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Abstract. This paper presents recent work in computationatlefiing of
diffusing gaseous neuromodulators in biologicavoas systems. A variety of
interesting and significant properties of such fdumensional neural signalling
systems are demonstrated. It is shown that the lmotwgy of the
neuromodulator source plays a highly significaré ria the diffusion patterns
observed. The paper goes on to describe work iptagaautonomous systems
directly inspired by this: an exploration of theeusf virtual diffusing
modulators in robot nervous systems built from stamdard artificial neural
networks. These virtual chemicals act over spadetiame modulating a variety
of node and connection properties in the networswide variety of rich
dynamics are possible in such systems; in the wescribed here, evolutionary
robotics techniques have been used to harness ythamits to produce
autonomous behaviour in mobile robots. Detailed mamative analyses of
evolutionary searches, and search spaces, for cobatollers with and without
the virtual gases are introduced. The virtual diffig modulators are found to
provide significant advantages.

1 Introduction

This paper describes some of the main thrusts ohgoing interdisciplinary study of
diffusing neuromodulators in real and artificial seyms. After explaining the
motivations and biological background of the prbjebe key results from recent
detailed computational models of nitric oxide (N@jfusion from extended three
dimensional neural sources are discussed. This keaa description of work on more
abstract artificial neural systems heavily inspited the biology. These so-called
GasNets are used as artificial nervous systemsnfobile autonomous robots.
Detailed comparative studies of evolutionary rotgxperiments involving GasNets
and non-GasNets are introduced. These include tige¢isns into the formal

evolvability of such systems. The paper closes witbketch of current and future
directions of the project.



2 Biological Background and Motivation

As the Brain Sciences have advanced it has becaone amd more clear that nervous
systems are electrochemical devices of enormougplesity and subtlety [13,21].
While the transmission of electrical signals acnosgronal networks is regarded as a
fundamental aspect of the operation of nervousesyst neurochemistry adds many
dimensions to the picture. Cells can respond tomites that they themselves
synthesize (autocrine signaling), to chemicals tititise from very nearby sources
(paracrine signaling) or to chemicals that diffoser greater distances or are carried
by blood and tissue fluids [21,22]. The responbkas these chemicals elicit are legion
and can vary according to the internal and enviremial states of the cells involved.
Traditionally, chemical signaling between nervéiscevas thought to be mediated
solely by messenger molecules or neurotransmitttich are released by neurons
at synapses [22] and flow from the presynapticdstgynaptic neuron. Because most
neurotransmitters are relatively large and polatecwdes (amino acids, amines and
peptides), they cannot diffuse through cell membs and do not spread far from
the release site. They are also rapidly iwateéd by various reactions. Together
these features confine the spread of such neunsstisters to be very close to the
points of release and ensure that the transmittiora is transient. In other words,
chemical synaptic transmission of the classicaldkbperates essentially two-
dimensionally (one in space and one in time)s Thonventional interpretation is
coupled to the idea that neurotransmitters ceither an increase or a decrease in
the electrical excitability of the target neuroncc@rding to a traditional view of
neurotransmission therefore, chemical informatiamsfer is limited to the points
of connection between neurons and neurotranssiittan simply be regarded as
either excitatory or inhibitory.

In recent years a number of important discoveriasehnecessitated a
fundamental revision of this model. It is now cléhat many neurotransmitters,
perhaps the majority, cannot be simply classifisdexcitatory or inhibitory [13].
These messenger molecules are best regarded adatoog because among other
things they regulate, or modulate, the action§ conventional transmitters.
Modulatory neurotransmitters are also ‘indirectchese they cause medium- and
long-term changes in the properties of neuronsfiyéncing the rate of synthesis of
so called ‘second messenger’ molecules. By alietine properties of proteins and
even by changing the pattern of gene expressiwset second messengers cause
complex cascades of events resulting in funddahehanges in the properties of
neurons. In this way modulatory transmitters gseattpand the diversity and the
duration of actions mediated by the chemicalsastd by neurons. The action of
neurotransmitters also depends on the receptoysihd to. Although most receptors
are highly selective, responding to a single tratismonly, most transmitters can
bind to a variety of receptors, with different ceqaences for different transmitter
receptor pairings, even in the same cell [22]. €hame a great variety of receptors on
different types of cells suggesting the possibitifya combinatorially explosive range
of pairings and effects. However, when coupled witls expanded picture of the
nervous system, it is the recent discovery ftti@ gas nitric oxide is a modulatory
neurotransmitter that has opened entirely unegpedimensions in our thinking
about neuronal chemical signaling [10,11,16]. BseaNO is a very small and



