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Linked Local Navigation for Visual Route Guidance

Lincoln Smith, Andrew Philippides, Paul Graham, Bart Baddeley, Philip Husbands
Centre for Computational Neuroscience and Robotics, Department of Informatics, University 
of Sussex, UK

Insects are able to navigate reliably between food and nest using only visual information. This behavior

has inspired many models of visual landmark guidance, some of which have been tested on autono-

mous robots. The majority of these models work by comparing the agent’s current view with a view of
the world stored when the agent was at the goal. The region from which agents can successfully reach

home is therefore limited to the goal’s visual locale, that is, the area around the goal where the visual

scene is not radically different to the goal position. Ants are known to navigate over large distances
using visually guided routes consisting of a series of visual memories. Taking inspiration from such

route navigation, we propose a framework for linking together local navigation methods. We implement

this framework on a robotic platform and test it in a series of environments in which local navigation
methods fail. Finally, we show that the framework is robust to environments of varying complexity.

Keywords navigation · view-based homing · snapshot · route learning · biomimetic robotics · 

average landmark vector

1 Introduction

Returning to a location using visual information is an
important capability for many insect species as well as
autonomous robots. View-based homing has therefore
received much attention in recent years with a number
of algorithms developed to allow an agent to navigate
back to a goal using a remembered view from that loca-
tion (for reviews see: Franz & Mallot, 2000; Vardy &
Möller, 2005). In general, these algorithms compare
the current view of the world to a view that was stored
at the goal location. The direction to goal is calculated
from the discrepancy when the stored and current
views are compared. This type of navigation strategy
can be further categorized into correspondence meth-
ods and holistic methods (Möller & Vardy, 2006). Cor-
respondence methods require that common regions are

identified in both the stored goal view and the current
view, and the differences in their positions used to derive
a movement vector (e.g., Cartwright & Collett, 1983;
Vardy & Möller, 2005). Holistic methods use a difference
metric to assess the similarity of goal and current views
and an agent homes by moving so as to minimize this
difference. The difference metric might be root mean
square difference of pixel intensities (e.g., Franz, Schöl-
kopf, Mallot, & Bülthoff, 1998a), or alternatively, the
Euclidean distance in some parameter space, where
parameters are derived from the whole image [e.g. aver-
age landmark vector (ALV): Lambrinos, Möller, Pfeifer,
Wehner, & Labhart, 2000; contour model: Möller, 2001].
Despite their differences, both correspondence and holis-
tic methods perform robustly in areas local to the goal.

For view-based homing algorithms, successful
navigation requires the current view to be similar to
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the goal view (Cartwright & Collett, 1987). View-
based methods may therefore fail when, for instance,
the agent must navigate past an opaque barrier where
the world looks completely different on either side.
Alternatively, if the world looks similar at multiple
locations, the correct location cannot be distinguished
without additional information and the end point of a
navigated route will depend on the start location.
Additionally, when the environment prevents a direct
route to a goal, a single stored view is unlikely to suf-
fice. These problems are less likely close to the goal
and become more prevalent as the size and complexity
of the world is increased.

There have been a number of approaches aimed at
increasing the scale over which visually guided robots
can navigate. Inspired by the organization of spatial
memories in the mammalian hippocampus, some
research has focused on algorithms for the autono-
mous construction of place graphs representing the
structure of the environment (for review see: Franz,
2000; Trullier, Wiener, Berthoz, & Meyer, 1997). In
the engineering sciences, state of the art robot naviga-
tion is dominated by probabilistic algorithms charac-
terized by their ability to simultaneously map and
localize within an environment (for review see: Thrun,
2002). Both these approaches are concerned with
mapping of the environment and rely on extensive
exploration. Possibly a more pragmatic solution to the
problem of scale – certainly one that is much more
parsimonious in terms of memory and learning – is to
learn routes consisting of multiple goal locations, or
waypoints, linked together. Navigation between way-
points is then achieved using a local homing method.
It has long been known that insects demonstrate
robust navigation using visually guided routes without
recourse to map-like representations (e.g., Collett, Dill-
mann, Giger, & Wehner, 1992; Rosengren, 1971; Weh-
ner, Boyer, Loertscher, Sommer, & Menzi, 2006) and
navigation algorithms in autonomous robotics have
used this idea in various forms (Argyros, Bekris, Orpha-
noudakis, & Kavraki, 2005; Giovannangeli, Gaussier,
& Désilles, 2006; Nehmzow & Owen, 2000; Smith &
Husbands, 2002; Smith, Philippides, & Husbands, 2006;
Vardy 2006).

