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Abstract- The twin fitness landscape properties of neu-
trality and ruggedness are crucial to the dynamics of evo-
lutionary optimisation. In this paper, we investigate the
interplay between these two properties in a complex evo-
lutionary robotics fitness landscape, through the intro-
duction of four robot controller architecture models; the
GasNet, uniform, dispersedand plexusmodels. We show
that in isolation, neither added neutrality or decreased
ruggedness (coupling) in the models produces increase in
speed of evolution. However, both effects in conjunction
produce a significant increase in the speed of evolution.

1 Introduction

The twin fitness landscape properties of neutrality and
ruggedness are crucial to the dynamics of evolutionary op-
timisation. However, what little research has been carried out
investigating the interaction between the two properties, has
typically been based on abstract mathematical fitness land-
scapes. In this paper, we describe a series of experiments in-
vestigating this interaction in a complex evolutionary robotics
search space. The experiments described here should be seen
as a first step towards a detailed analysis of the interplay be-
tween the two landscape properties, providing some prelimi-
nary conclusions on the nature of such interaction.

We introduce two variants on the GasNet artificial neural
network (ANN) architecture [5]. Theuniform model is de-
signed to introduce extra redundancy into the system, while
the dispersedmodel weakens the interaction between two
different inter-neuron signalling mechanisms, i.e. reduces
ruggedness in the system. In a series of evolutionary runs,
we show that both the uniform and dispersed models show no
increase in speed of evolution of good solutions when com-
pared with the original GasNet model. However, a third vari-
ant on the GasNet model, theplexusmodel, incorporating
both changes from the uniform and dispersed models, does
show significantly faster evolution.

We go on to show that both the uniform and plexus mod-
els show increased levels of local neutrality, i.e. that the frac-
tion of equal fitness mutants increases, when compared with
the GasNet and dispersed models. We further show that both
the dispersed and plexus models show decreased coupling, or
ruggedness, between the gas diffusion and electrical synapse
mechanisms, when compared with the GasNet and uniform
models.

We argue that the speed of evolution results can be ex-
plained by the interaction between the twin effects of in-

creased neutrality and decreased coupling. Neutrality is use-
ful for evolutionary exploration of the fitness landscape, with-
out loss of phenotypic fitness. However, neutrality alone is
not enough to produce an evolvable system. Similarly, weak
coupling between different components of the system, e.g.
between the gas diffusion and electrical synapse mechanisms,
allows each to be tuned more easily in isolation. However,
this reduction in system ruggedness is not enough to produce
increased speed of evolution alone. Thus we argue that it
is the increase in neutrality and decrease in ruggedness that
leads to increased evolvability.

2 Neutrality and ruggedness

To evolve successfully, an organism must satisfy the conflict-
ing pressures ofphenotypic stabilityandgenetic instability,
i.e. that the organism be robust to phenotypic change (to not
fall off the current adaptive peak), and amenable to genotypic
change (to allow movement to a new adaptive peak). Conrad
[2] identifies genetic redundancy and multiple weak interac-
tion as possible mechanisms by which these two conflicting
pressures can be satisfied.

Such loosely coupled redundant systems contain the po-
tential for genotypic change without phenotypic change; both
multiple weak interactions and redundancy allow for gradual
transformation of function through genetic variation [2]. In
such systems, phenotypic fitness is likely to be highly corre-
lated across the genotype landscape, either (or both) through
significant levels of neutrality and low levels of ruggedness.
Such systems are also robust to phenotypic change; complex
systems picked at random are more likely to be stable if the
system is characterised by either multiply connected weakly
interacting components, or sparsely connected strongly inter-
acting components [4, 8].

By contrast, strongly coupled non-redundant systems are
far less amenable to variation; change in one component is
more likely to affect the entire system, leading to phenotypic
instability. We see this effect clearly in the theoreticalNK
fitness landscapes, where a higher degree of epistatic connec-
tion between the components leads to a less correlated fit-
ness landscape [7]. In other words, even small changes in the
genotype in a strongly coupled system lead to large changes
in the phenotype. However, in tunably neutral versions of
theNK landscapes, high degrees of neutrality compensate in
some measure for the strong coupling, allowing genetic vari-
ation without massive phenotypic variation [1].

