1
|

264 Husbands, P. and Mill, F. Simulated Co-Evolution as The Mechanism for Emergent Planning and Scheduling. Proc. 4th

Int. Conf. on Genetic Algorithms, ICGA'91, Belew, R. & Booker, L. (eds), Morgan Kaufmann, 1991, 264-270

Simulated Co-Evolution as The Mechanism for
Emergent Planning and Scheduling

Philip Husbands
School of Cognitive & Computing Sciences
University of Sussex
Falmer, Brighton, England, UK, BN1 9QH

Abstract

The underlying structure of many combinatorial
optimisation problems of practical interest is highly
parallel. However, traditional approaches to these
problems tend to usc mathematical characterisations that
obscure this inherent parallelism. By contrast, the use of
biologically inspired models casts fresh light on a problem
and may lcad to a more general characterisation which
clearly indicates how to exploit parallelism and gain better
solutions. This paper describes a model based on simulated
co-evolution that has been applied to a highly generalised
version of the manufacturing scheduling problem, a
problem previously regarded as too complex to tackle.
Results from an implementation on a parallel computer are
given,

1 Introduction

There is a very large body of work on solving planning and
scheduling problems, mainly cmanating from the ficlds of
Artificial Intelligence and Operations Rescarch.
Traditional AT approaches have had limited success in real-
world applications, indeed their shortcomings have been
thoroughly explored and documented [2). The general
resource planning, or scheduling, problem is well known 1o
be NP-Complete [5]. Conscquently OR techniques have
been developed 1o give exact solutions to restricted
versions of the problem, but in general there is a reliance on
heuristic-based methods. Because of the complexity and
size of the search spaces involved, a number of simplifying
assumptions are always used in practical applications.
These assumptions are now implicit in what have become
the standard problem formulations. The authors hold the
view that in many instances this has led to the most general
underlying optimisation problem being ignored or, more
often, not even being acknowledged as existing at all.

This paper will concentrate on the domain of
manufacturing planning and scheduling. In this domain the
true relationship between planning and scheduling appears
o have been lost sight of long ago. Scheduling is
essentially seen as the task of finding an optimal way of
interleaving a number of plans which are 10 be exccuted
concurrently and which must share resources. The implicit
assumption is that once planning has finished scheduling
takes over. In fact there are many possible choices for the

Frank Mill
Dept. Mcchanical Engineering
University of Edinburgh
The King's Buildings, Edinburgh EH9 3JL, Scotland

sub-operations in most planning problems. Very often the
real optimisation problem is to simultaneously optimise the
individual plans and the overall schedule. This paper
describes how manufacturing planning has been radically
recast to allow solutions to the simultaneous plan and
schedule optimisation problem, a problem previously
considered too hard to tackle at all. A model based on
simulated co-evolution is described and it is shown how
complex interactions are handled in an emergent way.
Results from an implementation on a parallel machine are
reported.

Although this paper is largely focused on one particular
optimisation problem, it should be noted that the model
presented can be generalised. This work is concerned with
using parallel GA scarch in a form of distributed problem
solving. Most previous parallel GA work has been
concerned with speed up and devising parallcl
implementations which provide a more robust scarch
[14,15]. In contrast, the work reported here is concerned
with using parallcl GA scarch to simultaneously solve
interacting subproblems. From this emerges the solution to
some wider more complex problem. The idea is to recast a
highly complex problem in terms of the cooperative and
simultancous solution of a number of simpler interacting
subproblems. Using this variation of divide and congquer,
the inherent parallelism in a problem is brought out and
thoroughly exploited. The model involves a number of
scparate populations each evolving using a GA. The
genotype for cach population is different and represents a
solution to onc of the subproblems. Because the fitness of
any individual in any population takes into account the
interactions with members of other populations, the
separale specics co-evolve in a shared world. In this model,
possible conflicts between species (c.g. disputes over
shared resources) are decided by a further co-evolving
species, the Arbitrators. The Arbitrators evolve under a
pressure 1o make decisions that benefit the whole
ccosystem (cooperative distributed solution to the overall
problem). Without explicitly encoding the overall problem,
the Arbitrators arc used to try and adhere to the global
constraints demanded by the problem.

