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Abstract. We describe an approach to artificially evolving a drawing
robot using implicit fitness functions, which are designed to minimise any
direct reference to the line patterns made by the robot. We employ this
approach to reduce the constraints we place on the robot’s autonomy and
increase its utility as a test bed for synthetically investigating creativity.
We demonstrate the critical role of neural network architecture in the
line patterns generated by the robot.

1 Introduction

The Drawbots project is a multidisciplinary investigation into creativity involv-
ing philosophers, adaptive systems researchers and an artist. A theoretical goal
is to investigate the question: what is the simplest mechanism that can be de-
scribed as creative? To this end we artificially evolve wheeled robots that move
around an arena making pen marks on the floor. These ‘embodied thought ex-
periments’ help clarify some of the necessary conditions for ‘minimal creativity’
(autonomy, novelty and evaluation) and how they can be embodied in a robot
(see [1] for a detailed consideration of these issues). An artistic goal of the project
is to generate aesthetically interesting line drawings that are suitable for exhi-
bition. This is distinct from, and potentially at odds with, the theoretical goal.
For example, by incorporating artistic knowledge into fitness functions we might
enhance the aesthetic appeal of the resulting line markings, but at the expense of
compromising the autonomy (and therefore ‘minimal creativity’) of the robots.
This paper describes our use of implicit fitness functions to evolve a drawing
robot where we minimise any direct reference to the line patterns and our focus
is on investigating minimal creativity.

2 Evolutionary Robotics

The main synthetic, bottom-up methods used in the project are those of evolu-
tionary robotics (ER). ER is a biologically inspired approach to the automatic
design of autonomous robots. The field encompasses a wide range of work where
one or more (sometimes all) of the following aspects of robot design are in the
hands of an evolutionary search algorithm: the control system; the overall body
morphology; and sensor and actuator properties. The evolutionary process uses



a fitness measure based on how good a robot’s behaviour is according to some
evaluation criteria: a key distinction here is between implicit and explicit fitness
functions [2]. An explicit fitness function rewards specific behavioural elements
- such as travelling in a straight line or maximum velocity achieved - and hence
shapes the overall behaviour from a set of predefined primitives. Implicit fit-
ness functions operate at a more indirect, abstract level - reward is given for
completing some task but the robot is free to achieve it in any possible way.
The number of variables and constraints defined in a fitness function determine
where it falls on the implicit-explicit dimension: implicit fitness functions have
no or very few such components. Fitness is tested either in simulation, in the
real world or using a combination of the two. Typically some form of artificial
neural network acts as the nervous system of the robot; properties of the network
will invariably be evolved even if other aspects of the robot design are not. By
artificially evolving control architectures from suitably low level primitives, the
final controller “need not be tightly restricted by human designers’ prejudices”
[3, p.83]: ER can therefore potentially generate novel models of creativity and
art-making machines that are not necessarily constrained by the artist’s (systems
designer’s) stylistic ‘signature’.

3 Implicit Fitness Function Experiments

In this section we describe two sets of ER experiments that aimed to minimise
our influence on the resulting robot behaviour by using implicit fitness functions
that did not specify the types of marks that a robot should make. The first
‘sensory-motor correlation’ fitness function was tested in simulation; the second
‘ecological’ fitness function was initially tested in simulation but some of the
resulting controllers have also been successfully transferred and tested on the
Drawbot (Figure 3).

3.1 Sensory-Motor Correlation Fitness Function

Fig. 1. Results from the implicit fitness function that rewarded correlated activity
between the pen movement (up/down) and line detector (on/off). a) mid-fitness indi-
vidual; b) high fitness individual; c) the patterns that result from adding a selection
pressure to mark the entire arena.

Initial experiments were carried out in simulation using an accurate model
of a Khepera robot, a standard ER platform, augmented with a drawing pen



placed between its drive wheels. In the simulation, each robot controller was a
neural network consisting of six motor neurons: two for each of the left wheel,
right wheel and pen position (up or down) motors. At each time step in the
simulation, the most strongly activated neuron of each motor pair controlled
its associated actuator. The robot has seven sensors (six frontal IR sensors and
one line detector positioned under the robot that can detect marks made by
the pen). Each of the seven sensors was connected to each of the six motor
neurons. A genetic algorithm was used to determine the strength of each of
these connections and the bias of each of the motor neurons. The fitness function
rewarded controllers that correlated the changes in state of their line detector and
pen position. For example, if a line was detected and the robot’s pen was then
raised or lowered within a short time window, the robot accumulated fitness. This
fitness function resulted in robots that used the arena walls (a constant feature
of the environment) to guide their drawing behaviour. Mid-fitness individuals
follow a wall to a corner and then gain fitness by repetitively moving forwards
and backwards over a mark and appropriately co-ordinating the movement of
their pen (Figure 1a). High fitness individuals initially follow the arena walls
for one circuit making a continuous line and on their second circuit raise and
lower their pen making marks adjacent to the initial line (Figure 1b). Different
behaviours evolve when the fitness function also rewards robots for the extent
to which they mark the whole area of the arena: the robots turn away from the
walls at angles and mark the central parts of the arena as well (Figure 1c). In
all these experiments crashing into walls is penalised by stopping the evaluation
and thereby giving the robots less time to accumulate fitness.