nonpolar molecule it diffuses isotropically withine brain regardless of intervening
cellular structures [33]. NO therefore violatessoof the key tenets of point-to-point
chemical transmission and is the first known memdfean entirely new class of
transmitter, the gaseous diffusable modulataasb@m monoxide is another example
[5]). NO is generated in the brain by specialisedrons that contain the neuronal
isoform of the calcium activated enzyme, nitric dxisynthase or nNOS [2]. NO
synthesis is triggered when the calcium conedgiotn in nNOS-containing
neurons is elevated, either by electrical #gtior by the action of other
modulatory neurotransmitters. The existence aoffreely diffusing modulatory
transmitter  suggests a radically different forof signalling in which the
transmitter acts four-dimensionally in spaaed @ime, affecting volumes of the
brain containing many neurons and synapses [2]. dé@not be contained by
biological membranes, hence its release must bpled directly to its synthesis.
Because the synthetic enzyme nNOS can be distdithroughout the neuron, NO
can be generated and released by the whole nedlOris therefore best regarded as
a ‘non-synaptic’ transmitter whose actions meegocannot be confined to
neighbouring neurons [14,26].

The emerging picture of nervous systems sketcheudeab as being highly
dynamical, with many codependent processes actingach other over space and
time -- is thoroughly at odds with simplistic cometienist models of neural
information processing. Importantly, the discoveo§ diffusible modulators shows
that neurons can interact and alter one arnstlproperties even though they are
not synaptically connected. Indeed, all this stestsuggest that rather than thinking
in terms of fixed neural circuits, a picture inviolg shifting networks — continually
functionally and structurally reconfiguring — may lmore appropriate. Of course
many researchers reject the simple informationgssing models, but even so, by far
the most popular kind of system used in Al to buigdiificial nervous systems are
networks of nodes connected by virtual ‘wires’ gomhich inhibitory or excitatory
‘electrical’ signals flow. Although few would clainese are adequate models of the
brain, their origins are in principles abstractedni the neuroscience of several
decades ago. Although there are many possiblesefebbstraction, new styles of
artificial nervous systems directly inspired by tsmporary understandings of brains
as electrochemical machines may be a very fruafidnue in our quest to develop
artificial systems capable of more interesting asdful adaptive behaviours than we
can currently manage. At the same time, the stddguch systems should bring us
deeper understandings of the principles underlifiegfunctioning of real brains. Not
least because studying whole autonomous systems@ag advantages when trying
to understand the generation of adaptive and igégit behaviour [4].

Given the limitations of current technology, if ilmmented versions of such
systems are to act in real time as sensorimotdral@systems for autonomous agents,
they must necessarily abstract away much of thailddtcomplexity of real nervous
systems. However, we believe that enough will bi¢ behind to make this a
worthwhile endeavour. In tandem with this kind ajlbgically inspired investigation,
there is another far more detailed, more direatnfof modelling that can also be
very useful. It is, as yet, very difficult to gathdetailed empirical findings on such
phenomena as the diffusion dynamics of NO in d#fifeparts of the nervous system,
because the necessary experimental apparatus hgetrimeen developed. However,



it is possible to build detailed computational misdthat capture certain salient
features of these phenomena in an accurate wageTin@dels are computationally
expensive and do not run in real time, but the tlaeg produce can make important
contributions to our understanding of the biologjmacesses.

This paper discusses examples of both kinds okwwro aspects of our
ongoing investigation of the role of diffusing nearodulators.

3 Modelling NO Diffusion in Real Neuronal Networks

In the previous section the role of NO in neuromalume signalling was sketched.
NO spreads in three dimensions away from the sitesymthesis regardless of
intervening cellular or membrane structures [33hother very important feature of
NO signalling follows from the fact that nitric @eé synthase is soluble and thus
highly likely to be distributed throughout a neusonytoplasm. This means that the
whole surface of the neuron is a potential relesitgefor NO, in marked contrast to
conventional transmitter release. These propestiggest that the 3D structure of the
NO source, and of any NO sinks, will have a profbinfluence on the dynamics of
NO spread. Hence an accurate structure-based robdeluronal NO diffusion is an
indispensable tool in gaining deeper insights ittie signalling capacity of the
molecule.

Figure 1 shows the results generated by the fostirate model of NO diffusion
from continuous biologically realistic structure®7]. The source is an irregular
neuron-like structure where the main cell body ldow sphere (NO is synthesized
in the cell walls but not in the interior of thehgpe). A sink has been placed just to
the right of the cell body. Diffusion was modellesing accurate difference equation
methods on a fine grid [27].

