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Abstract. This paper presents recent work in computational modelling of 
diffusing gaseous neuromodulators in biological nervous systems. A variety of 
interesting and significant properties of such four dimensional neural signalling 
systems are demonstrated. It is shown that the morphology of the 
neuromodulator source plays a highly significant role in the diffusion patterns 
observed. The paper goes on to describe work in adaptive autonomous systems 
directly inspired by this: an exploration of the use of virtual diffusing 
modulators in robot nervous systems built from non-standard artificial neural 
networks. These virtual chemicals act over space and time modulating a variety 
of node and connection properties in the networks. A wide variety of rich 
dynamics are possible in such systems; in the work described here, evolutionary 
robotics techniques have been used to harness the dynamics to produce 
autonomous behaviour in mobile robots. Detailed comparative analyses of 
evolutionary searches, and search spaces, for robot controllers with and without 
the virtual gases are introduced. The virtual diffusing modulators are found to 
provide significant advantages.   

 

1 Introduction 

This paper describes some of the main thrusts of an ongoing interdisciplinary study of 
diffusing neuromodulators in real and artificial systems. After explaining the 
motivations and biological background of the project, the key results from recent 
detailed computational models of nitric oxide (NO) diffusion from extended three 
dimensional neural sources are discussed. This leads to a description of work on more 
abstract artificial neural systems heavily inspired by the biology. These so-called 
GasNets are used as artificial nervous systems for mobile autonomous robots. 
Detailed comparative studies of evolutionary robotics experiments involving GasNets 
and non-GasNets are introduced. These include investigations into the formal 
evolvability of such systems. The paper closes with a sketch of current and future 
directions of the project. 
 



2 Biological Background and Motivation  

As the Brain Sciences have advanced it has become more and more clear that nervous 
systems are electrochemical devices of enormous complexity and subtlety [13,21]. 
While the transmission of electrical signals across neuronal networks is regarded as a 
fundamental aspect of the operation of nervous systems, neurochemistry adds many  
dimensions to the picture. Cells can respond to chemicals that they themselves 
synthesize (autocrine signaling), to chemicals that diffuse from very nearby sources 
(paracrine signaling) or to chemicals that  diffuse over greater distances or are carried 
by blood and tissue fluids [21,22]. The responses that these chemicals elicit are legion 
and can vary according to the internal and environmental states of the cells involved. 
Traditionally, chemical  signaling between nerve cells was thought  to  be mediated 
solely by messenger  molecules or  neurotransmitters which  are released  by neurons 
at synapses [22] and flow from the presynaptic to postsynaptic neuron.  Because most 
neurotransmitters are relatively large and polar molecules (amino  acids, amines and 
peptides), they  cannot diffuse through cell  membranes and do  not spread far  from  
the release  site.  They  are also  rapidly  inactivated  by various reactions. Together 
these features  confine the spread of such neurotransmitters to be very close to the 
points of release and ensure that the transmitter action  is transient. In  other words, 
chemical  synaptic transmission of the classical kind operates  essentially two-
dimensionally  (one  in space and one  in time). This  conventional interpretation is  
coupled to  the idea that neurotransmitters  cause either  an increase  or a  decrease in  
the electrical excitability of the target neuron. According to a traditional  view of 
neurotransmission therefore,  chemical information transfer  is limited  to the points 
of connection between  neurons and neurotransmitters can simply  be regarded as 
either excitatory or inhibitory. 

In recent years a number of important discoveries have necessitated a 
fundamental revision of this model. It is now clear that many  neurotransmitters, 
perhaps the majority,  cannot be simply classified as excitatory or inhibitory [13]. 
These messenger molecules are best regarded  as modulatory because  among other 
things  they regulate, or  modulate, the  actions  of conventional  transmitters.  
Modulatory neurotransmitters are also ‘indirect’ because they cause medium- and 
long-term changes in the properties of neurons by influencing the rate of synthesis of  
so called ‘second messenger’  molecules. By altering  the properties of  proteins and 
even by changing the pattern  of gene expression, these second  messengers cause 
complex  cascades of  events  resulting in  fundamental changes  in  the properties of 
neurons. In this way modulatory transmitters greatly expand  the diversity and the 
duration  of actions mediated by  the chemicals released  by neurons. The action of 
neurotransmitters also depends on the receptors they bind to. Although most receptors 
are highly selective, responding to a single transmitter only, most transmitters can 
bind to a variety of receptors, with different consequences for different transmitter 
receptor pairings, even in the same cell [22]. There are a great variety of receptors on 
different types of cells suggesting the possibility of a combinatorially explosive range 
of pairings and effects. However, when coupled with this expanded picture of the 
nervous system, it is the recent  discovery  that  the  gas  nitric  oxide is a modulatory 
neurotransmitter that has opened  entirely unexpected dimensions in  our thinking 
about neuronal chemical signaling  [10,11,16]. Because NO is a very small and 