Further details should become clear on reading about the
specific example described here. A drive behind this work
was 1o find robust techniques for tackling extremely large
combinatorial optimisation problems. Heuristic-free search

philh
Typewritten Text
Husbands, P. and Mill, F. Simulated Co-Evolution as The Mechanism for Emergent Planning and Scheduling. Proc. 4th Int. Conf. on Genetic Algorithms, ICGA'91, Belew, R. & Booker, L. (eds), Morgan Kaufmann, 1991, 264-270

(as provided by GAs) is of great interest because non-brittle
heuristics are very hard 10 come by in many practical
problems. It should be noted that we are describing
problems with unimaginably huge search spaces (far larger
than the number of particles in the universe) so ‘solution’
does not necessarily been global optimum. Of course, there
are no know guaraniced methods for finding optimums in
these sorts of problems.

2 Domain of Application: Manufacturing
Planning and Scheduling

Consider a manufacturing environment in which n jobs or
items are o be processed by m machines. Each job will
have a set of constraints on the order in which machines can
be used and a given processing time on each machine. The
jobs may well be of different lengths and involve different
subsets of the m machines. The job-shop scheduling
problem is to find the sequence of jobs on cach machine in
order to minimise a given objective function. The latter will
be a function of such things as total clapsed time, weighted
mean completion time and weighted mean lateness under
the given due dates for each job [3]. In the standard modcl
process planning directly proceeds the scheduling. A
process plan is a detailed sct of instructions on how to
manufacture cach part (process cach job). This is when
decisions arc made about the appropriate machines for cach
operation and any constraints on the order in which
operations can be performed [1]. Very often completed
process plans are presented as the raw data for the
scheduler. However, in many manufacturing environments
there are a vast number of legal plans for each component.
These vary in the orderings between operations, the
machines uscd, the tools used on any given machine and
the orientation of the work-picce on any given machine.
They will also vary enormously in their costs. Instead of
just generating a reasonable plan to send off to the
scheduler, it is desirable 1o generate a near optimal one.
Clearly this cannot be done in isolation from the
scheduling: a number of scparately optimal plans for
different components might well interact to cause serious
bottle-necks. Because of the complexity of the overall
optimisation problem, that is simultancously optimising
the individual plans and the schedule, and for the reasons
outlined in the introduction, up until now very little work
has been done on it. However, recasting the problem to fit
an ‘ecosystem’ model of co-evolving organisms has
provided a solution. Partly because of the power of the
central optimisation technique (genetic algorithms) and
partly because the recasting has allowed many of the
complex interactions inherent in the problem to be
represented in a simple and natural way.

3 Overview of Approach

This paper concentrates on one core aspect of a complete
framework for dealing with a certain class of planning

Simulated Co-Evolution 265

problems. To give the reader a clearer understanding of the
context of the work described here, the overall approach is
briclly presented. This is captured, at a very high level, in
figure 1.

Design
System

Component Blank
Representation Representation

e

Comparison

Y
Plan Space
Generation
—
Ecosystem
Parallel
Optimisation

Figure 1: Information Processing Flow in System

A design system, whose description is outside the scope of
this paper, produces component and blank representations.
These representations are compared in order to find out
which component fcatures are to be machined and which,
if any, already exist in the blank, The complete space of
plans for each component is implicitly generated. These
spaces are searched in parallel, taking into account
interactions between and within plans, using an ccosystem
model. From this emerges a solution to the simultancously
optimal plans and schedule problem. The earlier,
knowledge based, parts of the system determine the
boundarics and structure of the search space that the
emergent optimisation techniques work in. For further
details of other aspects of the system see [11,12].

