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Abstract. In this paper, we investigate a neutral epoch during an opti-
misation run with complex genotype-to-fitness mapping. The behaviour
of the search process during neutral epochs is of importance for evolu-
tionary robotics and other artificial-life approaches that evolve problem
solutions; recent work has argued that evolvability may change during
these epochs. We investigate the distribution of offspring fitnesses from
the best individuals of each generation in a population-based genetic
algorithm, and see no trends towards higher probabilities of producing
higher fitness offspring, and no trends towards higher probabilities of not
producing lower fitness offspring. A second experiment in which popu-
lations from across the neutral epoch are used as initial populations for
the genetic algorithm, shows no difference between the populations in
the number of generations required to produce high fitness. We conclude
that there is no evidence for change in evolvability during the neutral
epoch in this optimisation run; the population is not doing anything
“useful” during this period.

1 Introduction

Genetic algorithms are classically regarded as performing hill-climbing. Popu-
lations of solutions are progressively improved until some acceptable level of
fitness is reached, with problems occurring if the system gets stuck in local op-
tima before the required fitness is reached. However, the idea of non-adaptive
neutral mutation [11,9,2,21] extends this picture to incorporate the idea of con-
nected sets of equal fitness solutions, or neutral networks. In this scenario, the
population of solutions randomly drifts along a neutral network, occasionally
undergoing transitions to higher fitness networks1, see figure 1. Local optima
may not even exist; long periods where the system does not improve in fitness
may indicate neutral change rather than simply being stuck in an optimum.
Investigation of the population behaviour during these neutral epochs is thus
important for artificial life search techniques that evolve problem solutions.

In such a space, the emphasis on determining the difficulty of finding good so-
lutions through measures of ruggedness and epistasis may be misplaced. Instead,
1 The population may also drop in fitness; work on error thresholds looks at the

conditions under which this transition to lower fitnesses may occur [16].
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Fig. 1. The fitness of the best individ-
ual in a population, over generations.
Note the relatively long periods over
which fitness does not increase, seen in
many optimisation problems. Instead
of being stuck in a local optimum, pop-
ulations may be exploring neutral net-
works in the space.

we will need to look at other properties of the space, and how these properties
change during the neutral period. One such property is the evolvability of solu-
tions (or populations of solutions), argued in this paper to be equivalent to the
capacity of individuals to produce fit offspring. Recent work has shown that this
capacity may change during non-adaptive evolutionary phases [25,24].

In this paper, we investigate the neutral networks and evolvability in a system
with an extremely complex genotype-to-fitness mapping. The genotypes code for
arbitrarily recurrent neural networks used as robot controllers in a visual shape
discrimination. Fitness is evaluated on how close the robot moves to a target
shape over an extended period of operation. It is by no means clear that previous
work on both neutrality and evolvability [24,5,15] will apply to such complex
genotype-fitness mapping spaces. The paper extends the analysis presented in
previous work [17,18], here using the idea of the transmission function [1] to
investigate how evolvability changes during the neutral phase.

The paper is laid out as follows: Section 2 introduces the ideas of evolvability
and the transmission function. Section 3 describes the style of neural network
used in the work, and the robotics problem on which the evolved network con-
trollers are evaluated. Sections 4 and 5 outline the two experiments carried out,
and the results found, and we conclude with discussion.

2 Evolvability and Neutrality

Evolvability is loosely defined as the capacity to evolve, alternatively the abil-
ity of an individual or population to generate fit variants [1,13,22]. Attempts to
rigorously define the concept tend to reflect the background of the researchers
involved, although recently there has been more work linking the biological and
computer science approaches [3,20]. Biologists often talk of organisms and struc-
tures already pre-adapted to some environment, and their ability to respond
to environmental change [12]. Computer scientists tend to talk of evolvability
in terms of the ease of finding good solutions in a given search space, closely
tied in with work on the properties of search space ruggedness and modality
[23,6,10,14,17].