nonpolar molecule it diffuses isotropically within the brain regardless of intervening 
cellular structures [33]. NO  therefore violates some of the key tenets of point-to-point 
chemical transmission and is the first  known member of  an  entirely new  class  of  
transmitter,  the  gaseous diffusable modulators (carbon monoxide is another example 
[5]). NO is generated in the brain by specialised neurons that contain the  neuronal 
isoform of the calcium activated enzyme, nitric oxide synthase or nNOS  [2]. NO 
synthesis  is triggered  when  the calcium concentration  in  nNOS-containing  
neurons  is  elevated,  either  by electrical activity or  by the action  of other 
modulatory  neurotransmitters. The  existence  of  a  freely  diffusing  modulatory  
transmitter   suggests a radically  different  form  of  signalling  in  which  the  
transmitter   acts four-dimensionally  in  space  and  time,  affecting  volumes  of  the   
brain containing many neurons and synapses [2]. NO cannot be contained by 
biological membranes, hence its release must  be coupled  directly  to its  synthesis. 
Because  the  synthetic enzyme nNOS can be distributed throughout  the neuron, NO 
can be generated and released by the whole neuron.  NO is therefore  best  regarded as  
a  ‘non-synaptic’ transmitter  whose  actions moreover cannot be confined  to 
neighbouring neurons  [14,26].  

The emerging picture of nervous systems sketched above -- as being highly 
dynamical, with many codependent processes acting on each other over space and 
time -- is thoroughly at odds with simplistic connectionist models  of neural 
information  processing. Importantly, the discovery  of diffusible  modulators shows  
that neurons  can interact  and  alter  one  another's  properties  even  though  they  are  
not synaptically connected. Indeed, all this starts to suggest that rather than thinking 
in terms of fixed neural circuits, a picture involving shifting networks – continually 
functionally and structurally reconfiguring – may be more appropriate. Of course 
many researchers reject the simple information processing models, but even so, by far 
the most popular kind of system used in AI to build  artificial nervous systems are 
networks of nodes connected by virtual ‘wires’ along which inhibitory or excitatory 
‘electrical’ signals flow. Although few would claim these are adequate models of the 
brain, their origins are in principles abstracted from the neuroscience of several 
decades ago. Although there are many possible levels of abstraction, new styles of 
artificial nervous systems directly inspired by contemporary understandings of brains 
as electrochemical machines may be a very fruitful avenue in our quest to develop 
artificial systems capable of more interesting and useful adaptive behaviours than we 
can currently manage. At the same time, the study of such systems should bring us 
deeper understandings of the principles underlying the functioning of real brains. Not 
least because studying whole autonomous systems has many advantages when trying 
to understand the generation of adaptive and intelligent behaviour [4].  

Given the limitations of current technology, if implemented versions of such 
systems are to act in real time as sensorimotor control systems for autonomous agents, 
they must necessarily abstract away much of the detailed complexity of real nervous 
systems. However, we believe that enough will be left behind to make this a 
worthwhile endeavour. In tandem with this kind of biologically inspired investigation, 
there is another far more detailed, more direct, form of modelling that can also be 
very useful. It is, as yet, very difficult to gather detailed empirical findings on such 
phenomena as the diffusion dynamics of NO in different parts of the nervous system, 
because the necessary experimental apparatus has not yet been developed. However, 



it is possible to build detailed  computational models that capture certain salient 
features of these phenomena in an accurate way. These models are computationally 
expensive and do not run in real time, but the data they produce can make important 
contributions to our understanding of the biological processes.      
 

 This paper discusses examples of both kinds of work; two aspects of our 
ongoing investigation of the role of diffusing neuromodulators. 