Clearly, both ruggedness and neutrality are of importance



when designing evolvable systems. However, it is unclear
to what extent the two attributes, are complementary and to
what extent they overlap. In this paper we introduce three
variants on the original GasNet model (section 3), and inves-
tigate both neutrality and ruggedness. In particular, we show
that both the model incorporating extra redundancy, and the
model incorporating weak coupling show no increase in the
speed of evolution. However, the model incorporating both
effects shows a significant speed of evolution increase.

3 GasNets

TheGasNetincorporates a mechanism based on the neuron-
modulating properties of a diffusing signalling gas into a
more standard sigmoid-unit ANN [5]. In previous work the
networks have been used in a variety of evolutionary robotics
tasks, comparing the speeds of evolution for networks with
and without the gas signalling mechanism active, showing
that GasNets are consistently faster to evolve than more stan-
dard ANNs. [5]. A number of related studies have inves-
tigated the nature of the GasNet fitness landscapes [see e.g.
13, 14], in order to elucidate the reasons for the faster evo-
lutionary search. However, in this paper, we take a different
approach, introducing three variants on the basic GasNet -
theuniform, dispersedandplexusmodels - and using them to
investigate the reasons for faster evolutionary search.

3.1 The GasNet model

The GasNet is an arbitrarily recurrent ANN augmented with
a gas concentration model, in which the instantaneous acti-
vation of a node is a function of both the inputs from con-
nected nodes and the current concentration of gas(es) at the
node. The basic network model consists of connected sig-
moid transfer function nodes overlaid with a model of gas
concentration; the gas does not alter the electrical activity in
the network directly but rather acts by changing the gain of
transfer function mapping between node input and output.

In order to incorporate the gas concentration model, the
network is placed in a 2D plane, with node positions spec-
ified genetically. Node connections are also specified ge-
netically, allowing arbitrarily recurrent network architectures.
Any node may receive external sensor input, and the four ex-
ternal output nodes are fixed as the first four nodes in the net-
work; in the experiments described here visual input is re-
ceived by the network, and the output nodes used to generate
motor commands for a robot.

The gas diffusion model is implemented through allowing
any node to emit one of two gases, which diffuse out from
the node in the network plane. Spatially, the gas concentra-
tion varies as an inverse exponential of the distance from the
emitting node with a spread governed genetically:

C(d, t) =
{

e−2d/r × T (t) d < r
0 else

(1)

whereC(d, t) is the concentration at a distanced from the
emitting node at timet, r is the genetically specified radius of

influence of the node, see figure 1. The maximum concentra-
tion at the emitting node is one, and the concentration builds
up and decays from this value throughT (t), which specifies
a linear function dependent on time of emission.

The conditions for gas emission to start are also specified
genetically; never; when node activity is high; or when gas
concentration at the node is high. The effect of gas concen-
tration at a node is to change the node transfer function in
a concentration dependent fashion. In the basic model, two
gases are used, the first of which increase the gain of the node
transfer functions, while the second similarly decreases gain
[for further details of the GasNet model see 5].

3.2 Extensions to the basic GasNet: The uniform, dis-
persed and plexus models

Philippides [9] introduces a number of variants to the original
GasNet model, based on research into the diffusion of the gas
Nitric Oxide (NO) in real brains [10]. In this paper we inves-
tigate three such variants, the uniform, dispersed and plexus
models. All three models are directly inspired by the type of
signalling seen in the cerebral cortex, where activity in a neu-
ron is translated via a plexus of nNOS-expressing fibres into
a volume signal in a different part of the network.

The three variants of the GasNet we investigate are as fol-
lows. Theuniform model simply replaces the exponentially
decaying gas concentration functionC(d, t) (equation 1) with
a constant function over the volume of effect, see figure 1:

C(d, t) =
{

0.5× T (t) d < r
0 else

(2)
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Figure 1:The spatial distributions of gas concentration for the dif-
ferent GasNet models. The solid line denotes the spatial distribution
for the GasNet and dispersed models, while the dotted line shows
the spatial distribution for the uniform and plexus models.

Thedispersedmodel uses the same exponentially decay-
ing gas concentration as the GasNet model, but allows the
centre of this gas diffusion cloud to lie anywhere within the
space, not just at the emitting node position. Note that this
model requires two extra parameters for the gas diffusion
centre(x, y) coordinates. Finally, the fullplexusmodel in-
corporates both the uniform and dispersion models; the gas
diffusion produces constant concentration within the area of
effect, with the area of effect centred anywhere in the space.