3.2 Ecological Fitness Function

Fig. 2. Line patterns generated in simulation using an ecological fitness function and
a simple motor model. a) is the typical pattern generated by a 20 neuron network; b)
is an ‘orange segment’ pattern occasionally (approximately 30%) generated by a 20
neuron network; c) is the typical pattern generated by a 40 neuron network (which
after further evolution looks like Figure 3). The robot is the circle with the dot at its
centre.

The controllers evolved in the experiments briefly described in this section
were Continuous Time Recurrent Neural Networks (CTRNNs), a rather more
complex network than those used in the earlier experiments described above.



Fig. 3. Top-down view of an ‘orange segment’ line pattern generated by a Drawbot
in the real world which was evolved in simulation using the implicit ecological fitness
function, a 40 neuron network and a simple motor model.

The networks consisted of either 40 or 20 fully connected nodes. The con-
nection weights, time constants, biases and gains were encoded as a string of
real numbers in the range [0,1] and linearly scaled to values in the range [-5,5],
[0.04,4], [-10, 10] and [0.01, 10.01] respectively. The state of each neuron was
initially set to 0 plus a small random value. 6 of the neurons had external inputs
from the sensors and 3 neurons acted as motor outputs: one for each wheel and
one to lower and raise the pen. For full details see [4].

Fig. 4. Circle patterns generated in simulation using a 40 neuron network and a more
sophisticated motor model with inertia and momentum. The robot is the circle with
the dot at its centre.

Robot controllers were initially evolved in simulation using an ‘ecological’
fitness function. Small circular pieces of ‘food’ were randomly scattered in a
target area of the arena (either a central rectangle or a semi-circle adjacent to
a wall). Fitness was gained when a line drawn by the pen intersected one of
the food particles. Each robot started with a fixed amount of energy which was
used up at a constant rate while the pen was down but not while it was up; the
robot could move and ‘draw’ freely for a fixed time period (1 minute) or until its
energy ran out, whichever was sooner. The robot started in a random position
and fitness was the lowest score achieved in a set of test trials.

In the initial experiment the most fit robots all displayed similar behaviour:
they made sweeping curves (‘orange segments’) which alternated in direction
and fanned out over a reasonable area of the target area (Figures 2c and 3). In
the patterns generated by the fittest individuals, the separation of the segments



Fig. 5. Line patterns generated in simulation with a 20 neuron network and a more
sophisticated motor model with inertia and momentum. The robot is the circle with
the dot at its centre.

is just larger than the diameter of a food particle. This is a good strategy for
systematic coverage of an area without crossing a food particle more than once
(an individual can only score one point per food particle, regardless of the number
of times its lines intersect it). The image produced by the real robot (Figure
3) is qualitatively very similar to those found in the simulation but the semi-
circular curves are closer together and the robot tends to draw a full circle
at the start. We halved the number of neurons in the CTRNNs from 40 to
20. When driven by the simple motor model the 20 neuron controllers tended
to produce looping patterns (Figure 2a) and occasionally overlapping ‘orange
segments’ (2b) - the pattern always generated by a 40 neuron network (2c - with
further evolution the segments stop overlapping and look like 3). Although the
40 neuron controllers transferred well, the simulation did not model inertia or
momentum and the robots were restricted to high speeds. In order to overcome
these limitations a further series of experiments were carried out with a more
sophisticated motor model. The change in motor model resulted in 40 neuron
controllers generating circular patterns of varying diameter (Figure 4) and 20
neuron controllers generating spirals (Figure 5) - an effective solution for covering
an area and minimising multiple intersections of the same food particle if the
gap between the spirals is larger than the food particle diameter.

In all the above experiments the target area was located in the centre of
the arena and although the controllers use the light as an energy source (they
stop working if the light is switched off) they did not use if for directing their
movement. We therefore conducted an experiment where the location of the
target area varied in each trial and was always placed adjacent to a wall so
that robots had to actively use their IR sensors to avoid crashing. A light was
placed above the wall to indicate the centre of the semi-circular target region.
The fitness of a robot was determined by its ability to perform phototaxis as well
as the number of food particles it drew over. Crashing was again penalised. We
found that a more distributed architecture facilitated the evolution of successful
controllers in this task. The pen neuron was only connected to the light sensors
and two other neurons and the threshold above which the pen was lowered
was also evolved. Successful individuals make the majority of their marks in
the target region, regardless of their starting position and orientation in the
arena. The looping line patterns are less structured than the circles, spirals and



orange segments prodcued in previous experiments (Figure 6), again illustrating
that the robot’s embodiment (change in network architecture), as well as the
environment, influence the line patterns generated.

Fig. 6. Line patterns generated by a robot that had to perform obstacle avoidance and
phototaxis in order to find the target regions where its lines would gain the maximum
fitness. The top of the image is the arena wall, the dot on this wall represents the
light and the semicircular area is the target region. Note that the robot marks a small
curved line on the way to the light. The robot is the circle with the dot at its centre.

4 Conclusion

When investigating minimal creativity, our working hypothesis is that is ad-
vantageous to use an implicit fitness function in order to maximise the robot’s
autonomy. If we want to exhibit work produced by the robots, then a more
explicit fitness function that embodies artistic knowledge about ‘aesthetically
pleasing’ line patterns seems worth exploring and this is the focus of current
research. However, even the patterns generated by implicit fitness functions can
have an artistic impact, especially if the drawing process underlying the draw-
ings is made evident, for example, by exhibiting the robots behaving in an arena
rather than displaying the resulting drawings on a wall.

This paper forms part of the research supported by AHRC grant number
B/RG/AN8285/APN19307.
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