Successful schemes that link navigation by local
homing methods into a route require solutions to a
number of problems of general interest, such as place
recognition and the detection of change. These prob-
lems, in conjunction with those posed by issues such

as environmental noise, make robust route navigation
a non-trivial aim. The two major difficulties that have
to be overcome are: (1) determining the point at which
a new waypoint should be set during route construc-
tion, and (2) deciding when a waypoint has been
reached during navigation.

An intuitive approach to the first problem is to
monitor the current view and store a new waypoint
when there is a large change or discontinuity. For an
agent operating in discrete time this means a new
waypoint is generated if the change in the view is
above a predetermined threshold. Similarly, arrival at
a waypoint is indicated by the difference between the
current and waypoint views being below a threshold.
We have previously shown that while this method can
be successful, it is inherently environment specific as
no single fixed threshold is suitable for all environ-
ments, or even for different parts of a single environ-
ment (Smith & Husbands, 2002; Smith et al., 2006).
Similarly, Vardy (2006) developed a route navigation
algorithm within a single simulated environment and
found successful navigation to be threshold-dependent
and especially sensitive to waypoint arrival detection.
Franz, Schölkopf, Mallot, and Bülthoff (1998b) devel-
oped an algorithm for linking local view-based navi-
gation methods, although using a view graph rather
than a route. To deal with waypoint selection and
detection, Franz et al. (1998b) used thresholds that were
empirically derived by exhaustive sampling of the
environment.

In this article, we present a non-threshold-based
framework for linking local view-based homing meth-
ods together into a route: linked local navigation (LLN).
Given that our work is insect-inspired it is important
that our algorithm is biologically plausible, that is,
could be implemented with simple parallel neural
architectures and low memory requirements. More-
over, we wanted to create a solution that did not rely on
environment-dependent parameters or extensive explo-
ration. We hope, therefore, that our model falls within
the set of plausible models of insect route navigation.
The LLN framework assumes that the agent can make
a single journey from start to goal using an innate
behavior such as path integration or chemical trail fol-
lowing. During this trip, the agent constructs route
waypoints by storing views of the world when the
number of perceived landmarks changes. Similarly,
when navigating, if the number of landmarks changes,
a waypoint is judged to have been reached. Thus vis-
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ual locales are specified by a binary and significant
event and one that an insect could plausibly be expected
to recognize. The agent subsequently traverses the route
by visually homing to each waypoint in turn using a
local navigation method.

This work uses the ALV model for local navigation
(Lambrinos et al., 2000). However, the LLN framework
could be applied to any view-based correspondence
homing method that parses visual input into distinct
features. The ALV provides a sparse representation of
a visual scene by processing it into a single two-
dimensional vector which essentially points at the
mean of all landmark-bearings. We use the ALV model
as it is the simplest and most elegant of the view-
based homing methods and has been implemented
using simple parallel architectures (Hafner & Möller,
2001; Möller, 2000). Moreover, its simplicity pro-
vides a transparency of operation which lends itself to
analysis and investigation of the linking framework.
To test the operation of the LLN framework we have
implemented it on a robotic platform. We first demon-
strate that our framework succeeds in a number of sit-
uations in which local navigation methods fail, for
example when there is perceptual aliasing or the need
to use an indirect route. We then test the framework in
a series of complex environments, showing it to have
robust operation for goal and start positions over mul-
tiple visual locales.

2 Methods

2.1 Gantry Robot

All experiments reported in this article were per-
formed on a gantry robot – a large volume XYZ
Cartesian robot (Figure 1A). The gantry axis configu-
ration provides an operating volume of 3 m × 2 m ×
2 m. The sensor end of the Z-axis can be placed any-
where within this volume with sub-millimeter accu-
racy. Black/dark-gray cardboard tubes of different
diameters were placed within the environment to make
high contrast landmarks against the white walls of the
gantry’s outer frame.