Original Uniform Dispersed Plexus

Number of runs 40 40 40 40
Mean (S.D.) 3042 (3681) 2783 (3553) 3576 (4097) 1579 (2609)
Median 1201 1016 1128 512
Best 136 90 241 101
Worst > 10000 > 10000 > 10000 > 10000

Table 1: Number of generations before consistent success is achieved, for the four models described in section 3. Only the plexus model
results were significantly faster than the original GasNet results; neither the uniform or dispersed model results showed any such difference.
NB runs not achieving consistent success by generation10000 were terminated.

3.3 Visual shape discrimination

The evolutionary task at hand is a visual shape discrimination
task; starting from an arbitrary position and orientation in a
black-walled arena, the robot must navigate under extremely
variable lighting conditions to one shape (a white triangle)
while ignoring the second shape (a white square). Both the
robot control network, an arbitrarily recurrent ANN, and the
robot sensor input morphology, i.e. the position of the input
pixels on the visual array, were under evolutionary control.
Fitness over a single trial was taken as the fraction of the start-
ing distance moved towards the triangle by the end of the trial
period, and the evaluated fitness was returned as the average
over 16 trials of the controller from different initial condi-
tions. Success in the task was taken as an evaluated fitness
of 1.0 over thirty successive generations of the evolutionary
algorithm. In the work reported here, fitness evaluations are
carried out in simulation, however evolved controllers have
been successfully tested on a real robot [5].

A distributed asynchronous updating evolutionary algo-
rithm was used, with aPopSize of 100 arranged on a10×10
grid. Parents were chosen through rank-based roulette-wheel
selection on the mating pool consisting of the8 nearest neigh-
bours to a randomly chosen grid-point. The child solution
was a mutated copy of the parent (the mutation operator ap-
plied a4% mutation probability per bit, and the same proba-
bility per genome of adding or deleting a network node. No
crossover was used.) and placed back in the mating pool us-
ing inverse rank-based roulette-wheel selection. One genera-
tion was specified asPopSize such breeding events.

4 Speed of evolution results

Table 1 shows the speed of evolution results for the four mod-
els. Forty runs were carried out with each model, with runs
being terminated once controllers were evolved that achieved
100% fitness over thirty consecutive generations.

Two main points can be made. First, the GasNet, uniform
and dispersed models are fairly similar in their speeds of evo-
lution; in fact the differences are not significant. Second, the
plexus model evolves good solutions significantly faster (T-
tests were carried out to confirm this) than all three models.

Thus neither the uniform nor the dispersed models show
any change in the speed of evolution when compared with

the original GasNet. However the combined effects of the
two models does produce faster evolution. In the remainder
of the paper we investigate the reasons for this.

5 Neutrality

5.1 Levels of neutrality

In general, neutrality in the genotype-to-phenotype mapping
is simply a consequence of the mapping being a many-to-
one function. For each distinct phenotype, there may be a
set of distinct genotypes that give rise to that phenotype. By
contrast, fitness landscapes showing no such neutrality will
have one-to-one genotype-to-phenotype mappings.

In situations where there may be more than one level of
phenotype, i.e. where the genotype-to-phenotype mapping
has one or more intermediate mapping functions, each inter-
mediate stage may be a source of neutrality. For example,
in RNA folding landscapes, genotypes are mapped to a sec-
ondary folded structure, which in turn may be allocated a fit-
ness dependent on the distance away from some target sec-
ondary structure [see e.g. 6]. Many genotypes will give rise
to the same folded structure, and many folded structures will
be equidistant from the target structure. Thus two sources, or
levels, of neutrality will be present.

In the GasNet models described in this paper, we can simi-
larly identify a number of levels of neutrality in the genotype-
to-phenotype mapping, and identify the amount of neutrality
attributable to each level. We identify the levels as follows:

Structural neutrality Many distinct genotypes will code for
the same neural network structure.

Functional neutrality Many distinct neural network struc-
tures will produce the same functional mapping from
sensory input to motor output.

Behaviourial neutrality Many distinct mappings from sen-
sory input to motor output will produce the same final
evaluated selective fitness behaviour.