In order to understand the interpretation of the genomes
described later, a few more words need 1o be said about the
plan space generation. This is done by a knowledge-based
system, which brcaks down the manufacture of a
component into a number of nearly independent
operations. The entire space of possible plans can then be
generated by finding all the possible ways to carry out each
operation, along with ordering constraints. The execution
of an operation is defined in terms of a <machine/process/
tool/setup> tuple. The first three fields indicate how to use
the machine and the fourth refers to the orientation of the
work-picce (partially completed component). The output
from this process is a large number of interconnected
networks like the one in figure 2. A manufacturing process
for the sub-goal described by the fragment of network
shown is a route from the starting conditions node to the
goal conditions node. Implicit in the representation are

266 Husbands and Mill

functional dependencies and ordering constraints between
sub-operations.

goal conditions

operation1 operation2 operation3

!

intermediate
conditions2

intermediate
conditionsl

operation21 | [operation22 operation23

starting conditions

Figure 2: Planning Network

4 The Co-Evolving Species Model
4.1 Overview

The idea behind the co-evolving specics model is shown in
figure 3. The genotype of each specie represents a feasible
process plan for a particular component to be manufactured
in the machinc shop. Separate populations evolve under the
pressure of selection to find near-optimal process plans for
each of the components. However, their fitness functions
take into account the use of shared resources in their
common world (a model of the machine shop). This means
that without the need for an explicit scheduling stage, a low
cost schedule will emerge at the same time as the plans are
being optimised.

The data provided by the plan space generator, and
depicted in figure 2, is used to randomly generate
populations of structures representing possible plans, one
population for cach component to be manufactured. An
important part of this model is the population of
Arbitrators, again initially randomly generated. The
Arbitrators’ job is to resolve conflicts between members of
the other populations; their fitness depends on how well
they achicve this. Each population, including the
Arbitrators, evolve under the influence of standard
Holland-type genetic algorithms [10,6], using crossover
and mutation and employed as the breeding stage of the
core algorithm of figure 3. It is important to note that the

i

Cort mesnbicrs of cuch population
wcanting 1w loval crienas
— 1
poplrl2 Fank each populuion (including
Arbivrnon) sccording 1o 1his cost
[rtiitasiiitritismastassi)
GA—b-azzzzzzzzzzzz:

Shared Resources
(Machine Shop)

(T paralicl] send equally ranked members ol poputanion o
=il ro aneeract with each odier (and no-one else)

I 3 conthict anes the (equally ranked) Arburalor
decides which “orpanism” dominaies

Funal comit for each organism Gincluding Arbitracar)
i caleulared

ARBITRATORS

Gﬁ._m

Bireed the organisms (now back in their own
populations) according 1o therr final finess

Core of Algorithm

Figure 3. Co-Evolving Species Model for
Simultaneous Plan/Schedule Optimisation

environment of each population includes the influence of
all the other populations.

4.2 The Genotypes

The genotype of a process plan organism can be
represented as follows:
0P 1M {$;0p;M58,GOP3M1830p,MyS40PsMsssG ...

Where op; refers 1o the ith operation in a plan, m; to the
machine to use for that operation and s; to the setup.
Operations with interdependencies are grouped together,
each group being terminated by a special symbol (G in
above example). As long as the group terminators are the
only legal crossover points, the crossover operation will
always produce legal plans. If crossover were Lo occur
within a group, data for dependent operations would be
split up and illegal plans would probably occur on
recombination. The mutation operator is also fairly
involved because the gene values are context sensitive due
to the dependencies. This encoding encapsulates the
network structures of the data produced by the plan space
generator. Each op;, m; and s; have associated with them
finite sets of possible integer coded values. Because these
sets are all quite different, bit string representations would
be awkward and unnatural, hence so called real valued
codes are used.

