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We present a general and fully dynamic neural system, which exploits in-
trinsic chaotic dynamics, for the real-time goal-directed exploration and
learning of the possible locomotion patterns of an articulated robot of
an arbitrary morphology in an unknown environment. The controller is
modeled as a network of neural oscillators that are initially coupled only
through physical embodiment, and goal-directed exploration of coordi-
nated motor patterns is achieved by chaotic search using adaptive bifurca-
tion. The phase space of the indirectly coupled neural-body-environment
system contains multiple transient or permanent self-organized dynam-
ics, each of which is a candidate for a locomotion behavior. The adaptive
bifurcation enables the system orbit to wander through various phase-
coordinated states, using its intrinsic chaotic dynamics as a driving force,
and stabilizes on to one of the states matching the given goal criteria. In
order to improve the sustainability of useful transient patterns, sensory
homeostasis has been introduced, which results in an increased diversity
of motor outputs, thus achieving multiscale exploration. A rhythmic pat-
tern discovered by this process is memorized and sustained by changing
the wiring between initially disconnected oscillators using an adaptive
synchronization method. Our results show that the novel neurorobotic
system is able to create and learn multiple locomotion behaviors for a
wide range of body configurations and physical environments and can
readapt in realtime after sustaining damage.

1 Introduction

The possibility of exploiting intrinsic chaotic dynamics has recently at-
tracted the attention of both neurobiologists interested in how animals
learn to coordinate their limbs (Mpitsos, Burton, Creech, & Soinila, 1988;
Kelso, 1995; Korn & Faure, 2003), for instance, in locomotion behaviors,
and roboticists striving to develop better, more efficient locomotion systems
for articulated autonomous robots (Kuniyoshi & Suzuki, 2004; Steingrube,
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Timme, Worgötter, & Manoonpong, 2010). Chaotic dynamics emerging
spontaneously from interactions of neural circuitry, bodies, and environ-
ments can be used to power a kind of search process as an embodied
system explores its own possible motor behaviors. However, to date, it has
not been clear how to harness chaos in a general goal-directed way such
that desired adaptive sensorimotor behaviors can be explored, captured,
and learned. We address this deficiency by presenting a general and fully
dynamic embodied neural system, which exploits chaotic search through
adaptive bifurcation, for the real-time goal-directed exploration and learn-
ing of the possible locomotion patterns of an articulated robot of an arbitrary
morphology in an unknown environment.

Properly coordinated rhythmic movements for locomotion are ubiqui-
tous in animals. Biological locomotor systems (usually involving coordi-
nated limb movements) evolved to be highly adaptable, dextrous, and en-
ergy efficient. Consequently, they are a major source of inspiration when
designing robot locomotion systems. Most biological locomotor systems
involve neural networks acting as central pattern generators (CPGs), which
are responsible for producing the basic rhythmic patterns for the oscilla-
tory movement of limbs (Cohen, Rossignol, & Grillner, 1988; Stein, Grillner,
Selverston, & Stuart, 1997). Understanding the subtleties of operation of
such networks and how to design artificial versions for robotic applications
are ongoing challenges (Ekeberg, 1993; Kimura, Akiyama, & Sakurama,
1999; Ijspeert, 2001; Ijspeert, Crespi, Ryczko, & Cabelguen, 2007).

While off-line search methods such as evolutionary algorithms or other
global optimization processes have been extensively used to determine neu-
ral parameters for CPG-based robot locomotor systems (Gallagher, Beer,
Espenschied, & Quinn, 1996; Ijspeert, 2001; Kamimura et al., 2003; Itoh,
Taki, Kato, & Itoh, 2004; Floreano, Husbands, & Nolfi, 2008), the size and
complexity of the search spaces often grow exponentially with regard to
the number of variables, making the methods computationally expensive
and time-consuming. Coupled with this, it is often very difficult to devise
evaluation methods and metrics that can adequately cover the enormous
number of unexpected situations that a robot can encounter during its life-
time, such as environmental change or body defects. This naturally led
to efforts to develop adaptive methods that can be used online on the
robot. Among these, reinforcement learning (RL) (Matsubara, Morimoto,
Nakanishi, Sato, & Doya, 2006; Nakamura, Mori, Sato, & Ishii, 2007) and fast
heuristic optimization algorithms (Sproewitz, Moeckel, Maye, & Ijspeert,
2008) have been successfully used. More systematic approaches such as
continuous self-modeling, employing a number of stochastically optimized
internal models (Bongard, Zykov, & Lipson, 2006), have also been devel-
oped. Although these are useful methods that allow more efficient online
adaptation, they are not always free of the inherent difficulties of stochastic
search (balancing exploration and exploitation, computational efficiency)
and therefore often need to incorporate a priori knowledge or make use of
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a biased learning strategy in order to simplify and speed up the learning
process.