3  Modelling NO Diffusion in Real Neuronal Networks  

In the previous section the role of NO in neuronal volume signalling was sketched. 
NO spreads in three dimensions away from the site of synthesis regardless of 
intervening cellular or membrane structures [33]. Another very important feature of 
NO signalling follows from the fact that nitric oxide synthase is soluble and thus 
highly likely to be distributed throughout a neuron’s cytoplasm. This means that the 
whole surface of the neuron  is a potential release site for NO, in marked contrast to 
conventional transmitter release. These properties suggest that the 3D structure of the 
NO source, and of any NO sinks, will have a profound influence on the dynamics of 
NO spread. Hence an accurate structure-based model of neuronal NO diffusion is an 
indispensable tool in gaining deeper insights into the signalling capacity of the 
molecule. 

Figure 1 shows the results generated by the first accurate model of NO diffusion 
from continuous biologically realistic structures [27]. The source is an irregular 
neuron-like structure where the main cell body is a hollow sphere (NO is synthesized 
in the cell walls but not in the interior of the sphere). A sink has been placed just to 
the right of the cell body. Diffusion was modelled using accurate difference equation 
methods on a fine grid [27].  

Equation 1 gives the  diffusion equation approximated: 
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Where c is the concentration at point x, D is the diffusion coefficient, ),( txΨ    is 

the concentration of NO produced per second at point x, )(xΦ is a depletion function 

to model NO sinks (such as blood vessels with their very high concentrations of NO-
binding hemes), and � is a general inactivation rate for all points outside sinks 
reflecting oxidization and binding events. In this study ),( txΨ = Q� for points inside 

a source during synthesis and zero elsewhere. Q is the amount of NO produced per 
second by a single NO producing ‘unit’ and � is the density of such units (for a 
justification of this modeling step see [27]). )(xΦ is modelled as a constant depletion 

rate for points inside sinks and zero elsewhere. For details of all parameter values 
used, and their biological justification, see [27]. 
 



Figure 1 illustrates the evolution of NO concentration during and after a 100ms 
burst of synthesis. Two very interesting observation are that the concentration remains 
high near the centre of the cell body long after synthesis has finished and that there is 
a significant delay between the start of synthesis and a rise in concentration for points 
distant from the main cell body. These observations follow from a ‘reservoir effect’ 
where NO diffuses into the centre of the hollow structure and is then ‘trapped’ there 
by a pressure gradient resulting in a slow time-delayed release [27]. Such a 
phenomenon, with its possible functional implications, would not have been observed 
in a less accurate point-source type model [33]. 

NO is also synthesized in another kind of irregular structure – namely a mesh of 
fine neuronal fibres in the mammalian cerebral cortex [1,28]. This mesh, or plexus, 
arises from a small population of neurons. As one of the biological affects of NO is to 
dilate the walls of blood vessels, it is highly likely that the plexus mediates the link 
between increased neural activity and increased blood supply to the same volume of 
the cortex [1]. However, the vast majority of fibres in the plexus have been shown to 
be too small to generate above (biological) threshold concentrations of NO. This 
situation is again ripe for investigation with computational models. Using the same 
techniques as for the study illustrated in Figure 1, Philippides et al. have modelled the 
diffusion of NO from plexus structures [28]. Figure 2 shows results from a model 
investigating the volume over which NO concentrations are above threshold for 
sources made from regular arrays of very fine tubular structures. We see that once the 
density of fibres rises above a certain limit, the concerted effect of several very fine 
sources is to raise concentrations to significant levels. Further computational studies 
have shown how a random mesh of fine (rather than course) fibres is an ideal 
structure to ensure a uniform concentration over the plexus [28]. This is exactly the 
kind of structure found in the cortex, hence these models provide a functional 
explanation for the extraordinary morphology of the plexus and point towards an 
important mechanism for allowing highly targeted NO ‘clouds’ in the brain. 

 



 
 

Fig. 1. Diffusion of NO from an irregular neuron being influenced by a nearby sink. NO 
concentration is shown at several time intervals following the initiation of a 100ms burst of 
synthesis. A 2D slice through the structure is illustrated here. See text for further details.  

 
 
 



  

Fig. 2. Different numbers of very fine tubular NO sources arranged in regular 
arrays affect different volumes of tissue. 