The genotype is transformed into another form for
interpretation by the fitness function. This is (o take into
account the ordering aspect of the problem. There is a
network of partial ordering constraints associated with
each genotype (specie), the operations must be ordered in
accordance with these. Several methods have been used o
represent the ordering part of the problem: cxtra gences 0
denote the relative orderings, a scparate chromosome that
holds the cquivalent information and the use of a scparate
species of parasites who performed the translation. The first
two required PMX Lype crossover operators [7]. Further
work is required on the latter, but it appears to be the most
promising,

The Arbitrators’ genotype is a bit string which encodes a
table indicating which population should have precedence
at any particular stage of the exccution of a plan, should a
conflict over a shared resource occur. There is one bit for
each possible population pairing at each possible stage.
Hence the Arbitrator genome is a bit string of length
S.N.(N-1)/2, where S = maximum number of stages in a
possible plan (defined later) and N = number of process
plan organism populations. Each bit is uniquely identificd
with a particular population pairing and is interpreted
according to the following function:
i a,(n,+1

fny,ny k) = g ﬂﬁ_ﬁ +n (N=1) - (L;_-)-) +n2—1:|
Where n; and np are unique labels for particular
populations, n; < ny, k refers to the stage of the plan and
g[i] refers to the value of the ith gene on the Arbitrator

Simulated Co-Evolution 267

genome. If f(n; ,ny k) = 1 then n; dominates, else ny
dominates. By using pair wise filtering the Arbitrator can
be used to resolve conflicts between any number of
diffcrent specics.

4.3 Cost Functions

As indicated in the algorithm shown in figure 3, the cost
functions for all speeics involve two stages. The first stage
involves local criteria and the second stage takes into
account interactions between populations. The first stage
cost function for the process plan organisms, COSTI
shown below, is applied to the genotype shown above after
it has first been translated into a linearised format that can
be interpreted sequentially.

N
COST1 (plan) = Y, (M (myi) +5(s;ivm))
i=1

Where s; = setup used while processing ith operation, m; =
machine used for processing ith operation, S(s; , i, m;) =
setup cost for ith operation, M(m; ,i) = machining cost for
ith operation, N = number of operations to be processed and
M(m; ,i) has been previously calculated and is looked up in
a table. Note that a setup cost is incurred every time a
component is moved to a new machine or its orientation on
the same machine changes. This function performs a basic
simulation of the exccution of the plan. Its input data is an
ordered set of (machine,setup) pairs, one for cach
operation. The operations must be ordered in such a way
that none of the constraints laid down by the planner are
violated. Ordered scts of operations to be processed using
a particular machine/sctup combination are (effectively)
builtup ona 2D grid. S(s;, 1, m;) governs the way in which
the sets are built up on the grid. The operations in any set
can be performed in isolation from those in any other set.
Such a set is referred to as a stage of a job throughout this
paper. These sets themselves are ordered and the outcome
is a process plan like the one shown below, where the
integers in the scts refer to particular operations.

1) machine: 6 setup: 5 [0,3,5,7]
2) machine: 2 setup: 21 [1,8,12,19]
3) machine: 11 setup: 4 [2,4,6,9,13,15] ...cte

In fact COST1 provides a mapping from the process plan
genotype to its phenotype: one of the plans illustrated
above. Note that the sctup cost is often considerably more
(orders of magnitude) than the basic machining costs. The
essential workings of COST1 is to sequentially process the
transformed genome in order to group operations together
in clusters which can then be scheduled as single units
(stages). At the same time the final executable ordering of
the operations is found, as well as the basic machining
coslts.

The definition of S(s; , 1, m;) is given below:

environment of each population includes the influence of
all the other populations.

4.2 The Genotypes

The genotype of a process plan organism can be
represented as follows:
0P ;M $10P;M58,GOP3M3S10P4MyS40psMsssG ...

Where op; refers to the ith operation in a plan, m; to the
machine to use for that opcration and s; to the setup.
Operations with interdependencies are grouped together,
each group being terminated by a special symbol (G in
above example). As long as the group terminators arc the
only legal crossover points, the crossover operation will
always produce legal plans. If crossover were Lo occur
within a group, data for dependent operations would be
split up and illegal plans would probably occur on
recombination. The mutation operator is also [fairly
involved because the gene values are context sensitive due
to the dependencies. This encoding encapsulates the
network structures of the data produced by the plan space
generator. Each op;, m; and s; have associated with them
finite sets of possible integer coded values. Because these
sets are all quite dilferent, bit string representations would
be awkward and unnatural, hence so called real valued
codes are used.

