G9.5 Experiments with an ecosystems model for
integrated production planning

Philip Husbands, Malcolm Mcllhagga and Robert Ives

Abstract

This paper outlines a coevolutionary distributed genetic algorithm for tackling an
integrated manufacturing planning and scheduling problem. In this multispecies
ecosystems model, the genotype of each species represents a feasible manufacturing
(process) plan for a particular component to be manufactured in the machine shop.
Separate populations evolve under the pressure of selection to find near-optimal
process plans for each of the components. However, their fitness functions take into
account the use of shared resources in their common world (a model of the machine
shop). This means that without the need for an explicit scheduling stage, a low cost
schedule will emerge at the same time as the plans are being optimised. Results
are presented of the use of this model on a set of industrial problems. It is shown
to significantly outperform simulated annealing and a dispatching rule algorithm
over a wide range of optimisation criteria.

G9.5.1 Project Overview

Research on job shop scheduling (JSS), as the most general of the classical scheduling problems, has
generated a great deal of literature (Muth and Thomson 1963, Balas 1969, Garey et al 1976, Graves
1981, Ow and Smith 1988, Carlier and Pinson 1989). All of this work has used a particular definition
of the scheduling problem or very close variants of it. This article describes a case study where a
multispecies coevolutionary genetic algorithm is used to tackle a less restricted highly generalised
version of JSS. It is shown how the technique provides an integrated production planning system,
treating process planning and scheduling as inextricably interwoven parts of the same problem.

The traditional view of JSS is shown in figure G9.5.1. A number of fized manufacturing plans,
one for each component to be manufactured, are interleaved by a scheduler so as to minimise some
criteria such as the total length of the schedule. More formally, we are given a set J of n jobs, a
set M of m machines, and a set O of K operations. For each operation p € O there is one job
Jp» € J to which it belongs, and one machine m, € M on which it must be processed for a time
t, € N. There is also a binary temporal ordering relation — on O that decomposes the set into
partial ordering networks corresponding to the jobs. That is, if £ — y, then j, = j, and there is
no z, distinct from z and y, such that ©+ — 2z or z — y. Using the minimise makespan objective
function, i.e. minimising the elapsed time needed to finish processing all jobs, the problem is to find
a start time s, for each operation p € O such that:

t G9.5.1
max(sy + 1) ()
1s minimised subject to:
t, >0,Vpe O (G9.5.2)
Seg— 8y >ty, fy—w, zr,yeO (G9.5.3)

© 1995 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation

G9.5:1

G9.5:2

(52' — 8 > t]') \/(5]' — 85 > ti), if m; = mj, 1,j € 0 (G954)

However, a problem that would often be more useful to solve is that illustrated in figure G9.5.2.
Here the intention is to optimise the individual manufacturing plans in parallel taking into account
the numerous interactions between them resulting from the shared use of resources. This is the
optimization task that henceforth will be termed the integrated planning and scheduling problem
and is the focus of this case study. An ecosystems model has been developed to tackle various
practical instances of this problem, one of which is presented here.

Plan2

Scheduler = Schedule

fixed plans

Figure G9.5.1. Traditional approach to job shop scheduling.

The idea behind the ecosystems model is as follows. The genotype of each species represents a
feasible manufacturing (process) plan for a particular component to be manufactured in the machine
shop. Separate populations evolve under the pressure of selection to find near-optimal process plans
for each of the components. However, their fitness functions take into account the use of shared
resources in their common world (a model of the machine shop). This means that without the need
for an explicit scheduling stage, a low cost schedule will emerge at the same time as the plans are
being optimised. The system is illustrated in figure G9.5.3. The role of the Arbitrators, which
coevolve along with the other species, is to resolve resource conflicts betwen manufacturing plans
for different components.

This project is one of the strands of ongoing research in the Evolutionary and Adaptive Systems
Group, School of Cognitive and Computing Sciences, University of Sussex. It has been carried out
in collaboration with Edinburgh University, Logica, and Rolls Royce.

Description of the Problem

The integrated planning and scheduling problems considered in this case study are typical industrial
problems. They are generated from data collected from David Brown Vehicle Transmissions Ltd.
They model the manufacture of medium complexity prismatic parts, by metal removal processes.
They are based on the work of Palmer (1994).