Equation 1 gives the diffusion equation approxeuat

%—DD20= W(x,t) - P(x)c - Ac 1)

Where c is the concentration at point x, D is tifusion coefficient, l1-’(X,t) is

the concentration of NO produced per second at poifP(X) is a depletion function

to model NO sinks (such as blood vessels with thetiy high concentrations of NO-
binding hemes), and is a general inactivation rate for all points @gssinks

reflecting oxidization and binding events. In teiady W(X,t) = Qp for points inside

a source during synthesis and zero elsewhere.tlgeismount of NO produced per
second by a single NO producing ‘unit’ apdis the density of such units (for a

justification of this modeling step see [27fP(X) is modelled as a constant depletion

rate for points inside sinks and zero elsewhere.details of all parameter values
used, and their biological justification, see [27].



Figure 1 illustrates the evolution of NO concentmatduring and after a 100ms
burst of synthesis. Two very interesting observatice that the concentration remains
high near the centre of the cell body long aftertkgsis has finished and that there is
a significant delay between the start of synthasi$ a rise in concentration for points
distant from the main cell body. These observatimisw from a ‘reservoir effect’
where NO diffuses into the centre of the hollowusture and is then ‘trapped’ there
by a pressure gradient resulting in a slow timexgled release [27]. Such a
phenomenon, with its possible functional implicapwould not have been observed
in a less accurate point-source type model [33].

NO is also synthesized in another kind of irreg@friucture — namely a mesh of
fine neuronal fibres in the mammalian cerebral eoiftl,28]. This mesh, or plexus,
arises from a small population of neurons. As dnita® biological affects of NO is to
dilate the walls of blood vessels, it is highlyeik that the plexus mediates the link
between increased neural activity and increaseddbsupply to the same volume of
the cortex [1]. However, the vast majority of fibrie the plexus have been shown to
be too small to generate above (biological) thrstomncentrations of NO. This
situation is again ripe for investigation with cam@gtional models. Using the same
techniques as for the study illustrated in Figur@Htilippides et al. have modelled the
diffusion of NO from plexus structures [28]. FiguPeshows results from a model
investigating the volume over which NO concentraicare above threshold for
sources made from regular arrays of very fine tabstructures. We see that once the
density of fibres rises above a certain limit, tomcerted effect of several very fine
sources is to raise concentrations to significamels. Further computational studies
have shown how a random mesh of fine (rather thaurse) fibres is an ideal
structure to ensure a uniform concentration overpiexus [28]. This is exactly the
kind of structure found in the cortex, hence thesedels provide a functional
explanation for the extraordinary morphology of thlexus and point towards an
important mechanism for allowing highly targeted M{@uds’ in the brain.



a) position of nevron and sink, b) MO concentration at t=50ms during
synthesis, c) concentration at t=100ms: the end of synthesis, d) conc.
at t=150ms, &) conc. at t=250ms, f) conc. at 750ms.

Fig. 1. Diffusion of NO from an irregular neuron being imdhced by a nearby sink. NO
concentration is shown at several time intervallofong the initiation of a 100ms burst of
synthesis. A 2D slice through the structure issiflated here. See text for further details.
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Fig. 2. Different numbers of very fine tubular NO soureesanged in regular
arrays affect different volumes of tissue.

4  GasNets: From Neur oscience to Engineering

This section describes one style of artificial réuretwork from a class of networks
whose operation is strongly inspired by those pafrtsontemporary neuroscience that
emphasize the complex electrochemical nature df meavous systems. So-called
GasNets incorporate virtual diffusing gaseous nmodulators and are used as
artificial nervous systems for mobile autonomousots. They are being investigated
as potentially useful engineering tools and as @ @fagaining helpful insights into
biological systems. While a number of authors haeerporated global analogues of
chemical signalling systems into agent control esyst [3,12], as far as we are aware
this work, which dates back to several years agglH], is the first to concentrate on
local processes, with virtual modulators diffusioger space and time. More recent
related work, with modulated control networks, hotreal notion of local diffusion,
can be found in [23].