The genotype is transformed into another form for
interpretation by the fitness function. This is to take into
account the ordering aspect of the problem. There is a
network of partial ordering constraints associated with
each genotype (specie), the operations must be ordered in
accordance with these. Several methods have been used to
represent the ordering part of the problem: extra gencs o
denote the relative orderings, a scparate chromosome that
holds the equivalent information and the use of a separate
specics of parasites who performed the translation. The first
two required PMX type crossover operators [7]. Further
work is required on the latter, but it appears to be the most
promising.

The Arbitrators’ genotype is a bit string which encodes a
table indicating which population should have precedence
at any particular stage of the execution of a plan, should a
conflict over a shared resource occur. There is one bit for
cach possible population pairing at each possible stage.
Hence the Arbitrator genome is a bit string of length
S.N.(N-1)/2, where S = maximum number of stages in a
possible plan (defined later) and N = number of process
plan organism populations. Each bit is uniquely identified
with a particular population pairing and is interpreted
according to the following function:
N(N-1) Ay (n+1)

flnyn, k) =g [% +a,(N=1) = (———) +ny- 1}
Where n; and np, are unique labels for particular
populations, nj < ny, k refers to the stage of the plan and
g[i] refers to the value of the ith gene on the Arbitrator

Simulated Co-Evolution 267

genome. If f(ny .ny k) = 1 then n; dominates, else ny
dominates. By using pair wise filtering the Arbitrator can
be used to resolve conflicts between any number of
diffcrent species.

4.3 Cost Functions

As indicated in the algorithm shown in figure 3, the cost
functions for all specics involve two stages. The first stage
involves local criteria and the second stage takes into
account interactions between populations. The first stage
cost function for the process plan organisms, COSTI
shown below, is applied to the genotype shown above after
it has first been translated into a linearised format that can
be interpreted sequentially.

N
COST1 (plan) = z (M (m, i) +S (s i,m)))
=

Where s; = setup used while processing ith operation, m; =
machine used for processing ith operation, S(s; , i, m;) =
setup cost for ith operation, M(m; ,i) = machining cost for
ith operation, N = number of operations to be processed and
M(m; ,i) has been previously calculated and is looked up in
a table. Note that a setup cost is incurred every time a
component is moved to a new machine or its orientation on
the same machine changes. This function performs a basic
simulation of the execution of the plan. Its input data is an
ordered set of (machine,sctup) pairs, one for cach
operation. The operations must be ordered in such a way
that none of the constraints laid down by the planner arc
violated. Ordered sets of operations to be processed using
a particular machinc/setup combination are (effectively)
builtup on a 2D grid. S(s;, i , m;) governs the way in which
the sets are built up on the grid. The operations in any sct
can be performed in isolation from those in any other sct.
Such a set is referred to as a stage of a job throughout this
paper. These sets themselves are ordered and the outcome
is a process plan like the one shown below, where the
integers in the sets refer to particular operations.

1) machine: 6 sctup: 5 [0,3,5,7]
2) machine: 2 setup: 21 [1,8,12,19]
3) machine: 11 setup: 4 [2,4,6,9,13,15] ...etc

In fact COST1 provides a mapping from the process plan
genotype 1o its phenotype: one of the plans illustrated
above. Note that the sctup cost is often considerably more
(orders of magnitude) than the basic machining costs. The
essential workings of COST1 is to sequentially process the
transformed genome in order to group operations together
in clusters which can then be scheduled as single units
(stages). At the same time the final executable ordering of
the operations is found, as well as the basic machining
costs.

The definition of S(s; , 1, m;) is given below:

268 Husbands and Mill

f (s, m,) if s,m combo not previocusly encountered
; f(s; m) if i causes break-constraint in all grid sets
S(-"p‘.m,‘)“ R a - .

f(s;, m) if i causes set-incompatibility on all grid sets

0, otherwise

f(s;m;) is a simple table look-up function, the pre-
calculated cost of performing operation i with the particular
machine and setup.