The vertical Z-axis arm accepts interchangeable
sensory heads, which are used to collect information
from the current XYZ position. For the experiments
presented here a catadioptric camera system is mounted
on the Z-axis to produce panoramic images. The camera,
a VCAM 360, is shown in Figure 1B. The panoramic

mirror projects a 360° image of the environment onto
the downward facing CCD video camera which is
transformed from a circular reflection to a one-
dimensional image representing a 360° panorama (Fig-
ure 1C). The transformation was accomplished by taking
eight 1-pixel-wide radial samples from the panoramic
image. The radial positions of these annular samples
are shown by the concentric circles lines in Figure 1C.
Three hundred and sixty one-degree, gray-scale levels
were calculated for each radial strip through interpola-
tion and averaged across the eight samples to give a
1 × 360 strip of mean gray-scales rounded to integers
in the range [0, 255]. This one-dimensional strip is the
raw visual input. At each time-step this raw input is
processed into landmarks (Figure 1D) from which the
ALV is generated, as described in Section 2.3. Note
that due to the limited perceptual range of the agent
and occlusions, the set of perceived landmarks will
change during locomotion.

2.2 Local Navigation

While there are many algorithms capable of implement-
ing local view-based navigation, the most parsimoni-
ous and elegant is the ALV model which processes a
view into a single two-dimensional vector. The ALV
model thus requires little computation and memory,
and has been shown to be effective for visual naviga-
tion in both computer simulation (Lambrinos et al.,
2000) and on autonomous mobile robots (Möller,
2000). To calculate the ALV, landmarks (recognizable
features) are selected from a 360° panoramic view. The
ALV is the average of unit vectors directed from the
agent to each landmark. For navigation, the agent is
placed at a goal location and the ALV (the goal ALV)
stored. To return to the goal, the agent calculates the
vector difference between the current ALV and the
goal ALV and moves in this direction. Since the vector
difference of the ALVs approximates the direction to
goal, navigation is implemented by iteration of this
process (Lambrinos et al., 2000).

Prerequisites for the ALV are therefore a 360° vis-
ual system, an ability to align views with an external
reference (e.g., a compass direction) and a robust object
detection system. Ants and bees have near spherical
vision, both gain compass information from celestial
cues (Wehner, Michel, & Antonsen, 1996) and we
assume they can reliably segregate objects from back-
ground (for a suggested method see Möller, 2002).
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Thus the ALV method is biologically plausible and has
been shown to be computable with simple artificial
neural networks (Hafner & Möller, 2001; Möller, 2000).

2.3 Visual System

As our gantry robot has panoramic vision and fixed
alignment, calculation of ALVs only requires a land-
mark recognition system to reliably distinguish land-
marks from background (we use all objects detected
by the visual system as landmarks). We note, however,

that the simple landmark recognition system used is
not the focus of our article and is clearly optimized for
the white-walled, black-object environment used here.
Our aim was for a tractable, working system, transpar-
ent enough in its action to allow us to focus on the
navigation algorithm.

Landmark recognition is accomplished in several
sequential stages (Figure 2). The raw visual input is first
resolved into 90 panoramic facets resuting in an inter-
facet angle of the same order as the inter-ommatidial
angle of ants’ eyes (Zollikofer, Wehner, & Fukushi,