The basic GasNet networks used in many recent empets [19] are discrete time
step dynamical systems built from units connectedether by links that can be
excitatory (with a weight of +1) or inhibitorywith a weight of -1). The output,D
of nodei at time stept is a function of the sum of its inputs, as ddsemliby Equation
2. In addition to this underlying network in whicpositive and negative “signals'
flow between units, an abstract process looselglogous to the diffusion of
gaseous modulators is at play. Some units pan eirtual ‘gases’ which diffuse
and are capable of modulating the behaviourtbéro units by changing their
transfer functions in ways described in detatledaThis form of modulation allows



a kind of plasticity in the network in which etlintrinsic properties of units are
changing as the network operates. The networkstimin a 2D plane; their
geometric layout is a crucial element in the waywinich the ‘gases’ diffuse and
affect the properties of network nodes, as itatsd in Figure 3. This aspect of the
networks is described in more detail later.
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A GasNet. Neuron 3 is emitting gas, and modulating »
neuron 2 despite there being no synaptic connection. A

Fig.3. GasNet operation depends on the geometric layotiteohodes in a 2D plane.
The righthand side of the diagram shows how theelwd the tanh transfer function
depends on the gain parametér kee text for further details.
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Where Gis the set of nodes connected to nipdg is the external (sensory) input to
nodei and his a genetically set bias. Each node has a getigtset default transfer
function gain K. The right hand side of Figure 3 shows the shdpee function
tanh(kx) over the range [-5,5] for a discrete detadues of k between —4 and 4. It is
this gain parameter that is modulated by the diffysirtual gases in the networks.
This means that while the gases are active thpeshaf the node transfer functions
are being altered from time step to time step. fleehanism for this is explained in
the next section.

4.1 Diffusion and modulation

The virtual diffusion process is simple in ordertie computationally fast so that
GasNets can be used to control robots in real tioe. mathematical convenience



there are two gases, one whose modulatory effdct ilscrease the transfer function
gain parameter and one whose modulatory effeat idetrease it. It is genetically
determined whether or not any given node witit one of two ‘gases’ (gas 1 and
gas 2), and under what circumstances emission wattcur (either when the
‘electrical’ activation of the node exceeds a shi@d, or the concentration of one of
the gases (genetically determined) in the viginit the node exceeds a threshold).
The electrical threshold used in the experimentscideed later was 0.5, the gas
concentration threshold 0.1. Allowing these two Hiyg biologically inspired
possibilities [11,16] is important — it provides mechanism for rich interaction
between two processes, the ‘electrical’ and thendical’. A very abstract model of
gas diffusion is used. For an emitting node, theceatration of gas at distandérom
the node is given by Equation 3. Herg,s the genetically determined radius of
influence of the ith node, so that concentratidis feo zero ford>r;. This is loosely
analogous to the length constant of the naturdligliin of NO, related to its rate of
decay through chemical interactioi(t) is a linear function that models the build up
and decay of concentration after the node hasesiatbpped emitting. The slope of
this function is individually genetically determohdor each emitting node, Qs a
global constant. For full details see [19].

C,(d.t) =Coe™'" xT, (t) ©

At each time step the gain parametgr, Kor the node transfer function at each
node (see Equation 2), is changedrf@mdulated by the presence of gases at the site
of the node. Gas 1 increases the value'ofhla concentration dependent way, while
gas 2 decreases its value. Concentration contibsifrom nodes within range of any
given site are simply added together. The moduattfiects of the two gases are then
summed to calculate the value ¢f & each time step. Each node has its own default
rest value for the gain parameter, the virtual gasontinually increase or decrease
this value. Referring to the right-hand side ofufeg3, this modulation can potentially
have drastic effects on a nodes’s transfer functidramatically increasing or
decreasing, or even flipping the sign of, its slopkis means that the networks are
usually in flux, with rich dynamical possibilities.

Since there were no pre-existing principles for éixact operation and design of
such networks, it was decided to allow most of rthdétailed properties to be
genetically specified, giving the possibility of ghly non-uniform dynamically
complex networks. Hence, in most experiments t@ cetarly everything is up for
grabs: the number of nodes in a network; the way #Hre connected; the position of
the nodes on the 2D plane; the individual propsmieeach node controlling when (if
at all) they emit a gas; which gas is emitted aod Btrongly; how and if nodes are
connected to sensors or motors, as well as varoaperties of the sensors and
motors themselves [19]. About 20 variables per ra@eneeded to describe all this.
Our experience has been that a well setup evolryosearch algorithm is a good tool
for exploring the space of such systems [18], Ibgkfor interesting and useful
examples that deepen our understanding of auton®mdaptive systems or provide



practical engineering advantages such as robustmesseliability [18,25]. The next
section gives an example of using GasNets in soatvalutionary robotics setting.