Full details of the simulation functions would take up too
much space, but the following gives a brief explanation of
break-constraint and set-incompatibility, as mentioned in
the function definition above. Suppose operation x is being
processed by COSTI1(plan) . It has associated with it
<machine/setup> combination (m,,s ,). Also suppose this
combination has already been encountered by the objective
function and so a corresponding set, Sp, exists on the
simulation grid. A break-constraint occurs, in an attempt to
add x to Sy, under the following condition:

dz3y(ye Synze SnASniSonyaz;\z—)x)
Where, -> represents a partial ordering constraint, y and z
are operations and S, is any set on the grid.

That is, a break-constraint occurs for operation x with the
<m, , s, > combination when there exists some operation y
which has already used this same combination, i.e s, = s,
and my = m,, and has the following additional property:
due to the ordering constraints on the problem there exists
a third operation, z , which must be processed after y but
before x and does not use the same < setup , machine >
combination, i.e. (m, , s,)# (m 4, s,). When a brcak-
constraint occurs it is not possible to process all those
operations linked to a particular <machine, sctup >
combination without changing machine and/or setup part
way through to process some other operation. Obviously
the sctup cost is incurred again when processing moves
back to the original machine. As far as the mechanism of
the simulation is concerned, if a break-constraint occurs in
an attempt to add operation x to grid set Sy, a new set, with
x as the first member, is started at the same grid location as
So.

The set-incompatibility condition is slightly more subtle
and is defined as follows: feature x causes a set-
incompatibility if, when we are trying to add it to some set,
S, of operations on the grid,

Jy(ye S, AS,#SgAy—x)
& Jz3w (ze S,Awe Sgrw—2)

Where, -> represents a partial ordering constraint, y, w and
z are operations and S, is any set on the grid.

The sets S and S, are incompatible as it is not possible to
order them in relation to each other. We must start a new set
at the same position as Sy on the grid and with x as the first

member. Every time a new set is created on the grid its
number (order in which sets are created) and grid position
are added to the end of a *sets_so_far” list. The sct ordering
algorithm is based on the well known bubble-sort method:
it uses this list as the array to sort. The crucial test in any
sorting algorithm is one for deciding whether two adjacent
members of the array are in the correct order. The action of
the setwp function S(s; , i ,m;) , particularly the set-
incompatibility condition, ensures that it is possible to
order any two grid sets. The ordering condition is simple.
Il any member of set S; has any member of set S; in its
extended after-constraints list, then S; is ordered before S;.
Formally, §; -> Sj if:

(IxJy(xe S;aye Sjny € Af:n))(i.c. X->y)

Where, §; and S; are grid sets, x and y are operations, ->
represents a partial ordering constraint and A®™, is the
complete set of all operations lying after x in the overall
partial ordering.

It should be clear from the above that COST1 involves a
fairly complex interpretation of the genotype, there is quite
a high level of epistasis and the mechanisms for genes 1o
influence each other’s contributions to the overall genome
fitness are complex. Despite this, genetic search performs
very well.

The local cost criteria for the Arbitrators is derived from
the final fitness of their parents. The function is given
below, the section of the offspring genome up to ¢p
(crossover point) was copied from parentl and the section
after cp was copicd [rom parent2.

If cp > ALEN, cost = cost of parentl (active
part of genome was inherited solely from
parentl)

Else, cost = (cp/ALEN)(cost of parent1) +

(1 - cp/ALEN)(cost of parent2)

W here ALEN is the average useful Arbitrator length. This
is a dynamic quantity as fitter plans tend to become shorter
meaning that arbitrating decisions are not needed for later
stages as the system evolves. This is only used because a
fully dynamic implementation of the Arbitrators has not yet
been completed.