Partly because of these issues, the exploitation of intrinsic chaotic dy-
namics has recently emerged as an attractive alternative approach to the
real-time online exploration of the space of embodied motor behaviors of a
system. A number of bio-inspired robotics experiments have demonstrated
its power in this context (Kuniyoshi & Suzuki, 2004; Pitti, Lungarella, &
Kuniyoshi, 2005; Pitti, Niiyama, & Kuniyoshi, 2010). The research presented
here significantly extends this direction by showing how to achieve an in-
tegrated system for the goal-directed exploration, capture, and learning of
motor behaviors.

1.1 Chaotic Neural Dynamics and Behavior. A key influence on the
current work is the growing body of observations of intrinsic chaotic dy-
namics in nervous systems (Guevara, Glass, Mackey, & Shrier, 1983; Rapp,
Zimmerman, Albano, Deguzman, & Greenbaun, 1985; Freeman & Viana
Di Prisco, 1986; Wright & Liley, 1996; Terman & Rubin, 2007). Some stud-
ies indicate intrinsic chaotic dynamics in animal motor behaviors at both
the neural level (Rapp et al., 1985; Terman & Rubin, 2007) and the level of
body and limb movement (Riley & Turvey, 2002). These seem particularly
prevalent during developmental and learning phases (e.g., when learning
to coordinate limbs) (Ohgi, Morita, Loo, & Mizuike, 2008). The existence of
such dynamics in both normal and pathological brain states, at both global
and microscopic scales (Wright & Liley, 1996), and in a variety of animals,
supports the idea that chaos plays a fundamental role in neural mechanisms
(Skarda & Freeman, 1987; Kuniyoshi & Sangawa, 2006).

Although the functional roles of chaotic dynamics in the nervous sys-
tem are far from understood, a number of intriguing proposals have been
put forward. Freeman and colleagues have hypothesized that chaotic back-
ground states in the rabbit olfactory system provide the system with “con-
tinued open-endedness and readiness to respond to completely novel as
well as familiar input, without the requirements for an exhaustive memory
search” (Skarda & Freeman, 1987). Kuniyoshi and Sangawa (2006) made the
important suggestion that chaotic dynamics underpin crucial periods in an-
imal development when brain-body-environment dynamics are explored
in a spontaneous way as part of the process of acquiring motor skills.

Recent robotics studies have demonstrated that chaotic neural networks
can indeed power the self-exploration of brain-body-environment dynam-
ics in an embodied system, discovering stable patterns that can be incorpo-
rated into motor behaviors (Kuniyoshi & Suzuki, 2004; Kinjo, Nabeshima,
Sangawa, & Kuniyoshi, 2008; Pitti et al., 2010).

1.2 Embodiment and Locomotion. Studying neural circuitry under-
lying the generation of rhythmic motor behavior in isolation ignores
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the considerable advantage that can be obtained from incorporating the
physical body and its environment—that is, exploiting the embodied na-
ture of such behavior (Wheeler, 2005; Pfeifer & Bongard, 2007). In robotics,
this has led to efforts to exploit ready-made functionality provided by the
physical properties of an embodied system. One such line of inquiry in-
volves using a frequency adaptive oscillator that can be tuned to the reso-
nant frequency of the mechanical system (Buchli, Righetti, & Ijspeert, 2006;
Raftery, Cusumano, & Sternad, 2008). Although this kind of adaptation ac-
counts for some of the requirements for efficient locomotion, we believe
that in general, the appropriate phase relationships between limbs should
take priority when dealing with the creation of new motor patterns. One
of the seminal works from this perspective is the exploration and acqui-
sition of motor primitives, for a simple robot, using a mechanism that is
embodied as a coupled chaotic field (Kuniyoshi & Suzuki, 2004; Pitti et
al., 2005). That work modeled an extreme version of embodied coupling
that had no electrical connection between neural units, with all neural
coupling acting indirectly through body-environment dynamics. Neural
oscillators were implemented using a simple logistic map with chaotic be-
havior, and the system dynamics rapidly developed to a stable, coherent
rhythmic motion by using mutual entrainment between the neural circuit
and the body-environment system. The process was completely determin-
istic, not making use of any random search method. More tractable systems
(Pitti et al., 2010) have shown that a simple 2D simulated biped controlled
by indirectly coupled chaotic maps can generate stable locomotion when
the coupling strength between controller and body was set in the specific
regime of phase synchronization. Phase synchronization between chaotic
controller and physical system allows the flexible self-assembly of motor
patterns and adaptive frequency matching to the resonant frequency of the
body. However, the motor patterns that emerge through phase synchro-
nization do not necessarily produce sustained locomotion behaviors unless
the coupling strengths are properly set for a given neuromechanical system.
Also, a more biologically plausible system was developed by Kuniyoshi and
Sangawa (2006) in which a realistic musculo-skeletal model was employed
with neural control circuits consisting of model CPGs. This was embedded
within a larger system involving cortical maps. The biomechanical system
was modeled as a series of redundant muscles acting on a joint, and in-
formation on the muscle combinations for any discovered coherent motor
patterns was engraved on the model cortices as a sensorimotor representa-
tion. Later work (Kinjo et al., 2008) demonstrated the learning and replay
of a motor pattern by adding a simple perceptron with a backpropagation
learning on top of the previously learned sensorimotor maps. They showed
that the representative power of the self-organized sensorimotor maps can
greatly simplify the nontrivial sensorimotor learning problem into a simple
mapping between the sensor and motor maps, but the learning pattern was
manually fed to the system during learning; hence, it cannot be regarded
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as an example of an autonomous and goal-directed exploration-learning
scheme.