Figure 1 The gantry robot. A: The gantry robot is an XYZ Cartesian robot, which can position a camera at any point in
a 3 m × 2 m × 2 m volume. B: The camera head is a catadioptric system that projects a 360° panoramic image of the
world onto a CCD array. C: A frame capture from the video feed. The three concentric circles (outermost to innermost)
indicate the sampled area's upper edge, horizon, and lower edge. The resulting strip, after unwrapping, is shown under-
neath along with a thresholded strip. D: A trace of the visual input experienced by the agent along a route. This trace
demonstrates: (i) occlusion, (ii) appearance of landmarks as they come into perceptual range, and (iii) disappearance of
landmarks as they leave perceptual range.
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Figure 2 Visual system. A: Landmarks (black objects) perceived over time by the agent after three stages of visual
processing. The first stage (upper panel) shows the visual system after raw input is resolved into 90 facets through av-
eraging and thresholding. This stage shows two types of disruptive noise, highlighted in shaded ovals. i: When a land-
mark appears from behind another they are unreliably perceived as either one or two objects. ii: Landmarks on the edge
of the perceptual range are unreliably perceived causing them to flicker in and out of existence. The middle and lower
panels show the visual system after excitation and inhibition respectively (see text for details of these operations). B:
Schematic of neural circuitry which could achieve the stages of visual processing illustrated in A. C: Retinal positions of
landmarks over time. Compass plots show the bearings (thick gray arrows) and the resultant ALV (black arrows) at sev-
eral points in time (indicated by dashed lines).
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1995). Each facet has a receptive field covering 8°, that
is, itself and half of each of its neighbors. The activa-
tion within each facet is averaged and then thresholded
to –1 or 1 depending on whether the output is less than
200 (Figure 2A). Two further processing steps based
on lateral and temporal excitation/inhibition serve to
clean the visual signal and remove noise; these are
described later in this section. These steps could be
accomplished with simple neural circuitry as illus-
trated in Figure 2B.

Disruptive noise was generally caused by two fac-
tors. Firstly, when landmarks are merging before, or
separating after, an occlusion, they may be alternately
perceived as one or two objects over a short distance.
This is caused by the agent’s movement shifting the
gap between objects so that it falls between two facets
as well as by environmental noise (experiments were
conducted over several days at different times of day)
coupled with bleed in the camera. After one land-
mark appears from behind another, the agent briefly
perceives it as a single object again, before it fully
separates (Figure 2A). The second problem is that
landmarks on the threshold of the agent’s perceptual
range are unreliably perceived. Due to their small
apparent size, movement between facets and environ-
mental noise can cause landmarks to flicker in and out
of perceptual existence (Figure 2A). For example, as
the agent approaches a landmark it increases in size
until it is detected by a facet. Further movement, how-
ever, means that the landmark passes between two
facets, neither reach threshold and the landmark disap-
pears. As the agent does not move directly towards the
landmark, it appears and disappears several times as
the landmark centre moves across the retina, before
appearing as a reliable landmark.

There are many ways to deal with these problems
but we decided to take a simple facilitative approach
whereby a facet’s state depends on its current input,
its state at the previous time-step, and the states of
neighboring facets. The first stage is excitation and
deals with the problem of occlusion. At this stage, any
facet which was active in the previous time-step and
whose neighbors in the raw output are both currently
active is set to 1. This is a form of perceptual “filling
in” which means that after two landmarks have been
perceived as one, they remain perceived as one until
the gap between them is two facets. The visual scene
after this stage of processing is indicated in the middle
panel of Figure 2A. Note that the occluded landmarks

are perceived together for a longer duration than in the
thresholded output (Figure 2A, upper panel). The out-
put of this stage is passed into the second, inhibiting,
stage. In this stage any active facets that were not
active in the previous time-step and whose neighbors
after excitation are both off are set to –1. Effectively,
this means that an object on the edge of the agent’s
perceptual range is only perceived as a landmark
when it is at least two facets in width, at which point it
is much more likely to be perceived reliably. The out-
put of this stage is shown in the bottom panel of Fig-
ure 2A where perception of the flickering landmark is
delayed until it is reliably within perceptual range.

Once these stages are complete, landmarks are
defined as connected sets of active facets and the bear-
ing of each landmark is calculated as the average of the
angular position of the facets containing the landmark
edges. Thus landmark bearings are accurate to ± 2°.
We assume this stage could be achieved with edge-
detecting neural circuitry. These bearings are then used
to generate the ALV and this, together with a signal
determining whether the number of landmarks has
changed, is passed to the main algorithm. This stage is
illustrated in Figure 2C. Note the parsimonious nature
of the representation of the scene, from bearings to a
single vector, means that there is more chance of alias-
ing than for more complex visual parameterization.
Figure 2C shows  the ALV changing quite slowly until
the number of landmarks changes from three to four, at
which point it jumps in a single time-step. However,
changes in the number of landmarks do not always pre-
cipitate a large change in ALV. During the navigation
run shown in Figure 2C, a landmark appears roughly in
the direction of the current ALV and therefore has very
little effect on the ALV direction component. A
method which distinguishes visual locales by large
changes in the ALV might not perceive the agent to be
in a new visual locale in this case.