The second phase of the cost function involves simulating
the simultancous execution of plans derived from stage
one. Additional cost are incurred for waiting and going
over due dates. There are a number of interesting problems
here. We are working towards a set of optimal plans, one
for each component, which when executed simultaneously
will provide an optimal schedule. This means that most of
the possible interactions between members of one
population and all the members of another population are
largely irrelevant. The solution used here was to rank each
population according to the local cost functions described
above and 1o run the simulation of phase two for equally

ranked organisms. What happens when two plans want the
same resource at the same time? Fixed precedences would
be far too inflexible and random choices would be of no
help. As already indicated, the most general and powerful
solution developed was to introduce a new species, the
Arbitrators, whose genetic code holds a table indicating
which population had precedence at any stage. The
Arbitrators are costed according 1o the amount of waiting
and the total clapsed time for a given simulation. The
smaller these two values, the fitter the Arbitrator. Hence the
Arbitrators, initially randomly generated, are allowed to
co-evolve with the plan organisms. Again, the Arbitrators
arc ranked and a simulation involves equal ranking
members from each population, including the Arbitrators.
If there is a conflict the Arbitrator resolves it. This scheme
allows the evolution of sensible priorities at the various
stages of the simulation. After the second phase cach
individual’s fitness is calculated according to its total cost.
This means that selection pressure takes account of both
optimisation problems: interactions during phase two that
increase an individuals cost will reduce its chances of
reproduction, just as will a poor result from phase one of
the costing. In general, a population of co-evolving
Arbitrators could be used to resolve conflicts due to a
number of different types of operational constraint. The
cost of an Arbitrator after the second phase simulation is a
function of the total schedule length and the weighted
penalties incurred by the various plan populations.

5 Results

Figure 4 shows results from an implementation on a
transputer based parallel machine. Typical results for a two
job problem are shown. The graph shows how the
machining costs (COST1) of the best individual in each
population reduce with time, and also how the Arbitrator
costs reduce. It also shows how the total elapsed time
reduces. The gantt charts show how the emergent schedule
evolves. The vastly reduced number of stages in the lower
chart reflects the fact that machining costs can be decreased
by putting more operations into a single stage. Clearly both
optimisation problems have been tackled simultancously.
Note that there is some tension between the various
objectives, one cost may momentarily rise while others
drop, but the overall trend is down. A model of a real job-
shop is used and the components planned for are of
medium to high complexity needing 25-60 operations to
manufacture. Each job has a number of internal partial
ordering constraints but is by no means strongly
constrained. Typically each operation has 8 candidate
machines and each of these machines has 6 possible setups
To simplify matiers, tool changes and machine transfer
costs have not been modelled in great detail. However, it is
a simple matter o include them and future versions of the
model will be complete in that respect. Experiments with
up 1o 4 jobs have been conducted. Very promising results
have been obtained for this extremely complex
optimisation problem, never before attempted.

zzaasgeiadl

thaaaLLRe

Simulated Co-Evolution 269

500
+ . :
LR clapsed Gme®av. mening cost
N
6000 Y,
['--.._\"""-,_
{arb unis} e N
e ,
4000 - Nt

machining cost, joh2

000 -4 \ machining cost, jqbl

T T T T 1 1
1] 50 10 150 200 250
number of gencrations

T esecution wine, jobl (ahedule length)

6000

mochining cost, job |

e, exctution tme, jobd

| <%,

Arbilrator cos

o~

50 100
numbee of gencrations

__‘ESFF‘;" — I-s.' :Eiilfé:i- 3

10 0 30 40 30 60 70 80 0 10

Time (10F sccs)