4  GasNets: From Neuroscience to Engineering 

This section describes one style of artificial neural network from a class of networks 
whose operation is strongly inspired by those parts of contemporary neuroscience that 
emphasize the complex electrochemical nature of real nervous systems. So-called 
GasNets incorporate virtual diffusing gaseous neuromodulators and are used as 
artificial nervous systems for mobile autonomous robots. They are being investigated 
as potentially useful engineering tools and as a way of gaining helpful insights into 
biological systems. While a number of authors have incorporated global analogues of 
chemical signalling systems into agent control systems [3,12], as far as we are aware 
this work, which dates back to several years ago [17,19], is the first to concentrate on 
local processes, with virtual modulators diffusing over space and time. More recent 
related work, with modulated control networks, but no real notion of local diffusion, 
can be found in [23]. 

The basic GasNet networks used in many recent experiments [19] are discrete time  
step dynamical systems built  from units connected  together by links  that can  be 
excitatory (with a  weight of +1)  or inhibitory  (with a weight  of -1).  The output, Oi

t, 
of node i at time step t is a function of the sum  of its inputs, as described by Equation 
2. In addition to this underlying network in  which  positive and  negative  `signals' 
flow  between  units,  an abstract process loosely analogous to  the diffusion of 
gaseous modulators  is at play.  Some  units  can emit  virtual ‘gases’  which  diffuse 
and  are  capable  of modulating the behaviour of other  units by changing their 
transfer  functions in ways described in detail  later. This form of  modulation allows 



a kind  of plasticity in  the network  in which  the intrinsic  properties of  units  are 
changing as the network operates. The  networks function in a 2D plane;  their 
geometric layout is a crucial element in the way in which the ‘gases’  diffuse and 
affect the  properties of network  nodes, as illustrated in Figure 3. This aspect  of the 
networks  is described in more detail later. 

 

 

Fig.3. GasNet operation depends on the geometric layout of the nodes in a 2D plane. 
The righthand side of the diagram shows how the shape of the tanh transfer function 
depends on the gain parameter ki

t , see text for further details. 
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Where Ci is the set of nodes connected to node i, Ii

t is the external (sensory) input to 
node i and bi is a genetically set bias. Each node has a genetically set default transfer 
function gain ki

0. The right hand side of Figure 3 shows the shape of the function 
tanh(kx) over the range [-5,5] for a discrete set of values of k between  –4 and 4. It is 
this gain parameter that is modulated by the diffusing virtual gases in the networks. 
This means that while the gases are active  the shapes of the node transfer functions 
are being altered from time step to time step. The mechanism for this is explained in 
the next section. 

 

 4.1 Diffusion and modulation 

 
The virtual diffusion process is simple in order to be computationally fast so that 
GasNets can be used to control robots in real time. For mathematical convenience 



there are two gases, one whose modulatory effect is to increase the transfer function 
gain parameter and one whose modulatory effect is to decrease it. It is  genetically 
determined  whether or  not any given   node will  emit one  of  two ‘gases’ (gas 1 and  
gas 2), and under  what circumstances emission will  occur (either when the 
‘electrical’ activation of  the node exceeds a threshold,  or the concentration of  one of 
the gases (genetically determined)  in the  vicinity of  the node exceeds a threshold). 
The electrical threshold used in the experiments described later was 0.5, the gas 
concentration threshold 0.1. Allowing these two highly biologically inspired 
possibilities [11,16] is important – it provides a mechanism for rich interaction 
between two processes, the ‘electrical’ and the ‘chemical’. A very abstract model of 
gas diffusion is used. For an emitting node, the concentration of gas at distance d from 
the node is given by Equation 3. Here, r i is the genetically determined radius of 
influence of the ith node, so that concentration falls to zero for d>r i. This is loosely 
analogous to the length constant of the natural diffusion of NO, related to its rate of 
decay through chemical interaction. Ti(t) is a linear function that models the build up 
and decay of concentration after the node has started/stopped emitting. The slope of 
this function is individually genetically determined for each emitting node, C0 is a 
global constant. For full details see [19]. 
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At each time step the gain parameter, ki

t , for the node transfer function at each 
node (see  Equation 2), is changed (or modulated) by the presence of gases at the site 
of the node. Gas 1 increases the value of ki

t in a concentration dependent way, while 
gas 2 decreases its value. Concentration contributions from nodes within range of any 
given site are simply added together. The modulatory effects of the two gases are then 
summed to calculate the value of ki

t  at each time step. Each node has its own default 
rest value for the gain parameter, the virtual gasses continually increase or decrease 
this value. Referring to the right-hand side of Figure 3, this modulation can potentially 
have drastic effects on a nodes’s transfer function, dramatically increasing or 
decreasing, or even flipping the sign of, its slope. This means that the networks are 
usually in flux, with rich dynamical possibilities.  