2.4 Linked Local Navigation

The algorithm requires an initial phase where a scaf-
fold behavior dictates the route to be learnt. In this
phase, the agent travels along a path from start to goal
in steps of 2 cm. Step-size is chosen to match that
used when navigating (see below). If the number of
landmarks currently seen is different to the number
seen at the previous time-step, the ALV calculated at
the previous time-step is stored as a waypoint. Note
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that we do not assume that the agent can “count” land-
marks but that any agent that can distinguish features
as landmarks will be able to perceive the binary event
of a feature appearing or disappearing. When the
agent is within 5 cm of the goal, the goal ALV is cal-
culated and stored as the final waypoint.

The navigation phase begins with the agent at the
start position with an ordered series of stored ALVs as
waypoints. The agent then uses the ALV algorithm for
local navigation to the first waypoint, noting the
number of landmarks seen at each time-step. When the
number of landmarks changes, the agent is assumed to
have crossed a boundary into the next visual locale and
the navigation system switches to using the ALV asso-
ciated with the next waypoint in the list. This process
continues until the agent reaches the goal or times out
(after 500 time-steps).

2.5 Boundary Crossing

There are various ways in which the direction derived
from the ALV algorithm can be transformed into a
movement vector. If it is to be used as part of a route,
however, it must be augmented to enable the agent to
cross the boundaries between visual locales. This is
because the ALV takes an agent to a goal and not past
it. Moreover, near the goal several things occur which
are problematic for route navigation. Firstly, the size
of the difference between current and goal ALV, and
thus the movement signal, is small. This means that if
the movement is based on the difference only, the
resultant movement may be too small to reach the goal
let alone cross the boundary. This results in move-
ments which tend towards the goal but never reach it.
If this is the global goal, other cues (odor, etc.) could
be assumed to get the agent home. However, in the
case of a route, the agent’s path will simply stop.

Obvious solutions to this problem are to impose a
minimum or absolute step-size, or to add some form of
momentum to the agent’s movement vector so that it
incorporates some element of recent movements. The
first of these solutions brings to light a second prob-
lem. As the agent works in discrete time, any waypoint
will be taken on one side of the boundary of a visual
locale rather than on it. Thus the movement vectors on
either side of the waypoint will be in opposing direc-
tions. If a minimum step-size is imposed, the agent
may overshoot the waypoint and land between the
waypoint and boundary. Its next step then takes it back

over the waypoint in the opposite direction, from
where it again reverses direction, resulting in the agent
flip-flopping from one side of the goal to the other,
never crossing the boundary into the next visual locale.
Addition of a momentum term to the movement vector
such that the resultant movement is the average of the
vector calculated from the current visual scene and the
last n movements will ameliorate the problem of flip-
flopping. However, the number of steps, n, to average
over to avoid asymptotic approach to the goal without
ignoring current direction information must be deter-
mined, with optimal values likely specific to particular
environments.

We investigated a number of variants of such
types of momentum in combination with minimum or
absolute step-sizes in a simulation of the gantry robot.
Initial tests highlighted the problems mentioned above
and the problem of parameter settings only working in
certain environments. To combat this we attempted
to minimize the number of pre-defined parameters
needed for each method and tested each in 300 random
environments containing landmarks with radii between
20 and 30 units. Test sets consisted of 30 environments
for each radius size (for full results, see: Smith, 2006).
After subsequent testing of the most promising meth-
ods on the gantry robot itself, we settled on a method
which applies momentum to the heading of the agent
together with an absolute step-size of 2 cm, as described
in the following equations. Defining the movement
vector at time t as rt = (r, θt) and the difference in the
heading of the movement vector derived from the cur-
rent ALV, φt, and rt–1 = (r, θt–1) as αt, we have:

These equations specify the heading as a weighted
average of the current and previous headings, with the
weight of the previous heading increasing with its dif-
ference from the current heading. Such a scheme
assumes that the previous heading is reliable and that
the current heading is likely to be wrong if it deviates
from the previous heading by too much. Thus if the dif-
ference between current and previous headings is 90°
or more – a situation one would expect if the agent
steps passed a waypoint but not across the boundary –