In this paper, we define evolvability as the ability of individuals to produce
fit variants, specifically the ability to both produce fitter variants, and to not
produce less fit variants. This definition is intimately tied in with the population
transmission function [1,4]: T (i → j), defined as the probability distribution of
offspring j obtained through all possible applications of the genetic operators on
the parent i (in this work we do not apply recombination, so only a single parent
is required). Such a definition encompasses all variation in both the operators and
the representation; instead of referring to good and bad genetic operators or good
and bad representations, we can talk about the effectiveness of the transmission
function. In the remainder of the work, we use the transmission function as
short-hand for the distribution of offspring fitnesses. Thus the evolvability of an
individual or population, i.e. their ability to generate fit variants, is simply a
property of the individual or population transmission function.

Researchers have argued that there may be large-scale trends for evolvability
to change during evolution [20], and that the capacity can even increase during
neutral epochs through the population moving to “flatter” areas of the search
space, with fewer deleterious mutations [25,24]. This effect can occur as the centre
of mass of the population moves towards solutions producing a higher number
of viable offspring. Evolvability may also change as the population diffuses along
neutral networks, thus potentially escaping local optima; adding neutrality may
increase evolutionary speed and hence evolvability [15,5]. This paper investigates
these claims in an evolutionary robotics setting with complex genotype-to-fitness
mapping. The next section introduces this mapping.

3 An Evolutionary Robotics Search Space

The GasNet, introduced by Husbands et al. [7,8], incorporates a mechanism
based on the neuron-modulating properties of a diffusing signalling gas into a
more standard sigmoid-unit neural network. In previous work the networks have
been used in a variety of evolutionary robotics tasks, comparing the speeds of
evolution for networks with and without the gas signalling mechanism active
[7,8,19]. In a variety of robotics tasks, GasNet controllers evolve significantly
faster than networks without the gas signalling mechanism. Initial work aimed at
identifying the reasons for this faster search has focused on both the underlying
search spaces ruggedness and modality [17], and the non-adaptive phases of
evolution [18].

3.1 The Task

The evolutionary task is a visual shape discrimination problem; starting from an
arbitrary position and orientation in a black-walled arena, the robot must navi-
gate under extremely variable lighting conditions to one shape (a white triangle)
while ignoring a second shape (a white square). Both the robot control network
(an arbitrarily recurrent neural network incorporating artificial diffusing neuro-
modulators) and the robot sensor input morphology (the number and position



of input pixels used in the visual array) were under evolutionary control. Fitness
over a single trial was taken as the fraction of the starting distance moved to-
wards the triangle by the end of the trial period, and the evaluated fitness was
returned as the weighted sum of 16 trials of the controller from different initial
conditions. For further details of the task, fitness function and genetic algorithm
used, see [8,19].

Success in the task was taken as an evaluated fitness of 1.0 over thirty suc-
cessive generations of the genetic algorithm. Previous work has shown that con-
trollers incorporating the diffusion mechanism can evolve successful solutions
significantly faster controllers without the mechanism enabled [8,19]. The re-
search presented here is part of an extensive exploration into the reasons for this
faster search [17,18].

3.2 The Solution Representation and Mutation Operator

The neural network robot controllers were encoded as variable length strings of
integers, with each integer allowed to lie in the range [0, 99]. Each node in the
network was coded for by nineteen parameters, controlling such properties as
node connections, sensor input, and node bias. In all experiments, the GA pop-
ulation were initially seeded with networks containing ten neurons. For further
details see [8,19].

Three mutation operators were applied to solutions during evolution. First,
each integer in the string had a 3% probability of mutation in a Gaussian distri-
bution around its current value (20% of these mutations completely randomised
the integer). Second, there was a 3% chance per genotype of adding one neuron
to the network, i.e. increasing the genotype length by 19. Third, there was a 3%
chance per genotype of deleting one randomly chosen neuron from the network,
i.e. decreasing the genotype length by 19.

4 The Experiments

We concentrate on a single evolutionary run, chosen at random from a set of
runs used in previous work [8]; figure 2(a) shows the population best and mean
fitnesses over generations. In previous analysis of this evolutionary run [18] we
have shown that the evolutionary phase lying between generations 100 and 477
is indeed a neutral epoch [21]. First, the variation in multiply evaluated fitnesses
for a single genotype can explain the variation in the population best fitness
over this period, see figure 2(b). Second, the population is moving significantly
through the search space during this phase, and thus not simply stuck in a local
optimum.