Since there were no pre-existing principles for the exact operation and design of 
such networks, it was decided to allow most of their detailed properties to be 
genetically specified, giving the possibility of highly non-uniform dynamically 
complex networks. Hence, in most experiments to date nearly everything is up for 
grabs: the number of nodes in a network; the way they are connected; the position of 
the nodes on the 2D plane; the individual properties of each node controlling when (if 
at all) they emit a gas; which gas is emitted and how strongly; how and if nodes are 
connected to sensors or motors, as well as various properties of the sensors and 
motors themselves [19]. About 20 variables per node are needed to describe all this. 
Our experience has been that a well setup evolutionary search algorithm is a good tool 
for exploring the space of such systems [18], looking for interesting and useful 
examples that deepen our understanding of autonomous adaptive systems or provide 



practical engineering advantages such as robustness and reliability [18,25]. The next 
section gives an example of using GasNets in such an evolutionary robotics setting. 

5  Experimental Comparison 

Various forms of GasNet have been used as robot controllers for a variety of tasks and 
robots [17,19]. A very large number of runs of one particular experimental setup have 
been carried out, giving us enough data to be able to make statistically significant 
claims. In this series of experiments GasNets were evolved to control a robot engaged 
in a visually guided behaviour involving shape discrimination. A simple robot with a 
fixed CCD camera as its main sensor moved in an arena as illustrated in Figure 4. 
Two light coloured shapes, a rectangle and a triangle, were placed against a darker 
background on one of the walls. The task was to reliably move to the triangle, while 
ignoring the rectangle, from a random initial orientation and position under highly 
variable lighting conditions. The relative positioning of the shapes, in terms of which 
was on the left and which on the right, was made randomly.  

As well as network size and  topology, and all the parameters controlling virtual 
gas diffusion and modulation, the  robot  visual morphology, i.e.  the way  in which  
the camera  image was  sampled, was also under unconstrained genetic control. This  
was achieved by allowing the evolutionary search algorithm to specify the  number 
and position  of  single pixels from the camera image to use as visual inputs. The grey 
scale intensity value of these  pixels (normalised into the range [0.0,1.0]) were fed 
into the  network, one  for each  genetically specified visual  input  node  in  the net.  
This  is  illustrated  in  the bottom left quadrant of Figure 6. Note  that this  means  
that  the  evolved  control  systems  were operating with  extremely minimal  vision  
systems, just  a few  single  pixel values. Given the very noisy lighting conditions and 
the minimal visual input, the shape discrimination task  becomes  non-trivial. The 
experimental setup is shown in Figure 4. A gantry robot provided a highly 
controllable experimental apparatus. A ccd camera, facing down onto an angled 
rotatable mirror, is suspended from a gantry arm. The combined movements of the 
gantry and mirror make this arrangement equivalent to a standard 2 wheeled robotic 
platform with a camera mounted on top, such as the one shown in Figure 5. The 
gantry robot can be run with off-board power and computing, making long runs and 
data collection very easy. For full details of the robot see [15].  



 

Fig. 4: The experimental setup used a gantry robot, providing a highly flexible and 
controllable experimental arrangement. Such a robot is equivalent to a standard 

differential drive 2 wheeled robot with a camera on top (see Figure 5). 

 

 

Fig. 5: A standard differential drive 2 wheeled robot with a ccd camera mounted 
on top. 

All the evolutionary runs were carried out using a Jakobi minimal simulation of the 
robotic setup. The methodology behind these ultra-lean ultra-fast simulations was 
developed by Jakobi [20] to address one potential problem with evolutionary 
approaches to exploring classes of robotic control systems: the time taken to evaluate 
behaviours over many generations. Through a careful use of noise and important 
decisions about what not to model, a minimal simulation will run very fast but 
behaviours evolved in them will transfer to the real robots. For full details of the 
minimal simulation used for the triangle rectangle task see [20]. In the experiment 
described here, all successful evolved controllers crossed the reality gap: they 
generated the same behaviours on the real robot as in simulation. Success was defined 
as being able to move to the triangle and stay there 30 times in direct succession from 
random starting positions and orientations, under very noisy lighting conditions and 
irrespective of the relative positioning of the shapes on the same wall. The great 
advantage of using minimal simulations in this work is that we were able to perform 
many complete evolutionary runs and hence derive meaningful statistics. 