coraccetive stages of mme job on same machine indicates pew sefup

ﬁ

Figure 4. Results

270 Husbands and Mill

6 Discussion

Davis has done some work on using GAs to solve job-shop
scheduling problems [4], but his solution was for the
simplified problem that does not take into account the
proper relationship between planning and scheduling. Each
genome represented an entire schedule, that approach
cannot exploit the inherent parallelism of the problem in
the same way that the work described here has. Hilliard et
al [8] have used a classifier system to discover scheduling
heuristics. That work may possibly tie in with ongoing
rescarch on enabling the Arbitrators to learn how to resolve
a number of different type of conflicts, there is no reason
why the Arbitrators should not become fully blown
classifier systems. Because this system runs on a powerful
parallel machine (500 transputers) very good solutions are
found within a few minutes, because of this not much effort
has yet been put into making the system react to sudden
changes in the manufacturing environment. However, this
is an arca for future research, One possible scenario that is
envisaged is that the system will run in the background and
be continuously updated with fecdback from the job-shop,
in other word the simulated environment will dynamically
mirror the actual manufacturing environment. Hillis and
Koza [9,13] have previously used co-evolution but in quite
different contexts. The work has used a very
straightforward implementation of the actual GAs on the
ransputers, it may benefit from some more work in that
direction. Certainly work is ongoing in extending the
model and running it with 50-60 jobs rather than the
handful used to date. There is a great deal of work in setting
up the planning data for further jobs. However, an
interactive system that should make that much casier is
near completion.

Acknowledgements

This work was in part supported by SERC grants GR/D
63103 and GR/E 04837. It has benefited from discussion
with many people including Stephen Warrington, Inman
Harvey and Phil Agre. Acknowledgements are also due to
The Edinburgh Manufacturing Planning Group and The
Edinburgh Parallel Computing Centre,

References

[1] Chang, T. & Wysk,R. “An Introduction to Automated
Process Planning Systems”, Prentice-Hall, 1985.

[2] Chapman, D. “Planning for Conjunctive Goals”, Tech.
reporlt AI-TR-802, MIT AI Lab, 1985.

[3] Christophedes, N.
Wiley, 1979,

“Combinatorial Optimisation”,

[4] Davis, L. ‘Job Shop Scheduling with Genetic

Algorithms’, in J. Grefenstette (ed), Proc. Int. Conf. on
Genetic Algorithms and their Applications, Lawrence

Erlbaum,1985.

[5] Garey, M. & Johnson, D. “Computers and Intractibility:
A Guide to the Theory of NP-Completeness”, W.H.
Freeman, 1979,

[6] Goldberg, D. “Genetic Algorithms”, Addison Wesley,
1989.

[7] Goldberg, D. & Lingle, R.

“Alleles, Loci and The TRavelling Salesman Problem”, in
J. Grefenstette (cd), Proc. Int. Conf. on GAs and their
Applications, Lawrence Erlbaum, 1985.

[8] Hilliard, M et al. ‘A Classifier based system for
discovering scheduling heuristics’, in J. Grefenstette (ed),
Proc. 2nd Int. Conf. on GAs, Lawrence Erlbaum,1987.

[9] Hillis, W.D. ‘Co-Evolving Parasites Improve Simulated
Evolution As an Optimisation Procedure’, Physica D
42,228-234, 1990.

[10] Holland, J. “Adaptation in Natural and Artificial
Systems”, University of Michigan Press, 1976.

[11] Husbands,P., MillLEG. & Warrington,S.W.,
‘Representation, Reasoning and Decision Making in
Process Planning with Complex Components’,in
“Geometric Reasoning”, Woodwark, J (ed),203-215,
Oxford University Press, 1989,

(12] Husbands,P., MillEG. & Warrington,S,W.,,
‘Generating Optimal Process Plans from First Principles’,
in “Expert Systems for Management and Engineering”
Balagurasamy, E. & Howe, J. (eds),130-153, Ellis
Horwood, 1990.

[13] Koza, J. ‘Genetic programming: A paradigm for
genetically breeding populations of computer programs (o
solve problems’, Tech. Report STAN-CS-90-1314, Dept.
Compt. Sci., Stanford University, 1990.

[14] Pettey, C., Leuze, M., Grefenstette, J.
“A Parallel Genetic Algorithm”, in J. Grefenstette (ed),
Proc. 2nd INt. Conf. on GAs, Lawrence Erlbaum, 1987.

[15] Muhlenbein, H.

“Parallel Genetic Algorithms, Population Genetics and
Combinatorial Optimisation”, in J. Schaffer (ed), Proc. 3rd
INt. Conf. on GAs, Morgan Kaufmann, 1989,