σt min
αt

0.5π
----------- 1,

 
 
 

=

θt σtθt 1– 1 σt–( )+ φt= .
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the current heading is ignored entirely and the agent
takes another step in the direction of the previous head-
ing. If in a position between waypoint and boundary
this should take the agent into the next visual locale. It
will also guard against situations where the ALV is
corrupted by environmental noise. Moreover, the max-
imum change in heading at any given step is 22.5°,
meaning that the agent cannot turn through unrealistic
angles in a single step. Finally, note that setting the
absolute step-size, r, to 2 cm is not optimal. In general,
the smaller this value, the more robust the algorithm is
to environments with multiple visual locales as the
agent is less likely to step over an entire visual locale.
However, a very small step-size is not practical.

3 Results

As noted in the Introduction, an agent homing with a
single visual memory can fail if the landmarks seen
from the goal are different from those seen at the cur-
rent position. As shown in Figure 1D, in a static
world, common ways in which the perceived land-
marks can change are:

• A landmark appearing due to agent approach.
• A landmark disappearing as the agent moves away.
• A landmark appearing from behind another: occlu-

sion.
• A landmark being hidden by another (or merging

with it).

Environments in which one or more of these
events occur, may require multiple waypoints for route
navigation. Likewise, environments that contain fea-
tures that force an agent to take a circuitous route to
the goal (e.g., a pool of water) may require multiple
waypoints. It should be noted that these situations will
not necessarily cause local methods to fail, but that
one of these events must happen if they are to fail. For
instance, perceptual aliasing, where the view from
multiple locations is similar, may cause local methods
to fail. For this to happen, the agent must not be able
to see all landmarks at all locations. Our framework
must therefore be robust to such environments if it is
to succeed.

Figure 3 illustrates navigation in three environ-
ments designed to demonstrate the problems of occlu-
sion, appearance and disappearance of landmarks, and

indirect routes. In all instances the LLN framework
succeeds while the local method, the average land-
mark vector algorithm, fails.

The first environment (Figure 3A, 3B and Figure 4)
demonstrates how occlusion can lead to perceptual
aliasing. The goal is set directly between two land-
marks and thus the goal ALV to be matched is (0,0).
Examination of the visual input along two trajectories
which lead to different positions, highlights the prob-
lem (Figure 4). Note the similarity in the perceived
visual scene in the later time-steps despite the very dif-
ferent positions of the agents. Moreover, once further
processed into the ALV’s sparse representation, there
is more chance of aliasing since different landmark
configurations can produce the same ALV. Crucially
in this case, positions where landmarks are on opposite
sides of the agent are identical to the goal (Figure 4B
and C).

With this information it is easier to interpret the
results of Figure 3A. Each run of the ALV vector algo-
rithm initially heads towards the center of the land-
mark configuration as it tries to achieve the goal ALV
of (0,0). The only way to do this is if landmarks are
distributed isotropically around the agent and thus the
agent moves so as to balance the landmarks on either
side of its visual field. These trajectories soon lead it to
a point where one landmark is occluded, and the agent
sees two landmarks on one side and one on the other. It
therefore moves so as to balance these landmarks in its
visual field, leading it to collide with a landmark or to
a location visually identical to the goal.

Whilst the goal ALV for the LLN method is the
same as for the ALV algorithm, because of the inter-
mediate waypoints it avoids this problem. At the first
waypoint there is one landmark to the left of the agent
and three to the right. The agent thus initially heads
for a location with this balance of visual landmarks.
Upon reaching the first occlusion point, it heads for a
position where two landmarks are to the left and one
to the right. This leads it to a point in front of the two
landmarks straddling the goal from where perceptual
aliasing will not be a problem.

The problems of appearances and disappearances
are highlighted in the second environment (Figure 3C
and D). Here there are clearly several locations where
the balance of landmarks on the retina is the same as
is seen from the goal. As it has no higher mechanism
to discriminate these locations, which one the ALV
algorithm navigates to is dependent upon the starting
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position. This presents little problem for the LLN,
however, as the intermediate waypoints lead it to the
correct region from which the goal can be found. Sim-
ilarly, when the agent learns an indirect route to the
goal (Figure 3E and F), the LLN follows the route
specified by the waypoints along the path.

