as no ordering constraints are
broken. The initial population, generated at random,
would include many different orderings of the actual fea-
tures and many different machine and setup combi-
nations for the features. The genotypes (genetic
encodings) could be implemented as integer strings if fea-
tures. machines and setups were all given unique integer
codes.
A suitable cost function for this encoding is
i=N
COSTy = Z[ (Mo( fi, mi) + So(mi, si,mi—1, 5i-1)) (1)
i=

Where Mo( fi, mi) is the basic machining cost for pro-
cessing f; on m;. This value could be previously calculated
according to standard formulae and stored in a table. Sp
is the setup cost function, defined as:

So(mi, SiyMi-1, 5i—1)=

(2)

0 ifm.-=m,-_1:ind Si=8i-1
setup(mi, s;) otherwise.

v e Y e

s s

- T —— T ey

r—

e R s o

e e e e e T

d



L—b—&—l—i-—-&—-*-i—-&-u—- hee o —n o et e e Bl TN e e o N R e Y R S e | S D g O ey S 1 VS S SRS PURPE, S (M S SR e

Ecosystems model for integrated production planning 81

Where setup(m;, si) is a standard function. In English, a
setup cost is always incurred unless the last feature to be
processed used the same machine and setup.

This encoding and cost function provide the basis for
the operation of a genetic algorithm like the one
described in Section 3. However, because the strings in
the population will have the features in different orders,
simple crossover will nearly always produce illegal off-
spring with some features missing and some represented
twice. Added to this is the problem of interdependent
finishing and roughing operations being split up. Hence
a modified crossover operator, which repairs the offspring
to make it legal, would have to be used. This would be
something like the PMX operator described by Goldberg
and Lingle (1985), but would be significantly more com-
putationally expensive because the partial ordering and
planning networks would have to be continually checked
to avoid contravening anteriority constraints and oper-
ation dependencies. Hence a rather more sophisticated
encoding and cost function have been developed. (See
Vancza and Marcus (1991) for another interesting
alternative approach to this problem.)

6.2. A more subtle approach

The genotype of a process plan ‘organism’ can be
alternatively represented as:

Simyisy famas2Gfsmass famasafsmsssG ...

Here fi no longer refers to the ith feature to be processed
in a plan, but to the ith feature in a fixed ordering scheme
that groups together interdependent operations (e.g.
roughing and finishing operations from the same plan-
ning network). Again m; refers to the machine used to
process that feature and 5 to the setup. Each group of
interdependent operations is terminated by a special
symbol (G in the example above). As long as the group
terminators are the only legal crossover points, the
simple crossover operator will always produce legal
plans; each member of the population following the same
encoding and hence the same feature ordering. If cross-
over were to occur within a group, data for dependent
operations would be split up and illegal plans would
probably occur on recombination (e.g. including incom-
patible roughing and finishing operations). The mutation
operator is also fairly involved because the gene values
are context-sensitive due to the dependencies. This en-
coding encapsulates the network structures of the data
produced by the plan space generator. Each fi, m; and s
have associated with them finite sets of possible integer-
coded values. Because these sets are all quite different,
bit string representations would be awkward and
unnatural, hence so-called real-valued codes are used. It

is probably not obvious how this new encoding is to be
interpreted as a plan. This will become clear in a little
while.

Although this encoding allows the unmodified use of
the computationally trivial simple crossover operator, it
appears to ignore the ordering aspect of the search prob-
lem. In fact it does not, this has now been transferred
into a rather more complex costing function. This func-
tion, COSTy, shown below, is applied to the genotype
shown above after it has been translated into a linearized
format that can be interpreted sequentially. This is
achieved by regrouping the features, according to a fixed
scheme, taking into account the anteriority constraints
and resulting in an encoding equivalent to that described
in Section 6.1. But note that here it is only used as an
intermediate encoding and is not the genotype on which
the genetic operators act. This translation is computa-
tionally inexpensive.

i=N

COSTy = ;: (M (mi, i)+ 81 (si, 1, mi)) (3)

Mj is exactly the same function as My from the previous
section. COST) performs a simulation of the execution of
the plan. Its input data are an ordered set of (machine,
setup) pairs, one for each operation. Ordered sets of
operations to be processed using a particular
machine/setup combination are built up on a 2D grid.
Si(si, 2, mi) governs the way in which these sets are built
up. The operations in any set can be performed in iso-
lation from those in any other set. Such a set will be
referred to as a ‘stage’ of a job in the rest of this paper.
These sets themselves are ordered and the outcome is a
process plan like the one shown below, where the integers
in the sets refer to particular operations (processing of
features). The final ordering of features is quite different
from that on the genotype and the intermediate en-
coding, but deterministically derived (by S1) from the
genotype.