The statistics shown in section G9.5.4 are all mean figures taken from 100 sample problems.
A problem consists of a number of jobs (1-14 jobs for each problem) each of which requires a plan
and all of which must be scheduled for a specific shop-floor. A job is assumed to be one or more
identical parts which (usually) remain together as they move through the shop floor. Here each
part could have 1-14 processes. A part consists of a blank (the raw material that it is machined
from) and a number of features which define its appearance, these can be thought of as describing
volumetric removals of material from the blank. A process plan for a given part may be either fixed
or flexible, either way the process plan describes the processes that must be carried out (including
possible ordering or sequencing constraints) for a specific set of features to appear on the work-piece.
However, the process plan does not define the exact way in which that feature is to be machined.

Handbook of Evolutionary Computation © 1995 IOP Publishing Ltd and Oxford University Press

ecosystems for planning

Parallel Plan Optimisation

Componentl — 7 planl
\NAY
\ /\{ /l\ \ s 7 //
% “1 -, A /
7\ N \z
Component2 T T plan2
| / /N
\ /7 ‘| / \\
Component3 N " plan3
: Nz
/\ R4
N
,/ /Y. interactions, constraints
A B
., 7 | N
‘ // / 1
ComponentN planN

Figure G9.5.2. Parallel plan optimisation leading to emergent scheduling.

popln1, componentl 'Q

GA

_—

popln2, component2

—_— ——
——
—
A
A\ \»
Shared Resources
ms (Machine Shop)
i
ﬁ A

—
_ GA ——
_

™
GA
T —

ARBITRATORS

popln3, component3

Figure G9.5.3. The ecosystems model.

The GA searches for near-optimal combinations of processes, machines, tools and setups (work-
piece orientations) for each feature, taking into account interactions with other features and the
overall constraints of the problem. In this case the shop-floor does not alter between problems. The
shop-floor consists of 25 machines which vary in the number and diversity of processes that they
can carry out. Each process plan is generated from the defined object (including some description
of its features and certain possible machining order constraints) and the possible processes that can
generate those features on the work- piece; in this case there are one or two applicable processes
per feature. For full details see (Palmer 1994, McIlhagga et al 1995).

© 1995 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation

G9.5:3

G9.5:4

single member of each population in each cell
neighbourhood

Figure G9.5.4. Distributed interacting populations.

G9.5.2 Design Process
Motivation

It is well known that the standard JSS problem is NP-hard (Garey and Johnson 1979). The
integrated planning and scheduling problem dealt with here is harder still, involving larger search
spaces and more complex constraints, and hence has not attracted much attention until recently. A
number of researchers have developed scheduling techniques that allow a small number of options
in their process plans (Sycara et al 1991, Tonshoff et al 1989) , but still they are dealing with only a
small fraction of the whole problem. Liang and Dutta (1990) have pointed out the need to combine
planning and scheduling, but their proposed solution was demonstrated on a very small simplified
problem. Given a problem of this complexity it is natural to appeal to stochastic optimisation
techniques, hence the development of the GA-based method reported here. Comparisons with other
techniques are discussed later in section G9.5.4.

The Distributed Co-evolutionary GA

A major early concern in this work was how to provide coherent coevolution. The initial,
somewhat unsatisfactory, implementation involved a set of interacting standard sequential GAs
and is described in Husbands and Mill (1991). A later, more satisfactory implementation, that has
been used ever since, spreads each population ‘geographically’ over the same 2D toroidal grid, this is
illustrated in figure G9.5.4. Each cell on the grid contains exactly one member of each population.
Selection is local, individuals can mate only with those members of their own species in their
local neighbourhood. Following Hillis (1990) the neighbourhood is defined in terms of a Gaussian
distribution over distance from the individual; the standard deviation is chosen so as to result in a
small number of individuals per neighbourhood. Neighbourhoods overlap allowing information flow
through the whole population without the need for global control. Selection works by using a simple
ranking scheme within a neighbourhood: the most fit individual is twice as likely to be selected as
the median individual. Offspring produced replace individuals from their parents’ neighbourhood.
Replacement is probabilistic using the inverse scheme to selection. In this way genetic material
remains spatially local and a robust and coherent coevolution (particularly between Arbitrators
and process plan organisms) is allowed to unfold. Interactions are also local: costing involves the
simulation of the concurrent execution of all the plans at the same location on the grid (there will be
one for each component, and an Arbitrator to resolve conflicts). This implementation consistently
gives better results in fewer evaluations than the first. For full details see Husbands (1993, 1994).