5 Experimental Comparison

Various forms of GasNet have been used as robatatiems for a variety of tasks and
robots [17,19]. A very large number of runs of @agticular experimental setup have
been carried out, giving us enough data to be @blmake statistically significant
claims. In this series of experiments GasNets weodved to control a robot engaged
in a visually guided behaviour involving shape disination. A simple robot with a
fixed CCD camera as its main sensor moved in anaass illustrated in Figure 4.
Two light coloured shapes, a rectangle and a tigangere placed against a darker
background on one of the walls. The task was tabil move to the triangle, while
ignoring the rectangle, from a random initial otaion and position under highly
variable lighting conditions. The relative positiog of the shapes, in terms of which
was on the left and which on the right, was madeoaly.

As well as network size and topology, and all plagameters controlling virtual
gas diffusion and modulation, the robot visualphology, i.e. the way in which
the camera image was sampled, was also undenstnaimed genetic control. This
was achieved by allowing the evolutionary seargjorihm to specify the number
and position ofsinglepixels from the camera image to use as visualtspthe grey
scale intensity value of these pixels (normalised the range [0.0,1.0]) were fed
into the network, one for each genetically sfiedivisual input node in the net.
This is illustrated in the bottom left quadrafitFigure 6. Note that this means
that the evolved control systems were opegatiith extremely minimal vision
systems, just a few single pixel values. Givevery noisy lighting conditions and
the minimal visual input, the shape discriminatiask becomes non-trivial. The
experimental setup is shown in Figure 4. A gantopot provided a highly
controllable experimental apparatus. A ccd camé&eing down onto an angled
rotatable mirror, is suspended from a gantry arlree Tombined movements of the
gantry and mirror make this arrangement equivatierg standard 2 wheeled robotic
platform with a camera mounted on top, such asotie shown in Figure 5. The
gantry robot can be run with off-board power andhpating, making long runs and
data collection very easy. For full details of tbbot see [15].



Fig. 4: The experimental setup used a gantry robot, progidihighly flexible and
controllable experimental arrangement. Such a risbequivalent to a standard
differential drive 2 wheeled robot with a cameratop (see Figure 5).

Fig. 5: A standard differential drive 2 wheeled robot witikcd camera mounted
on top.

All the evolutionary runs were carried out usinde&obi minimal simulation of the
robotic setup. The methodology behind these uéieanrlultra-fast simulations was
developed by Jakobi [20] to address one potentrablpm with evolutionary
approaches to exploring classes of robotic comstystems: the time taken to evaluate
behaviours over many generations. Through a cargdal of noise and important
decisions about what not to model, a minimal simota will run very fast but
behaviours evolved in them will transfer to thelrezbots. For full details of the
minimal simulation used for the triangle rectangisk see [20]. In the experiment
described here, all successful evolved controliensssed the reality gap: they
generated the same behaviours on the real robotsamulation. Success was defined
as being able to move to the triangle and stayetB8rtimes in direct succession from
random starting positions and orientations, unagy woisy lighting conditions and
irrespective of the relative positioning of the gba on the same wall. The great
advantage of using minimal simulations in this wirkhat we were able to perform
many complete evolutionary runs and hence derivenimegful statistics.
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Fig. 6. The visualisation tool used with the minimal siatidn of the shape discrimination task.
The top right quadrant shows the view through tigot's camera, the bottom right gives a
bird’'s eye view of the robot moving in the arenheTeft-hand side of the screen illustrates the
structure (including visual morphology) and funatig of the GasNet controlling the evolved
robot. The shading in the network representationexdteme bottom left shows the gas
concentrations in the network plane at the insthet snapshot was taken. The darker the
shading the higher the concentration. See teXuftiner details.

The initial set of evolutionary GasNet experimemntth this task resulted in highly
robust controllers emerging about 10 times fasteantin earlier runs with
conventional connectionist networks [19]. Subsetjueomparative runs have
concentrated on identifying whether or not theudttgas modulation mechanism was
at the root of this speed up. The key result issilated in Figure 7. In all experiments
the genotypes were strings of integers encoding wlw@ous properties of the
controllers and coupled visual morphologies, a gaglgcally distributed genetic
algorithm was used with a population of 100 [7]namber of different mutation
operators were used in tandem, including node iatd&nd deletion operators. The
fitness function was based on a weighted averaginaf distances to the triangle
over a set of evaluations from different initialncitions and different relative
positioning of the shapes. Poor scores were waigimere heavily than good scores,
encouraging robustness by requiring uniformly higtores across the whole
evaluation set.
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Fig.7. The average number of generations needed to finttallers giving perfectly successful
behaviour on the triangle rectangle problem. Thé d@lumns are for networks with the gas
mechanism turned on. The light columns are for neta/with the gas mechanism turned off.
The figure illustrates two sets of 20 runs in eachdition; the difference between the left and
right-hand sets is the way in which the networkreaivity was encoded. See text for further
details.