1) machine: 6 setup: 5 [0,3,5,7]
2) machine: 2 setup: 21 [1,8,12,19]
3) machine: 11 setup: 4 [2,4,6,9,13,15] ... etc.

In fact COST; provides a mapping from the process plan
genotype to its phenotype: one of the plans illustrated
above. This involves a considerable interpretative pro-
cess, analogous to the developmental process in nature:
there is a complex route from DNA (genotype) to
organism (phenotype). The essential workings of COST)
are sequentially to process the transformed genome in
order to group operations together in clusters which can
then be treated as single units (stages). At the same time
as the costs are found a final ordering for the operations
is produced. This encoding and cost function combi-
nation effectively allow a search of the combined ordering
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and machinefsetup selection space. Unlike the first sug-
gested encodingfcost-function combination, a complex,
but computationally cheap, interpretative process allows
the use of computationally very inexpensive genetic
operators.

The definition of Si(si, 7, m;) is given below:

(" f(si,m;i) if s, m combination not pre-
viously encountered
S(si,mi) if 1 causes break-constraint in
all grid sets,
S(si,mi) 1f 1 causes set incompatibility
in all grid sets,
0 otherwise. 4)

S1(si, 1, mi) =

Where f(si,m;) is a simple table look-up function. Full
details of the functions would take up too much space,
but the following gives a brief explanation of break-
constraint and set-incompatibility, as mentioned in the
function definition above. Suppose feature x is being pro-
cessed by COST). Tt has associated with it machine/setup
combination (my, s¢). Also suppose this combination has
already been encountered by the objective function and
so a corresponding set, S0, exists on the simulation grid.
A break-constraint occurs, in an attempt to add x to S0,
under the following condition:

3z3y((PESOYA (2 €Sn)A (Sn # SO)A (3= 2)A (2 x))
(5)

Where = represents a partial ordering constraint, y and
z are features and Sn is any set on the grid. (Note that =
actually refers to the transitive closure of the binary
ordering operator shown in Figure 6. That is, throughout
the rest of this paper, @ = b means that a lies somewhere
before & in the overall ordering graph, quite possibly
involving chains of the given atomic constraints.) So a
break-constraint occurs for feature x with the (my, sxc)
combination when there exists some feature y which has
already used this same combination, and has the fol-
lowing additional property: owing to the ordering con-
straints on the problem there exists a third feature, z,
which must be processed after y but before x and does
not use the same setup/machine combination. When a
break-constraint occurs it is not possible to process all
those features linked to a particular machine/setup com-
bination without changing machine andfor setup part-
way through to perform some other operation. Obviously
the setup cost is incurred again when processing moves

back to the original machine. As far as the mechanism of

the simulation is concerned, if a break-constraint occurs
in an attempt to add feature x to grid set S0, a new set,
with x as the first member, is started at the same grid
location.

The set-incompatibility condition is slightly more
subtle and is defined as follows: feature x causes a set-

incompatibility if, when we are trying to add it to some
set, S0, of features on the grid,

p((yeSn)A (S ZSO)A (y = x))A 3z3w((z € Sn)
A(we€SO)A (w—2)) (6)

Where p, w and z are features and Sn is any set on the
grid. The sets SO and Sn are incompatible since it is not
possible to order them in relation to each other. A new
set must be started at the same position as SO on the grid
and with x as the first member. At the end of the simu-
lation all the sets on the grid are ordered. The crucial test
in any sorting algorithm is one for deciding whether two
adjacent members of the array are in the correct order.
The action of the setup function Sy (s, 1, mi), particularly
the set-incompatibility condition, ensures that it is poss-
ible to order any two grid sets. The ordering condition is
simple. If any member of set S; has any member of set
§j in its extended after-constraints list (defined below),
then §; is ordered before S;. Formally, S; — §; if:

IxIy((x €SN (YESA (€ A5)) (7)

Where §; and S; are grid sets, x and y are operations and

" is the complete set of all operations lying after x in
the overall partial ordering (extended after-constraints
list).