However, the existence of such neutrality is not enough
in itself; the neutral genotypes must be distributed in such
a manner as to allow neutral movement through the search
space. Such neutral networks may be useful for evolutionary
search processes; neither small volumes consisting entirely
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(a) GasNet model
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(b) Uniform model
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(c) Dispersed model
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(d) Plexus model

Figure 2:Functional neutrality for the four models. All successfully evolved genotypes were exhaustively sampled using one-point mutation,
and the average number of distinct neural network structures producing identical functional mappings from sensory input to motor output
plotted against the network node property changed. See text for further details.

Original Uniform Dispersed Plexus

Number of cases 33 32 30 37
Synaptic connections (S.D.) 1.89 (0.52) 1.70 (0.57) 1.59 (0.47) 1.72 (0.41)
Diffusion connections (S.D.) 2.27 (0.93) 2.05 (0.78) 2.78 (0.75) 2.78 (0.84)
Overlapping connection coupling (S.D.)40.5% (13.2%) 36.3% (11.1%) 10.4% (7.3%) 10.8% (8.1%)

Table 2: Coupling in the original GasNet and plexus models. For each of the successfully evolved controllers, the number of electrical
synaptic connections and number of gas diffusion connections are shown (averaged per neuron). The percentage of connections which
overlap, i.e. that connect the same neurons, are also shown. See text for further details.

of neutral solutions, or neutral solutions scattered randomly
throughout the space will be useful. In this paper, we focus on
such connected neutral sets, calculating the amount of neutral
mutations around solutions.

We calculate the different sources of neutrality for a sin-
gle solution as follows. First, the structural neutrality is de-
rived analytically through consideration of the various node

parameters, e.g. over what range of each parameter is the cor-
responding network property unchanged? Second, the func-
tional neutrality is empirically derived through exhaustively
sampling all one-point mutations of the genotype. The con-
nection matrices, e.g. which nodes are connected and with
what strength, are calculated for each mutated solution and
compared with the original; these connection matrices are



different only for those networks with different input-output
functional mappings. The functional neutrality is then cal-
culated as the fraction of solutions for which the connec-
tion matrices are identical to the original, i.e. the functional
input-output mapping is identical, averaged over each node
property, less the structural neutrality calculated for that node
property in the previous step. Behaviourial neutrality is cal-
culated as the total fraction of solutions showing identical
selective fitness, less both the structural and functional neu-
trality. It should be noted that the solution neutrality calcu-
lated through these methods will not in general be identical to
the solution neutrality seen during evolutionary adaptation, as
typically the mutation operators used will not be simple one-
point mutation. However, we can use the method to compare
neutrality between the different models.

In this paper, we focus solely on the second source of neu-
trality, i.e. functional neutrality. Here we are interested only
in the fraction of distinct neural networks that give rise to
identical sensor-input to motor-output functional mappings.
Although clearly important, behaviourial neutrality is cru-
cially dependent on the details of the task at hand so results
may not be applicable to a wider range of tasks. Structural
neutrality is also not considered, as it is typically caused
through weaknesses in the representation of the neural net-
work structure, e.g. encoding binary parameters as[0, 1]
range variables (or in our case,[0, 99] range integers).

5.2 Functional neutrality of the models

In figure 2, we show the functional neutrality against node
loci number, derived over all successfully evolved controllers
under the four models described in section 3. Each node in
the network is coded for by19 or 21 parameters (the extra
two being for the gas diffusion centres in the dispersed and
plexus models).

Four main points can be made. First, the parameters3-8
are highly neutral for all four models; these relate to the way
in which electrical synaptic connections are formed. Second,
the only difference seen between the GasNet and dispersed
model lies in the neutrality in the dispersed model parame-
ters14 and15, which relate to the centres of gas diffusion
and are not present in the GasNet model. Third, the uniform
cloud model shows increased neutrality in parameters1, 2
(the(x, y) node coordinates) and13 (the radius of gas diffu-
sion effect), when compared with the GasNet model. Fourth
and finally, the plexus model shows no significant change
in neutrality when compared with the uniform model, again
apart from the gas cloud centre parameters14 and15.

We conclude that the uniform model introduces signifi-
cant sources of neutrality into existing parameters in the sys-
tem, allowing change in the node(x, y) positions and the gas
cloud radius. Similarly, the dispersed model introduces some
neutrality through the new parameters, although the neutrality
in these parameters is much greater in the full plexus model.
The extra neutrality in the plexus model is thus seen to be ex-
plained through the incorporation of both the dispersed and

uniform cloud model.