For a more complete assessment, we further tested
the framework from multiple start locations in a ran-

dom environment (Figure 5A). We added extra land-
marks to increase the complexity (defined as the
number of visual locales). The LLN succeeds in 20 out
of the 23 cases compared to 11 out of 23 for the ALV
model. As with the environments shown in the previ-
ous section, the routes taken by the LLN are gener-
ally direct and robust to most deviations from the
training path [deviations caused by the inaccuracy of

Figure 3 Environments necessitating linked methods. A, C, E: LLN framework navigating successfully from 3 start
points (*) to a goal (open circle). Dotted lines represent the path taken during the learning phase with open squares be-
ing the locations where waypoints were laid. Solid lines represent the paths taken by the agent when navigating to the
goal using the stored sequence of views. X-marks signify points where the agent moved into a new visual locale. B, D,
F: In the same environments a single ALV stored at the goal fails to guide an agent back there. These environments and
routes possess properties causing a single ALV to fail: A, B, perceptual aliasing; C, D, appearance and disappearance
of landmarks due to limited perceptual range; and, E, F, an indirect route.
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the isotropic distance assumption of the ALV (see e.g.,
Franz et al., 1998a)]. These deviations, compounded
by the hysteresis of the visual system, mean that
boundaries are often detected at different positions to
those in training. Nevertheless, as the boundaries
occur in the same order as in training, the algorithm
succeeds.

The situations in which the LLN fails highlight the
limitations of the simple method. Consider the results
from the “South” position in Figure 5C. Although the

agent encounters a number of boundaries during the
first part of the navigation phase, there are no way-
points set in the training phase. This is because during
training, one landmark appears while another disap-
pears simultaneously. Thus, the number of landmarks
does not change and no waypoint is set. It is of little
surprise that due to the slight variation in the navigation
route, the appearance and disappearance occur sepa-
rately in time, resulting in the agent using inappropriate
waypoints.

Figure 4 Perceptual aliasing. A: Trajectories from Figures 3A and B for the LLN framework (left panel) and ALV algo-
rithm (right panel). Symbols and conventions as in Figure 3. B, C: Bearings of landmarks along the trajectories in A
show perceptual aliasing due to the simple visual representation of the scene. Compass plots showing bearings of land-
marks (thick gray arrows) and the resultant ALV (black arrows) at the end of the LLN framework (B) and ALV algorithm
(C) trajectories at the points indicated by the dashed lines. Note that despite slight differences in the bearings of land-
marks in the compass plots, after averaging the ALVs are identical.
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More generally, failures are more likely to occur if
waypoints are close to each other. In such instances, dif-
ferences between training and navigation routes can
cause appearances and disappearances to occur in a dif-
ferent order to that in which they were learnt, which may
cause failure. Thus, while the robot successfully navi-
gates the tightly spaced waypoints encountered from the
“South East” position in Figure 5C, a cluster of waypoints
results in failure from the “East” position of Figure 5E.

For success of the LLN, it is desirable for way-
points to be spread out in time. Without using a smaller
step-size or a more complex visual parameterization
of the world, it would be expected that a more clut-
tered environment would produce more failures. This
is intuitively sensible as there is a probability of fail-
ure at each boundary. Interestingly, in our choice of
test environments, the reverse appears to be true for
the ALV algorithm. It performs best in the most clut-

Figure 5 LLN framework in environments containing different numbers of landmarks. A, C, E: LLN framework navigat-
ing from multiple start points to a single goal. B, D, F: Paths from an agent using a single ALV to home to the goal from
the same start points. Symbols and conventions as in Figure 3.
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tered environment due to the central position of the
goal. There are very few positions in the environment
that could have such an isotropic distribution of land-
marks. Thus certain configurations of goal and land-
marks will result in success, especially if the start or
goal positions are not surrounded by landmarks.