It can clearly be seen in Figure 7 that controllEased on networks with the virtual
gas diffusion and modulation mechanisms turned\arive significantly faster than
those that are identical in every respect (inclgdienotypes and all the evolutionary
machinery) except that the gas mechanisms are neshdleoperative. This result has
been repeated under various different encodingnseleand for a wide range of
mutation rates [31]. The clear implication is tk&sNets are more evolvable — their
search space is more amenable to the form of éenhry search used — than the
various other forms of network explored. Obvioulis could be a potentially very
useful property and it is looked at in more detathe next section.

Nearly all the successful GasNet controllers thateaexamined in detail exhibited
surprisingly simple structures (a typical examiglshown in Figure 8) relying on a
very small number of visual inputs, although theternal dynamics, supported by
interwoven ‘chemical’ and ‘electrical’ processegre often intricate [19]. A number
of interesting sub-networks, such as oscillator&ingause of spatial aspects of the
modulation and diffusion processes [19], were irthefently evolved in several runs,
suggesting that they are easily found building kéaihat the evolutionary process can
make good use of.
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Fig. 8. A typical evolved GasNet controller for the tridagectangle task illustrating the kind
of structural simplicity often found in highly rosusolutions. See text for further details.

6 Evolvability and Search Space Properties

The key result illustrated by Figure 7, that, forparticular evolutionary search
algorithm, it is easier to find GasNet controlléos the triangle-rectangle task than
non-GasNet controllers, tells us that there musdifierences in the properties of the
two search spaces. Understanding more about wisadifference is may help us gain
some valuable insights into the dynamics of aréfievolution and the nature of
complex search spaces, as well as understanding about the potential of GasNets.
Smith et al. have published a number of papers wgrtowards this goal [29,30,31].
The earliest studies in this series applied a whalge of standard search space
‘complexity’ and ‘smoothness’ metrics to the twaasps. These all failed to predict
any difference between the spaces [30]. Howeverrésearch revealed a number of
likely reasons for this: the spaces both appeawelet highly anisotropic, there is
strong evidence for large neutral networks permegathe spaces, and a very large
percentage of genotypes have negligible fitneses@tand other properties combine
to make the standard metrics useless for describimgertinent differences between
the spaces. Another (probably interrelated) reasoiilustrated by the left-hand
graphs in Figure 9 which show the median numbegesferations needed to reach a
given fitness level for GasNets and non-GasNeterdlis no difference in the two
graphs for fitnesses of less than about 0.5. Fe®egreater than this value are
extremely unlikely to be found in random samplesadrich most of the basic metrics
are based. Hence the focus of the work has shifteéde notion of evolvability and
ways to measure it [31]. Evolvability is related ttee ability of an individual or
population to generate fit variants [32]. A usefutasure of this is the transmission



function which gives the distribution of all podsiloffspring for a given individual or
population [6].

Assuming asexual reproduction, as used here, #mesrrission function, T, is the
probability density function of obtaining offspringenotype, g, with phenotype, p,
over all possible parent (genotype,phenotype) pdiss). Hence the probability of
obtaining a particular offspringp(g,p), is given by Equation 4, whef&(h,k) is a
parental selection function and H and K are thes sdt all possible hs and ks
respectively.

(4)
#(9.p)=[ [Q(nK)T(g, p:h,k)dhdk

K H

In the work described here, a variety of mutatiperators are used, but no crossover
operator is employed. This has allowed transmiséimttions to be approximated
through massive sampling of mutated populationsedavom many evolutionary
runs, so that many levels of initial fithess aneresented. Smith has devised a number
of evolvability metrics based on the transmissimnction [31]. The right-hand graphs
in Figure 9 show plots of one of these measurelégd in the caption). The small,
but significant, difference reveals that at higfisresses the GasNet space has fewer
deleterious mutations than the non-GasNet spade.wil lead to a larger variety of
good solutions in the GasNet populations. Whils thivery likely not to be the whole
story, and further investigations of search dynaméce underway, it must aid
evolution. This discovery means the investigatiare starting to bear fruit and we
hope to soon have a full explanation of the diffiees in search performance on the
two spaces.
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Fig. 9. The left-hand graphs show the median number oéiggions needed to reach
a given fitness score for a large set of evolutipmans. The right-hand graphs show
a small, but significant, difference in the expecté@ness of the bottom 50% of

mutations applied to solutions of a given initighéss. See text for further details.