6 Coupling

As described in section 3.2, the dispersed and plexus models
allow network nodes to emit gas from anywhere in the grid
(another two parameters are required to specify this(x, y)
gas emission coordinate). This partly separates the gas diffu-
sion and the electrical synaptic activity mechanisms; synaptic
connections are formed from the current node position, while
gas diffusion connections are formed from the gas emission
position. Thus gas connections in the grid can be changed
through modifying the gas emission position, while synaptic
connections can be altered through moving the node itself.
Note that the two mechanisms are not entirely separate: both
act on the actual position of the destination nodes. It should
also be noted that this separation could be achieved in a num-
ber of different ways, however in this paper we focus solely
on the plexus model.

For a given genotype in the GasNet model, both the synap-
tic and diffusion outgoing connections are dependent on the
node position; changing these genetic parameters will poten-
tially radically alter the phenotype. For a given genotype in
the dispersed and plexus models, the two outgoing connection
processes are dependent on two different sets of parameters;
changing either of these will affect only the relevant connec-
tion mechanism. Thus we argue that the degree of coupling
between the parameters of the system will be higher for the
GasNet model than for the dispersed and plexus models.

There is no simple way of calculating the degree of cou-
pling in the four systems; in principle one can measure the
degree of ruggedness through correlation lengths or similar
methods. However, Smith et al. [13] shows that these types
of measures do not discriminate between highly heterogenous
problem spaces such as the GasNets. In this section, we intro-
duce a simple description to measure the degree of coupling
between the gas diffusion and electrical synapse mechanisms.
We calculate the two connectivity matrices for a given solu-
tion (section 5.1), and calculate the coupling as the number
of overlapping connections, i.e the number of elements which
are non-zero in both connectivity matrices.

Table 2 shows this coupling between the electrical and
gas diffusion processes for the four models. The number
of electrical synaptic connections and number of gas diffu-
sion connections (averaged per neuron), and the percentage
of overlapping connections, are shown for each of the suc-
cessfully evolved controllers, over all models. Three points
can be made. First, there are no significant differences be-
tween the numbers of electrical synaptic connections across
the four models. Second, there is some evidence that the num-
ber of gas diffusion connections is higher for the dispersed
and plexus models than for the GasNet and uniform models.
This is not discussed further in this paper, but is some in-
dication that the plexus and dispersed models are based on
more multiple interactions between nodes; further work will



investigate this effect. Third, the percentages of overlapping
connections in the GasNet and uniform controllers are signif-
icantly higher than those in the dispersed and plexus models;
this coupling between the electrical and diffusion processes
is far stronger in the GasNet and uniform models than in the
dispersed and plexus models.

However, this decoupling of processes in the dispersed and
plexus models does not lead inevitably to faster evolutionary
search, see table 1. The dispersed model shows no such in-
crease over the GasNet and uniform models. However the
plexus model shows significantly faster evolution, when com-
pared with all three other models.

7 Discussion

A number of studies have shown that the performance of evo-
lutionary optimisation processes is affected by the presence
of fitness landscape neutrality [see e.g. 1, 15, 3]. Similarly,
the effect of ruggedness on the performance of optimisation
processes is well known [see e.g. 16, 7]. Studies in theoret-
ical landscapes have explored interactions between the two
properties [1, 11, 12], however the interaction between the
processes in real fitness landscapes is not well understood.

In this paper we have introduced preliminary analysis of
the interaction between neutrality and ruggedness in a com-
plex fitness landscape. We have developed a number of evo-
lutionary robotic control architectures designed to incorpo-
rate both increased redundancy and decreased coupling. In
a series of evolutionary experiments we saw that only the
plexus model, incorporating both increased redundancy and
reduced coupling between two inter-neuron signalling mea-
sures, shows an increase in evolutionary speed. The uniform
cloud model, incorporating extra neutrality but no decoupling
of the gas and electrical processes, showed no such faster evo-
lutionary speed. Similarly the dispersed model, incorporating
decoupled gas and electrical processes and also some extra
neutrality in the new genetic parameters, showed no faster
evolutionary speed.

The experiments presented here should be seen as a pre-
liminary investigation into the interaction between neutrality
and ruggedness in complex landscapes, and are unlikely to
tell the full story. In further work we will investigate this in
more detail. In particular, how does the extra neutrality affect
the evolutionary search process, i.e. are there differences be-
tween the four models in the movement of evolutionary pop-
ulations over time?
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