The first experiment investigates the transmission function, or the proba-
bility distribution of offspring fitness (section 2), for the best genotype found
at each generation during the evolutionary run. Previous work analysed the
probabilities of both the best individual and the population making the transi-
tion to a higher fitness [18]. Here we look at the change in the distribution of
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(a) The GA population best and
mean fitnesses over generations
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(b) Population best fitness, and vari-
ation in multiple fitness evaluations
of a single genotype (grey band).

Fig. 2. (a) Behaviour of the GA population best and mean fitnesses during the evolu-
tionary run, (b) The variation in the population best fitnesses during the neutral epoch
(generations 100-477) can be accounted for by the variation in multiple evaluations of
a single genotype (shown as the grey band) [18].

offspring fitnesses over generations, calculating an approximation to the trans-
mission function through recording the fitnesses of 100, 000 applications of the
genetic mutation operators to the best individuals of each generation (note that
typical genotypes have roughly a few hundred loci, so we are exploring a signifi-
cant fraction of the neighbouring space through 100, 000 offspring). In particular,
we are interested in whether the offspring fitness distributions highlight changes
in the evolvability of the best individual. The high convergence of the population
at each generation implies that changes in the evolvability of the best individual
will reflect changes in the population evolvability.

The second experiment empirically tests the predictions made from the evolv-
ability results: does the population evolvability predict the speed of evolution?
Five populations from the evolutionary run (populations [100, 200, 300, 400, 477])
were used as initial populations for ten runs each of the evolutionary process (fifty
runs in all), to see whether there was a difference in the time taken to reach good
solutions. The next section describes the results from the two experiments.

5 Results

5.1 The Transmission Functions

For the best individual of each generation, the transmission functions were ap-
proximated through recording fitnesses from 100, 000 applications of the mu-
tation operator. Figure 3 shows the fitnesses of the best individual, the best
mutation found and the mean mutation over generations. The graphs closely
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Fig. 3. 100, 000 mutations were ap-
plied to each of the best-of-generation
individuals (the middle line), to ap-
proximate the transmission function
distribution of offspring fitnesses. The
best and mean mutation fitnesses (the
top and bottom lines respectively)
show no clear trend during the neutral
epoch over generations 100-477.

follow the best individual fitness, rising sharply during the initial hill-climbing
period, then staying roughly constant once the neutral epoch is reached around
generation 100 (although there is a single high mutation fitness found just after
generation 60).

Evolvability is equated with the likelihood of obtaining fit variants, and of
not obtaining unfit variants, i.e. the upper and lower tails of the transmission
function distribution. Whereas figure 3 tracked only the best and mean fitness
of variants over generations, figure 4 shows the percentage of mutations above a
fixed fitness (the fitness used here is 0.3 - other fitnesses show similar results),
and figure 5 shows the percentage of mutations below two fixed fitnesses (we use
0.1 and 0.2, again other fitnesses show similar results).
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(a) Rolling mean over 20 gens
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(b) Rolling mean over 100 gens

Fig. 4. The percentage of mutations above fitness 0.3 from the best-of-generation
individuals during the neutral epoch (generations 100-477). (a) shows the short-term
trends, while (b) shows the longer term trend.

We see that the percentage of mutations above a fitness of 0.3 (figure 4(a))
remains extremely low during the neutral epoch, with a maximum of 2%, and
the mean remaining generally under 0.5%. Figure 4(a) shows the local trend, the



rolling mean over the last 20 generations, which does show signs of movement.
However, the longer term trend (figure 4(b) shows the rolling mean over the last
100 generations) shows no such movement.
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(a) Rolling mean over the last 20
gens for the whole run
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(b) Rolling mean over the last 100
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Fig. 5. The percentage of mutations from the best-of-generation individuals below
fitness= [0.2, 0.1]. (a) shows the short-term trends over the entire evolutionary run,
while (b) shows the longer term trend during the neutral epoch (generations 100-477).