When this is not the case, local methods often fail.
This is illustrated in Figure 6 which highlights a range
of complex environments where the start and goal are
not in central positions. For instance, Figure 6A and B
show a long route with many waypoints, where the
ALV algorithm falls victim to perceptual aliasing. In
the second example, we imagine that there is some
physical obstacle requiring the agent to take a dog-
legged learning path. A local method is likely to fail in
such a case. To further complicate this situation, we also
consider the case where the obstacle obstructs the
agent’s view. Despite radically changing visual scenes,
the LLN framework succeeds in both cases (Figure 6C–
F). Finally, we consider the example of agents trained
to complete a circular route (Figure 6G and H). The
LLN succeeds although, trivially, as the goal position
is also the start position, a local method will not.

4 Discussion

We have presented a framework that allows robust
route navigation through complex environments. The
framework uses linked local methods to navigate to a
series of waypoints along a route. We have demon-
strated the efficacy of the framework on a robotic plat-
form in multiple environments. In these tests, the
interaction of the landmark arrays with the visual system
of the agent meant that the environments were visually
complex, containing landmark occlusions, appearances
and disappearances (cf. Franz et al., 1998b; Vardy,
2006). Route methods are necessary as local view-
based homing methods (e.g., the ALV model, Lambri-
nos et al., 2000) are likely to fail in such visually com-
plex environments.

Using a series of waypoints for route navigation
requires robust methods for deciding when to store a
waypoint during the learning phase and when that
waypoint has been reached during the subsequent nav-
igation phase. Methods that use thresholds to signify
these events have to be tuned to a specific environ-
ment. For this reason we avoided the use of thresholds
and assumed the agent had arrived in a new visual

locale when there was a change in the number of per-
ceived landmarks. This event-based indication of
boundary crossing could be assumed to be under-
pinned by simple visual processing.

In this work we purposely chose a simple visual
system and a simple visual environment in order to
allow us to access the inner workings of our model.
This aligned well with the ALV model which works on
highly processed images or in simple worlds. Ways in
which the ALV method can be adapted to work in vis-
ually complex environments have been discussed by
Hafner and Möller (2001) and Möller (2001). How-
ever, these modified ALV approaches do not have an
equivalent to the landmark count that we use as an
event marker for crossing the boundary between visual
locales. To use our model framework in complex vis-
ual environments would require a more sophisticated
visual system which selects landmarks from natural
scenes (e.g., Argyros et al., 2005; Lehrer & Bianco,
2000). A visual system which reliably extracts land-
marks could be used in conjunction with our existing
framework and the ALV method of local navigation.

Limitations of the model, and therefore future
research directions, are highlighted by considering the
impressive performance of insects during route navi-
gation. For example, Kohler and Wehner (2005)
allowed Australian desert ants to learn a foraging
route then displaced ants to different points along the
route. The ants were able to recognize their location
and complete their habitual route. This example high-
lights two key points. Firstly, the ability of ants to rec-
ognize their location in a visually complex world with
a poor visual system, and, secondly the ability of ants
to access route memories out of sequence.

Ants might be able to recognize their location on
a route by using low spatial frequency information
(i.e., from large distant landmarks) as context for
identifying smaller local landmarks. This hierarchical
representation of the world increases the robustness
and accuracy of place recognition, which allows the
ants to be confident about their location within the
route sequence. Representing the visual world using
multiple spatial scales has been suggested for artificial
visual navigation systems (e.g., Cartwright & Collett,
1987; Stürzl & Mallot, 2006). Representing the world
on different spatial scales should also ameliorate the
major cause of failure in the current model, which was
dealing with multiple boundaries in close proximity.
Alternatively, a system that only uses landmarks that
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Figure 6 Long routes using LLN. Trajectories are shown where the agent had to deal with a long route (A, B), a
dog-leg (C, D), a barrier (E, F) and a circular route (G, H). As previously the ALV algorithm is tested over the same
routes and these runs are shown in the right-hand panels. Symbols and conventions as in Figure 3.
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are judged to be reliable will be more robust and over-
come some of the problems of boundary crossing.
Selecting appropriate landmarks could be part of a
more extensive learning phase.

Despite these limitations the model presented
here is a simple framework which has robust perform-
ance in multiple environments whilst maintaining its
biological plausibility. As such we believe the LLN
model is a good basis for further research into route
based autonomous navigation.
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