It is this encoding and cost function that are used in
the full parallel ecosystems model as described in the next
section. Full details of the functions can be found in
Husbands (1988b). A GA for optimizing single process
plans, employing this encoding and cost function, is
described by Husbands (1988a), and Husbands et al.
(1990).

7. Coevolution, arbitrators and emergent
scheduling

Sufficient detail has now been accumulated to fill out
the sketch of the ccosystems model given in Section 4.
Interacting populations of separate ‘species’, the geno-
type of each encoding for the process plan of a particular
component and making use of the coding scheme
described in Section 6.2, convolve under the influence of
selection, crossover and mutation. Selective pressure
takes into account interactions between the different
populations (process plans) and hence allows the simulta-
neous optimization of the plans for each component, and
the emergence of a near optimal schedule.

Recall that a separate species of arbitrators is required
to resolve conflicts arising when members of the other
populations demand the same resources during overlap-
ping time intervals. The arbitrators’ genotype is a bit
string that encodes a table indicating which population
should have precedence at any particular stage (defined
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earlier) of the execution of a plan, should a conflict over
a shared resource occur. There is one bit for each poss-
ible population pairing at each possible stage. Hence the
abitrator genome is a bit string of length SN(N - 1)/2,
where §'= maximum number of stages possible in a plan
and N =number of process plan organism populations.
Each bit is uniquely identified with a particular popula-
tion pairing and is interpreted according to the function:

f(m,nz,k>=g[m¥2+mw~ 1)

__f!l(ﬂl + I]

2 +n1~l] (8)

Where n; and ny are unique labels for particular popula-
tions, n < ny, k refers to the stage of the plan and g[i]
refers to the value of the ith gene on the arbitrator
genome. If f(ny,nz,k)=1 then n; dominates, else n
dominates. By using pair-wise filtering, the arbitrator
can be used to resolve conflicts between any number of
different species. It is the arbitrators that allow the sched-
uling aspect of the problem to be handled. In general, a
population of coevolving arbitrators could be used to

resolve conflicts due to a number of different types of

operational constraint,

In the full model the cost, hence selection, functions
for plan organisms involve two stages, for arbitrators just
one. The first stage involves population-specific criteria
(basic machining costs) and the second stage takes into

account interactions between populations. The first stage
cost function for the process plan organisms is of course,
COST,, described in detail in Section 6.2. The second
phase of the cost function involves simulating the simul-
taneous execution of plans derived from stage one.
Additional costs are incurred for waiting and going over
due dates. When two plans require the same resource at
the same time an arbitrator is used to resolve the prob-
lem. The arbitrators are costed according to the amount
of waiting and the total elapsed time for a given simu-
lation. The smaller these two values are, the fitter the
arbitrator is. Hence the arbitrators, initially randomly
generated, are allowed to coevolve with the plan
organisms. Each individual's fitness is calculated
according to its total cost. This means that selection
pressure takes account of both optimization problems:
interactions during phase two that increase an individ-
ual’s cost will reduce its chances of reproduction, just as
will a poor result from phase one of the costing.

The first implementation of this model, on a MIMD
machine, had the various populations on separate pro-
cessors and involved a complicated ranking mechanism
to allow coevolution to produce useful results (Husbands
and Mill 1991), global selection was employed. The
second, more satisfactory, implementation spreads each
population ‘geographically’ over a 2D toroidal grid,
which is illustrated in Figure 7. Selection is local, individ-
uals can mate only with those members of their own
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Figure 7. Geographically distributed population. Tiny fragment of 2D toroidal grid. Member of each species at each grid location.
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species in their local neighbourhood. The neighbour-
hood is defined in terms of a Gaussian distribution over
distance from the individual; this results in a small
number of  individuals per neighbourhood.
Neighbourhoods overlap, allowing information flow
through the whole population without the need for global
control. Selection works by using a simple ranking
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scheme within a neighbourhood: the fittest individual is
twice as likely to be selected as the median individual.
Offspring produced replace individuals from their
parents’ neighbourhood. Replacement is probabilistic
using the inverse scheme to selection. In this way genetic
material remains spatially local and a robust and
coherent coevolution (particularly between arbitrators
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Figure 8. Results of coevolution model.
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and process plan organisms) is allowed to unfold. Inter-
actions are also local: the second phase of the costing
involves individuals from each population at the same
location on the grid. This provides a highly parallel
model that consistently provided better faster results than
the first, less parallel, implementation.