The picture for the percentage of mutations below two fixed fitnesses (figure
5) tells a similar story. The number of deleterious mutations falls quickly during
the hill-climbing phase of evolution, then stays roughly constant during the neu-
tral epoch; the short-term trends shown in figure 5(a) show the same movement
as for the good mutations results, but the long term trend (figure 5(b)) shows no
such movement. There is an interesting result from the end of the whole evolu-
tionary run; as fitness dramatically increases at generation 478, the percentage
of mutations below fitness 0.1 actually increases. This is discussed further in
section 6.

5.2 Repeated Evolution

The results from section 5.1 show that for the search space at hand, there is
no long-term trend for change in evolvability during the neutral epoch between
generations 100-477. The second experiment tests whether there is any differ-
ence in speed of evolution from populations across the epoch. Five populations,
from generations [100, 200, 300, 400, 477], were used as the initial populations for
the genetic algorithm, and the evolutionary process repeated ten times for each
population. Table 1 shows the number of generations required for 100% success
on each of the evolutionary runs, while figure 6 shows the median number of gen-
erations taken to reach certain fitnesses. Statistical analysis shows no significant
differences between the five sets of runs, supporting the hypothesis that there is



Pop 100 Pop 200 Pop 300 Pop 400 Pop 477

Mean 2,008 2,096 1,901 1,680 3,024
Median 1,522 1,464 932 1,093 1,597

Maximum 4,713 7,696 >10,000 5,707 >10,000
Minimum 353 365 107 353 290

Table 1. Statistics on the number of generations required before the GA reaches 100%
success, starting from the 5 populations saved on generations [100, 200, 300, 400, 477].
Note: Runs not reaching success in 10, 000 generations were counted as 10, 000 for aver-
aging purposes. No significant differences were seen between the populations (Kruskal-
Wallis analysis).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

Fitness score required

M
ed

ia
n 

ge
ne

ra
tio

n

Pop 100
Pop 200
Pop 300
Pop 400
Pop 477

Fig. 6. Median from 10 runs of the
number of generations required before
the GA reaches a given fitness level,
starting from the 5 populations saved
on generations [100, 200, 300, 400, 477].
No significant differences were seen be-
tween the populations (Kruskal-Wallis
analysis).

no change in the evolutionary potential, or evolvability, of the population across
the neutral plateau.

6 Discussion

Many complex artificial-life problems such as evolutionary robotics show long
periods over which fitness does not markedly increase, classically regarded as
points where the population is stuck in local optima. Recent work has shown
that the population may be moving along neutral networks in the search space
during such periods, and also that the population evolvability may be changing.

In this paper, we have investigated a neutral epoch during an evolution-
ary process with complex genotype-to-fitness mapping (an evolutionary robotics
experiment), and found no evidence for such change in evolvability. The distribu-
tion of offspring fitnesses from the best individuals of each generations showed no
trend towards a higher probability of producing higher fitness offspring, and no
trend towards a higher probability of not producing lower fitness offspring. Fur-
ther, a second experiment in which populations from across the neutral epoch
were used as initial populations for the genetic algorithm, showed no differ-
ence between the populations in the number of generations required to produce
high fitness. This supports previous work [18], suggesting both that population
evolvability does not change across the neutral epoch, and that populations from



across the epoch do equally well when straight hill-climbing is used instead of
rerunning the GA.

This has implications for artificial-life techniques when evolving solutions to
complex problems. In the evolutionary run we have studied here, there is no sense
in which the population is doing something “useful” during the neutral epoch
- it is not moving to better, i.e. more evolvable, areas of the fitness landscape.
Thus the existence of neutral networks in the search space, which allow the
evolutionary process to escape from local optima, does not necessarily provide
any advantage; in this problem landscape the population does not evolve any
faster due to inherent neutrality.

There is no doubt that the presence of neutrality can and does affect
population dynamics during evolution, but it may well be that only in a certain
class of search spaces does neutrality aid evolution. The use of genetic operators
operating on several loci simultaneously, with the ability to alter the genotype
length, may render the presence of neutrality less useful than in the fixed length
and single-loci mutation genotype-phenotype mappings typically studied in
more theoretical work.
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