The overall algorithm is quite straightforward. It can be implemented sequentially or in a
parallel asynchronous manner, depending on available hardware.

Handbook of Evolutionary Computation © 1995 IOP Publishing Ltd and Oxford University Press

ecosystems for planning

Overall()

(i) Randomly generate each population, put one member of each population in each cell of a
toroidal grid.

(ii)) Cost each member of each plan population (phasel + phase2 costs). Phase 1 costs are those
intrinsic to a given plan (basic machining costs). Phase2 costs include waiting times and are
calculated by simulating the concurrent execution of all plans represented in a given cell on
grid, any resource conflicts are resolved by Arbitrator in that cell. Cost Arbitrators according
to how well conflicts resolved.

(iii) i — 0.

(iv) Pick random starting cell on the toroidal grid.

(v) Breed each of the representatives of the different populations found in that cell.

(vi) If all cells on the grid have been visited Go to (vii). Else move to next cell,Go to (v).

(vii) If ¢ < MaxTterations, i — i + 1, Go to (iV). Else Go to (viii).

(viii) Exit.

The breeding algorithm, which is applied in turn to the members of the different populations,
is a little more complicated.

Breed(current_cell,current_population)

(i) i<0.

(ii) Clear NeighbourArray

(iii) Pick a cell in neighbourhood of current_cell by generating x and y distances (from current_cell)
according to a binomial approximation to a Gaussian distribution. The sign of the distance
(up or down, left or right) is chosen randomly (50/50).

(iv) If the cell chosen is not in NeighbourArray, put it in NeighbourArray, i — i+1, Go to (v). Else
Go to (iii).

(v) If i < LocalSelectionSize, Go to (iii). Else Go to (vi).

(vi) Rank (sort) the members of current_population located in the cells recorded in NeighbourArray
according to their cost. Choose one of these using a linear selection function.

(vii) Produce offspring using the individual chosen in (vi) and current_population member in
current_cell as the parents.

(viii) Choose a cell from ranked NeighbourArray according to an inverse linear selection function.
Replace member of current_population in this cell with offspring produced in (vii).

(ix) Find phase one (local) costs for this new individual (not necessary for Arbitrators).

(x) Calculate new phase two costs for all individuals in the cell the new individual has been placed
in, by simulating their concurrent execution. Update costs accordingly.

(xi) Exit.

The binomial approximation to a Gaussian distribution used in step (iii), falls off sharply for
distances greater than 2 cells, and is truncated to zero for distances greater than four cells.

Requirements

The architecture of the evolutionary systems is such that the evaluation functions can easily be
changed to meet the particular requirements of a specific application of the general model. However,
the overall requirements will always be the same: minimise the cost of the manufacturing plan for
each component (according to particular criteria chosen, e.g. machining and setup costs) and at the
same time minimise some higher-level criteria such as makespan, mean flowtime, total tardiness, or
some combination of these (French 1982).

Representation

As already mentioned, there have been a number of applications of the ecosystems model to different
integrated manufacturing planning problems. Each of these has used the same encoding scheme for
the Arbitrators, but the process plan encodings have been tailored to the particular instance of the
integrated problem. The encoding scheme used in the case study reported here will be the only one
described in this paper; for a more complex encoding used for a very general version of the problem
see Husbands (1993).