 
 

 

 

Fig. 6. The visualisation tool used with the minimal simulation of the shape discrimination task. 
The top right quadrant shows the view through the robot’s camera, the bottom right gives a 
bird’s eye view of the robot moving in the arena. The left-hand side of the screen illustrates the 
structure (including visual morphology) and functioning of the GasNet controlling the evolved 
robot. The shading in the network representation at extreme bottom left shows the gas 
concentrations in the network plane at the instant the snapshot was taken. The darker the 
shading the higher the concentration. See text for further details.  

The initial set of evolutionary GasNet experiments with this task resulted in highly 
robust controllers emerging about 10 times faster than in earlier runs with 
conventional connectionist networks [19]. Subsequent comparative runs have 
concentrated on identifying whether or not the virtual gas modulation mechanism was 
at the root of this speed up. The key result is illustrated in Figure 7. In all experiments 
the genotypes were strings of integers encoding the various properties of the 
controllers and coupled visual morphologies, a geographically distributed genetic 
algorithm was used with a population of 100 [7], a number of different mutation 
operators were used in tandem, including node addition and deletion operators. The 
fitness function was based on a weighted average of final distances to the triangle 
over a set of evaluations from different initial conditions and different relative 
positioning of the shapes. Poor scores were weighted more heavily than good scores, 
encouraging  robustness by requiring uniformly high scores across the whole 
evaluation set. 



 
 

Fig.7. The average number of generations needed to find controllers giving perfectly successful 
behaviour on the triangle rectangle problem. The dark columns are for networks with the gas 
mechanism turned on. The light columns are for networks with the gas mechanism turned off. 
The figure illustrates two sets of 20 runs in each condition; the difference between the left and 
right-hand sets is the way in which the network connectivity was encoded. See text for further 
details. 

It can clearly be seen in Figure 7 that controllers based on networks with the virtual 
gas diffusion and modulation mechanisms turned on evolve significantly faster than 
those that are identical in every respect (including genotypes and all the evolutionary 
machinery) except that the gas mechanisms are rendered inoperative. This result has 
been repeated under various different encoding schemes and for a wide range of 
mutation rates [31]. The clear implication is that GasNets are more evolvable – their 
search space is more amenable to the form of evolutionary search used – than the 
various other forms of network explored. Obviously this could be a potentially very 
useful property and it is looked at in more detail in the next section.  

 
Nearly all the successful GasNet controllers that were examined in detail exhibited 

surprisingly simple structures (a typical  example is shown in Figure 8) relying on a 
very small number of visual inputs, although their internal dynamics, supported by  
interwoven ‘chemical’ and ‘electrical’ processes, were often intricate [19]. A number 
of interesting sub-networks, such as oscillators making use of spatial aspects of the 
modulation and diffusion processes [19], were independently evolved in several runs, 
suggesting that they are easily found building blocks that the evolutionary process can 
make good use of. 

 



 

Fig. 8. A typical evolved GasNet controller for the triangle rectangle task illustrating the kind 
of structural simplicity often found in highly robust solutions. See text for further details. 

 

6  Evolvability and Search Space Properties 

The key result illustrated by Figure 7, that, for a particular evolutionary search 
algorithm, it is easier to find GasNet controllers for the triangle-rectangle task than 
non-GasNet controllers, tells us that there must be differences in the properties of the 
two search spaces. Understanding more about what this difference is may help us gain 
some valuable insights into the dynamics of artificial evolution and the nature of 
complex search spaces, as well as understanding more about the potential of GasNets. 
Smith et al. have published a number of papers working towards this goal [29,30,31]. 
The earliest studies in this series applied a whole range of standard search space 
‘complexity’ and ‘smoothness’ metrics to the two spaces. These all failed to predict 
any difference between the spaces [30]. However, the research revealed a number of 
likely reasons for this: the spaces both appeared to be highly anisotropic, there is 
strong evidence for large neutral networks permeating the spaces, and a very large 
percentage of genotypes have negligible fitness. These and other properties combine 
to make the standard metrics useless for describing the pertinent differences between 
the spaces. Another (probably interrelated) reason is illustrated by the left-hand 
graphs in Figure 9 which show the median number of generations needed to reach a 
given fitness level for GasNets and non-GasNets. There is no difference in the two 
graphs for fitnesses of less than about 0.5. Fitnesses greater than this value are 
extremely unlikely to be found in random samples on which most of the basic metrics 
are based. Hence the focus of the work has shifted to the notion of evolvability and 
ways to measure it [31]. Evolvability is related to the ability of an individual or 
population to generate fit variants [32]. A useful measure of this is the transmission 



function which gives the distribution of all possible offspring for a given individual or 
population [6].  
 