7 FutureDirections

There are many extensions to all aspects of thé wescribed in this paper, some
planned and some already underway. A number ofethigd be briefly discussed
here.

As far as the computational modelling of the volusignalling roles of NO is
concerned, obvious candidates for further work aredelling diffusion from larger
more complex structures and groups of structuresjrairoducing functional roles for
the gas in detailed simulations of the behaviousrogll neuronal networks. Both of
these present non-trivial technical challengeswodd require significant computing
resources. However, given how much has been |&nmt the studies carried out to
date, as outlined in Section 3, it is important thach work is carried out.

The details of the ‘electrical’ and ‘chemical’ aspge of GasNets are, to some
extent, rather arbitrary. There are numerous oitvens that the modulations, node
internal dynamics and virtual diffusion processesld take. Many of these are very
worthwhile investigating in order to gain a deepaderstanding of a whole class of
systems. Such insights should usefully inform depelent in autonomous adaptive
systems as well as systems level neuroscience.mbeau of interesting alternative
modulation schemes being investigated include:

» Site specific modulations. The modulation depends tbe presence of a
‘receptor’. Virtual gases can trigger a range ofdolations in a single network,
depending on which receptors are present.

* Modulation of other adaptive processes (such adbldatsynaptic changes). This
could add a very powerful dimension to the evolutid adaptive mechanisms as
advocated by Floreano et al. [25].

e Modulations at many different time scales, inclgdipermanent changes, are
common in biology and are likely to play an impatteole in artificial systems.

Of course investigations into autonomous adaptygtess cannot focus solely on
specific behaviour generating mechanisms. A biggeture, involving overall
architectures, body and sensor morphologies [ZNelkbpmental processes [8,9] and
a host of other issues surrounding embodied betauicthe world, must be borne in
mind.

The search space analyses outlined in the lasioseate part of an on-going
investigation and in the future we wish to incogieranalyses of robot behaviours
and their underlying controllers into the story.



8 Conclusions

The sciences of the real and the artificial havelmto offer each other. This seems
especially true in the study of adaptive behavimud the mechanisms underlying it.
This paper has outlined a multi-faceted interdigegpy project that has striven to

exploit the synergies at the interface between osmience and contemporary
Al/Alife, and in so doing has advocated a shift &ous rich electrochemical models
and analogies. The work introduced here is onlifhef the iceberg; there are many
exciting and potentially fruitful avenues left updored. It is hoped that these kinds
of two-studies of real and artificial neural systemill give increasingly deeper

insights into the principles underpinning the gatien of adaptive behaviour.

References

1. Akgoren, N. and Dalgaards, P. and Lauritzen,(M96) Cerebral blood flow increases
evoked by electrical stimulation of rat cerebeltartex: relation to excitatory synaptic
activity and nitric oxide synthesiBrain Res 710, 204-214.

2. Bredt DS and Snyder SH (1990) Isolation rofric oxide synthetase, a calmodulin-
requiring enzymeProc Natl Acad Sci US87: 682-685.

3. Brooks, R.A. (1994) Coherent Behavior from Madaptive Processes. In: D. Cliff and P.
Husbands and J.-A. Meyer and S.W. Wilson (EdEnom Animals to Animats 3:
Proceedings of The Third International ConferenoeSimulation of Adaptive Behavjd2-
-29, MIT Press/Bradford Books, Cambridge, MA.

4. Brooks, R.A. (1991) Intelligence without repnetsgion.Artificial intelligence 47, 139-159.

5. Cao, L., T.A. Blute and W.D. Eldred (2000). Lbzation of heme oxygenase-2 and
modulation of cGMP levels by carbon monoxide andhitiic oxide.Visual Neuroscience,
17: 319-379

6. Cavalli-Sforza, L. and Feldman, M. (1976). Exmo of continuous variation: Direct

approaches through joint distribution of genotypesl phenotypesProc. Nat. Academy of

SciencesUSA, 73:1689-1692.

7. Collins, R. and Jefferson, D. (1991) Selectiomassively parallel genetic algorithms. In: R.
K. Belew and L. B. Booker (Eds), Proceedings of fmurth Intl. Conf. on Genetic
Algorithms, ICGA-91, 249--256, Morgan Kaufmann.

8. Dellaert, F. and Beer, R.D. (1996) A developrakntodel for the evolution of complete
autonomous agents. In Pattie Maes, Maja Mataran-#e¢cady Meyer, Jordan Pollack, and
Stewart W. Wilson(Eds.)From Animals to Animats 4: Proceedings of the HFourt



International Conference on Simulation of AdaptBehavior Cambridge, MA: The MIT
Press/Bradford Books.