For this instance of the problem the process plan chromosomes are divided into two sections:

© 1995 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation

G9.5:5

G9.5:6

One jab par chramasame 1 Casl Funslian

Op=rian chais=s cad= far palhs 1hraugh Traa.
1h= 1ra= whara & chalce =usie

Secand s=clian =ncades {ha
Fiml saciian Encades aparaian ardenng chaises

1h= machine chaic=e O tarlefl banch &
1 1ar nghl branch

] Terrmnstan

1,9,57,3,8,2 I 1,1,0 Il eson choo

Figure G9.5.5. Process plan encoding

the first part deals with method (i.e. machine) choices, the second with sequence (or ordering)
choices, see figure G9.5.5. Method choices are only denoted for jobs where there is more than one
applicable method. Currently, all methods have two options and are therefore represented as bits in
a bitstring. Lookup tables in the cost function translate these binary values into a machine choice.
The method choices are held on the genome in an order which maps on to a set of known operations
(1-N), which can be considered the default sequence. For each job, the cost function (see later)
maintains a data tree containing the space of legal sequences of operations. Sequence choices on
the chromosome are interpreted as routes down the sequence tree for a particular job. The default
sequence 1s always legal, so in cases where the problem description constrains the genome to only
one legal sequence, the sequencing information is implicit. The evaluation function is a set of ‘data
abstraction’ routines that traverse a given tree structure, following a route taken as argument, which
return with a necessarily valid operation sequence.

The Arbitrators are required to resolve conflicts arising when members of the other populations
demand the same resources during overlapping time intervals. The Arbitrators’ genotype is a bit
string which encodes a table indicating which population should have precedence at any particular
stage of the execution of a plan, should a conflict over a shared resource occur. A conflict at stage
L between populations K and J is resolved by looking up the appropriate entry in the Lth table.
Since population members cannot conflict with themselves, and we only need a single entry for each
possible population pairing, the table at each stage only needs to be of size N(N — 1)/2, where
N is the number of separate component populations. As the Arbitrators represent such a set of
tables flattened out into a string, their genome is a bit string of length SN(N — 1)/2, where S is
the maximum possible number of stages in a plan. Each bit is uniquely identified with a particular
population pairing and is interpreted according to the function given in Equation G9.5.5.

EN(N — 1)
2

77,1(77,1 + 1)

f(nl,nz,k):g 9

—|— nl(N — 1) — —|— Ny — 1 (G955)
Where n, and ns are unique labels for particular populations, ny < ng, k refers to the stage of the
plan and g[é] refers to the value of the ith gene on the Arbitrator genome. If f(ny,n2, k) = 1 then
n1 dominates, else ny dominates. By using pairwise filtering the Arbitrator can be used to resolve

conflicts between any number of different species.
Evaluation Functions

Fach job, j, has the following data associated with it: release date r;; due date d;; completion time
C;; flowtime F; = C; —r;; lateness L; = C; — d;; tardiness T; = max(0, L;); processing time of job
J on machine ¢, B;;.

From this data the following kinds of cost functions can be calculated in a straightforward
manner. makespan: Ci,4,; mean flowtime: %Zj\;l Fj; total tardiness: Zj\;lTj; proportion of
tardy jobs.

A number of different evaluation functions were experimented with. Particularly good results
were obtained with the objective function, O, shown in equation G9.5.6. This function is to be
minimised.

Handbook of Evolutionary Computation © 1995 IOP Publishing Ltd and Oxford University Press

ecosystems for planning

N N
1
O:N;Fj—l—Qx;Tj (G9.5.6)

This function, mean flowtime plus twice the total tardiness, is applied to each member of each
cell on the 2D grid, including the Arbitrators. The flowtime term encourages individually efficient
plans and the tardiness term encourages minimal interactions between the plans.

G9.5.3 Development and Implementation

The system was developed in C under Unix running on Sun workstations. The distributed
coevolutionary GA makes use of the MPI parallel message passing interface protocol, allowing
it to run on single workstations, networks of workstations and specialised parallel machines.

G9.5.4 Results

This section presents results from runs on 100 problems generated from data provided in Palmer
(1994). Table G9.5.1 gives the values for various criteria averaged over the 100 problems. The
distributed coevolutionary GA (CDGA) results are shown alongside those previously found by
Palmer with simulated annealing (SA) and local dispatching rule heuristics (K&C).