Assuming asexual reproduction, as used here, the transmission function, T, is the 
probability density function of obtaining offspring genotype, g, with phenotype, p, 
over all possible parent (genotype,phenotype) pairs (h,k). Hence the probability of 
obtaining a particular offspring, �(g,p), is given by Equation 4, where �(h,k) is a 
parental selection function and H and K are the sets of all possible hs and ks 
respectively. 
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In the work described here, a variety of mutation operators are used, but no crossover 
operator is employed. This has allowed transmission functions to be approximated 
through massive sampling of mutated populations saved from many evolutionary 
runs, so that many levels of initial fitness are represented. Smith has devised a number 
of evolvability metrics based on the transmission function [31]. The right-hand graphs 
in Figure 9 show plots of one of these measure (explained in the caption). The small, 
but significant, difference reveals that at higher fitnesses the GasNet space has fewer 
deleterious mutations than the non-GasNet space. This will lead to a larger variety of 
good solutions in the GasNet populations. While this is very likely not to be the whole 
story, and further investigations of search dynamics are underway, it must aid 
evolution. This discovery means the  investigations are starting to bear fruit and we 
hope to soon have a full explanation of the differences in search performance on the 
two spaces. 
 
 

Fig. 9. The left-hand graphs show the median number of generations needed to reach 
a given fitness score for a large set of evolutionary runs. The right-hand graphs show 
a small, but significant, difference in the expected fitness of the bottom 50% of 
mutations applied to solutions of a given initial fitness. See text for further details. 



7  Future Directions 

There are many extensions to all aspects of the work described in this paper, some 
planned and some already underway. A number of these will be briefly discussed 
here. 

As far as the computational modelling of the volume signalling roles of NO is 
concerned, obvious candidates for further work are: modelling diffusion from larger 
more complex structures and groups of structures, and introducing functional roles for 
the gas in detailed simulations of the behaviour of small neuronal networks. Both of 
these present non-trivial technical challenges and would require significant computing 
resources. However, given how much has been learnt from the studies carried out to 
date, as outlined in Section 3, it is important that such work is carried out. 

 
The details of the ‘electrical’ and ‘chemical’ aspects of GasNets are, to some 

extent, rather arbitrary. There are numerous other forms that the modulations, node 
internal dynamics and virtual diffusion processes could take. Many of these are very 
worthwhile investigating in order to gain a deeper understanding of a whole class of 
systems. Such insights should usefully inform development in autonomous adaptive 
systems as well as systems level neuroscience. A number of interesting alternative 
modulation schemes being investigated include: 

 
• Site specific modulations. The modulation depends on the presence of a 

‘receptor’. Virtual gases can trigger a range of modulations in a single network, 
depending on which receptors are present. 

 
• Modulation of other adaptive processes (such as Hebbian synaptic changes). This 

could add a very powerful dimension to the evolution of adaptive mechanisms as 
advocated by Floreano et al. [25]. 

 
• Modulations at many different time scales, including permanent changes, are 

common in biology and are likely to play an important role in artificial systems. 
 
Of course investigations into autonomous adaptive systems cannot focus solely on 

specific behaviour generating mechanisms. A bigger picture, involving overall 
architectures, body and sensor morphologies [24], developmental processes [8,9] and 
a host of other issues surrounding embodied behaviour in the world, must be borne in 
mind. 

 
The search space analyses outlined in the last section are part of an on-going 

investigation and in the future we wish to incorporate analyses of robot behaviours 
and their underlying controllers into the story.  



 

8  Conclusions 

 
The sciences of the real and the artificial have much to offer each other. This seems 
especially true in the study of adaptive behaviour and the mechanisms underlying it. 
This paper has outlined a multi-faceted interdisciplinary project that has striven to 
exploit the synergies at the interface between neuroscience and contemporary 
AI/Alife, and in so doing has advocated a shift towards rich electrochemical models 
and analogies. The work introduced here is only the tip of the iceberg; there are many 
exciting and potentially fruitful avenues left unexplored. It is hoped that these kinds 
of two-studies of real and artificial neural systems will give increasingly deeper 
insights into the principles underpinning the generation of adaptive behaviour.  
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