9. Eggenberger, P., (1997) Evolving morphologie8Dforganisms based on differential gene
expression. In Prod-ourth European Conference on Atrtificial Lif@hil Husbands and
Inman Harvey (editors), MIT Press.

10. Gally JA, Montague PR, Reeke Jnr GN and Edel@® (1990) The NO hypothesis:
possible effects of a short-lived, rapidlyffulible signal in the development and
function of the nervous systefroc Natl Acad Sci USA87:3547-3551.

11. Garthwaite J, Charles SL and Chess-Williafs(1988) Endothelium-derived relaxing
factor release on activation of NMDA receptsuggests role as intracellular messenger
in the brainNature336: 385-388.

12. Grand, S. Creatures: An exercise in Creati®@EE Intelligent Systems magazine
July/August 1997.

13. Hall ZW (1992) An Introduction to Molecular d®biology. Sinauer Associates Inc,
Sunderland, Massachusetts.

14. Hartell NA (1996) Strong activation of paehlfibores produces localized calcium
transients and a form of LTD that spreads to distgnapsesNeurons 16: 601-610.

15. Harvey, I. and Husbands, P. and CIliff, D. ()99éeing the light: artificial evolution, real
vision. In D. Cliff et al. (Eds.) Proc. Animals Amimats 3, MIT Press, 392-401.

16. Holscher, C. (1997) Nitric oxide, the enigmatiguronal messenger: its role in synaptic
plasticity. Trends NeuroscR0: 298-303.

17. Husbands, P. (1998) Evolving Robot Behaviouith Wiffusing Gas Networks, In: P.
Husbands and J.-A. Meyer (1998), 71-86.

18. P. Husbands and J.-A. Meyer (Eds) (399BvoRobot98: Proceedings of 1st European
Workshop on Evolutionary RobotjcSpringer-Verlag LNCS 1468.

19. P. Husbands and T. Smith and N. Jakobi and '8hé&a. Better Living through Chemistry:
Evolving GasNets for Robot Contr@onnection Scienc&0(3& 4), 185-210, 1998.

20. Jakobi, N. (1998) Evolutionary Robotics and Redical Envelope of Noise Hypothesis,
Adaptive Behaviqr6(2): 325-368.

21. Kandel, E. (1976)he cellular basis of behavioFreeman.

22. Katz B (1969)The release of neural transmitter substancés/erpool University
Press.

23. T.Kondo, A.Ishiguro, Y.Uchikawa and P.Eggenleerd999), Autonomous Robot Control
by a Neural Network with Dynamically-Rearranging nEtion. In: Proc. of the 4th
International Symposium on Artificial Life and Rdlms (AROB99), Vol.1, pp.324-329.

24. H. Lipson and J. B. Pollack (2000), Automatsign and manufacture of robotic lifeforms,
Nature406, pp. 974-978.

25. Nolfi, S. and Floreano, D. (2000). Evolutiondpbotics: The biology, intelligence and
technology of self-organizing machines. MIT Press.

26. Park J-H, Straub V and O'Shea M (1998) Antexdgrsignaling by Nitric Oxide:
characterization and in vitro reconstitution af identified nitrergic synapskNeurosci
18.

27. Philippedes, A. and P. Husbands and M. O'Skaar. Dimensional Neuronal Signaling by

Nitric Oxide: A Computational Analysidournal of Neuroscienc0(3): 1199--1207, 2000.

28. A. Philippedes and P. Husbands and T. Loviak nO'Shea (2001). Targeted gas clouds

in the brain. (submitted)

29. T. Smith and P. Husbands and M. O’Shea (209&jtral Networks and Evovability with
Complex genotype-Phenotype MappifRgoc. ECAL'01 LNCS, Springer.

30. T. Smith and P. Husbands and M. O’Shea (208b}. Measuring Evovability: Initial
Investigations of an Evolutionary Robotics Searphac®. InProc. CEC'01 IEEE Press.

31. T. Smith and P. Husbands and M. O'Shea (20B%plvability, Neutrality and Search
Difficulty. (submitted)



32. Wagner, G. and Altenberg, L. (1996). Complexamdtions and the evolution of
evolvability. Evolution 50(3):967-976.

33. Wood J and Garthwaite J (1994) Model of thefudibnal spread of nitric oxide -
implications for neural nitric oxide signalirend its pharmacological properties.
Neuropharmacolog®3: 1235-1244.