Algorithm | makespan | proportion tardy | total tardiness | totalmachining time | mean flowtime
CDGA 81.22 0.14 5.84 171.75 34.86
SA 89.09 0.18 8.87 191.22 36.10
K&C 95.96 0.31 30.28 218.13 41.37

Table G9.5.1. Problem set comparison

As can be seen from table G9.5.1 the distributed coevolutionary GA outperforms SA and
K&C on all of the optimisation criteria. The mean improvement over SA, averaged over all of
the optimisation criteria is 16.58%. The mean improvement over K&C, averaged over all of the
optimisation criteria, is 37.60%. Each of the methods was run for a comparable number of evaluation
function calls.

G9.5.5 Conclusions

In this case study of a complex manufacturing planning problem, we found that for each of a wide
range of optimisation criteria the ecosystems model consistently outperformed simulated annealing
and a dispatching rule algorithm. Unlike any of the other techniques, the coevolutionary distributed
GA produces a number of unique (and quite different) high quality solutions to the problem on
each run. Typically the CDGA would generate eight or nine unique very high quality solutions
to a given problem on a single run. This work has involved adapting Husbands’ coevolutionary
model of integrated production planning for use with a new set of problems and with different cost
functions to those used previously (Husbands 1993). This adaptation turned out to be relatively
straightforward, an experience that supports the claim that the coevolutionary model is very general

(Husbands 1993).

Acknowledgements

This work was supported by EPSRC grant GR/J40812.

© 1995 IOP Publishing Ltd and Oxford University Press Handbook of Evolutionary Computation

G9.5:7

References

Balas E 1969 Machine sequencing via disjunctive graphs: an implicit enumeration algorithm Operations
Research 17 941-957

Carlier J and Pinson E 1989 An algorithm for solving the job-shop problem Management Science 35(2)
164-176

French S 1982 Sequencing and scheduling: an introduction to the mathematics of the job-shop (Ellis Horwood:
Chichester)

Garey M and Johnson D and Sethi R 1976 Complexity of flowshop and jobshop scheduling Math. Opns.
Res. 1

Garey M and Johnson D 1979 Computers and intractability: a guide to the theory of NP-Completeness
(W.H.Freeman)

Graves S 1981 A review of production scheduling Operations Research 29(4) 646-667

Hillis W D 1990 Co-Evolving Parasites Improve Simulated Evolution as an Optimization Procedure Physica
D 42 228-234

Husbands P and Mill F 1991 Simulated Co-Evolution as the Mechanism for Emergent Planning and
Scheduling Proceedings of the Fourth Intl. Conf. on Genetic Algorithms, ICGA-9 eds. Belew R. and
Booker L. (Morgan Kaufmann: San Mateo, CA) pp 264-270

Husbands P 1993 An Ecosystems Model for Integrated Production Planning Intl. Journal of Computer
Integrated Manufacturing 6(18&2) 74-86

Husbands P 1994 Distributed Coevolutionary Genetic Algorithms for Multi-Criteria and Multi-Constraint
Optimisation Evolutionary Computing, AISB Workshop Selected Papers, Lecture Notes in Computer
Science Vol. 865 ed. Fogarty T (Springer-Verlag: Berlin) pp 150-165

Liang M and Dutta S 1990 A mixed-integer programming approach to the machine loading and process
planning problem in a process layout environment Int. Journal Production Research 28(8) 1471-1484

Mcllhagga M and Ives R and Husbands P 1995 A Comparison of Simulated Annealing, Dispatching Rules and
a Co-evolutionary Distributed Genetic Algorithm as Optimisation Techniques for Various Integrated
Manufacturing Planning Problems GAMFE Project Report 4 School of Cognitive and Computing
Sciences, University of Sussex

Muth J and Thompson G 1963 Industrial Scheduling (Prentice-Hall)

Ow P and Smith S 1988 Viewing scheduling as an opportunistic problem solving process Annals of Operations
Research 12

Palmer G 1994 An Integrated Approach to Manufacturing Planning PhD. Thesis, School of Engineering,
University of Huddersfield

Sycara K and Roth S and Fox M 1991 Resource allocation in distributed factory scheduling /EFE Fxpert
Feb. 1991 29-40

Tonshoff H and Beckendorff U and Anders N 1989 FLEXPLAN - A concept for intelligent process planning
and scheduling CIRP Int. Workshop on CAPP (University of Hanover)

G9.5:8 Handbook of Evolutionary Computation © 1995 IOP Publishing Ltd and Oxford University Press