Results of typical runs are shown in Figure 8. The
graphs show how the machining costs (COST}) of the
best individual in each population reduce with time, and
also how the arbitrator costs reduce. It also shows how
the total elapsed time reduces. The Gantt charts show
how the emergent schedule evolves. The vastly reduced
number of stages after a few tens of generations reflects
the fact that machining costs can be decreased by putting
more operations into a single stage. Clearly both
optimization problems have been tackled simultaneously.
Note that there is some tension between the various
objectives. one cost may momentarily rise while others
drop, but the overall trend is down. A model of a real
job-shop is used and the components planned for are of
medium to high complexity needing 25—-60 operations to
manufacture. Each job has a number of internal partial
ordering constraints but is by no means strongly con-
strained. Typically each operation has eight candidate
machines and each of these machines has six possible
setups. To simplify matters, tool changes and machine
transfer costs have not been modelled in great detail.
However, it is a simple matter to include them and furure
versions of the model will be complete in that respect.
Experiments with up to 10 jobs have been conducted.
Very promising results have been obtained for this
extremely complex optimization problem, never before
attempted. The search spaces involved are unimaginably
huge (greater than 10%°), but this model has exploited
parallelism sufficiently to produce good results.

8. Discussion

Davis has done some work on using GAs to solve JSS
problems (Davis 1985), but his solution was for the
simplified problem that does not take into account the
proper relationship between planning and scheduling.
Each genome represented an entire schedule, but that
approach cannot exploit the inherent parallelism of the
problem in the same way that the work described here
has. GA work on other scheduling problems has been
done by Clevland and Smith (1989), and Nakano and
Yamada (1991). Hilliard et al. (1987) have used a
classilier system (Goldberg 1989a) to discover scheduling
heuristics. That work may tie in with ongoing research
on enabling the arbitrators to learn how to resolve a

number of different types ol conflicts. There is no reason
why the arbitrators should not become fully blown
classifier systems. Because this system runs on a powerful
parallel machine (500 transputer), very good solutions
are found within a few minutes. Because of this, not
much effort has yet been put into making the system
react to sudden changes in the manufacturing environ-
ment. However, this 1s an area for future research. One
possible scenario that is envisaged is that the system will
run in the background and be continuously updated with
feedback from the job-shop, in other words the simulated
environment will dynamically mirror the actual manu-
facturing environment. Various local selection and inter-
action schemes are to be investigated in a new extended
implementation of the model. As well as taking into
account the general dynamic nature of a manufacturing
environment, future work will make use of job priorities,
varying start times and batch sizes. In the dynamic situ-
ation it is undesirable to allow the populations to con-
verge too strongly on a single solution; potentially useful
partial solutions may be lost for good. Local selection
partly counteracts this tendency, but it is likely that a
stochastic cost function will be necessary to fight it fully.
A stochastic objective function would inject noise into the
model. As well as preventing strong convergence, this is
actually likely to provide a more accurate cost-model of
the manufacturing processes. The scaling-up properties
of the model will be investigated by using it with a large
number of components (about 50).

Interesting coevolutionary GA systems have recently
been developed by others (Hillis 1990, Koza 1990) in
very different applications. The author is not aware of
any other parallel GA systems that allow cooperative and
distributed problem-solving in the manner of the work
described here.

[t may be possible to extend the method to encompass
the notion of a ‘total manufacturing system’ in which the
manufacturing facility is no longer fixed. Properties of
the manufacturing environment would also coevolve
along with the component plans. Variations in the
environment could range from minor configuration
details to major changes in the layout, number, types and
properties of cells or machines.

In conclusion, this paper has presented preliminary
results from a highly parallel GA-based ‘ecosystems’
model, which allows the simultaneous optimization of the
process plans of a number of components. At the same
time a near-optimal schedule for the job-shop emerges.
Underlying the method is a feature-based process plan
space generator. This work is aimed at completely
re-evaluating the classical JSS problem and giving an
indication of the best route forward in advanced parallel
GA applications.
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