Until now, concrete general methodologies for applying such techniques
to the automatic generation of desired motor patterns for autonomous
robots have remained elusive. In this letter, we build on the essential con-
cepts of prior work, extending and generalizing it as we attempt to de-
velop a generally applicable methodology based around self-organization
through chaotic dynamics for neural-body-environment coupled systems.
We present a study of goal directed online exploration of rhythmic mo-
tor patterns in an oscillator system coupled through physical embodiment,
specifically generating forward locomotion behaviors without prior knowl-
edge of the body morphology or its physical environment. This is explored
in the context of simulated limbed robots. In an important departure from
the previous work outlined above, our recent study (Shim & Husbands,
2010) introduced an approach to explore and drive system dynamics to-
ward a desired state by employing the concept of chaotic mode transition
with external feedback (Davis, 1990), which exploits the intrinsic chaoticity
of a system orbit as a perturbation force to explore multiple synchronized
states of the system, and stabilizes the orbit by decreasing its chaoticity
according to a feedback signal that evaluates the behavior. This enabled
the system to perform a deterministic search guided by a global feedback
signal from the physical system, which facilitates an active exploration to-
ward a desired behavior. This preliminary work showed how to guide the
system orbit to selectively settle in one of the stable patterns, but the system
was restricted in that it was unable to capture and learn high-performing
transient (unstable) patterns. The research described in this letter enhances
our previous study by addressing those deficiencies and provides a coher-
ent integration of these procedures into a dynamical systems framework,
building a complete self-driven exploration-capture-learning system.

2 Chaoticity as a Perturbation Strength

Conventional optimization strategies generally use (external) stochastic
perturbations on system parameters for search space exploration. How-
ever, a few studies have addressed the effectiveness of a chaotic system
replacing a stochastic source (Parker & Chua, 1989; Ott, Sauer, & Yorke,
1994), and have found that a deterministic chaotic generator outperforms a
stochastic random explorer (Zhang & Shao, 2001; Morihiro, Isokawa, Mat-
sui, & Nishimura, 2005). In these cases, the chaotic dynamics acts as an
external module generating perturbations that cause system parameters to
wander in parameter space. However, the adaptive chaotic search method
presented here, using bifurcation to chaos, can directly drive the phase
orbit of a bodily coupled system (where the neural elements are coupled
indirectly through physical embodiment) for exploration because of the en-
dogenous existence of chaotic dynamics in the system itself. The intrinsic
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dynamics of the system naturally power the search process without the
need for external sources of noise.

The general idea of applying a chaotic search method that uses adaptive
parametric feedback control had been previously presented in the field of
optical sciences (Davis, 1990; Aida & Davis, 1994) and for memory search,
where memory is stored as cyclical pattern sequences in a neural network
(Nara & Davis, 1992). It has been argued that this method should be gener-
ally applicable when the target device is capable of supporting a variety of
stable modes, between which there exist chaotic transitions, and which in-
teracts with its environment such that there exists a feedback signal evaluat-
ing whether the mode is suitable or not. Chaotic transitions allow the system
to try each of the modes sequentially, and the mode evaluated as suitable is
selected and stabilized by changing a device chaoticity parameter to take it
into a multistable regime. This can be thought of as a controlled version of
the concept of chaotic itinerancy (Kaneko, 2003), where the system wanders
from one quasi-attractor to another, getting entrained in each of them for
a while. An indirectly coupled neural-body-environmental system, such as
the one used in this letter, has the required characteristics of such a device,
including multiple coordinated oscillation modes. It is known that a prop-
erly designed oscillator network can have multiple synchronized states that
exhibit stable oscillations for both discrete (Feudel, Grebogi, & Yorke, 1996)
and continuous (Vadivasova, Sosnovtseva, Balanov, & Astakhov, 1999) sys-
tems, and the structure of emergent behavior in these systems often reflects
the spatial distribution of coupling strengths (Kaneko, 1994). Accordingly,
a network of oscillators coupled through physical embodiment forms mul-
tiple synchronized states that reflect the body schema and its interactions
with the environment, and each of them represents a potential candidate
for meaningful locomotion behavior.

A conceptual description of the chaotic search process is illustrated in
Figure 1. The goal of the system can be regarded as finding and becoming
entrained in the basin of a particular attractor that has high performance
(denoted by C) while escaping from the low-performing attractors (A and
B) regardless of the initial point in the state-space. The idea is to open a
new pathway that connects those isolated basins through the use of an
additional dimension afforded by changing the system dynamics through
tuning the chaoticity according to the evaluation signal. The orbit will visit
and evaluate each of the attractors (A, B, C) systematically, yet chaotically,
by adaptively varying the bifurcation parameter of the system according
to a feedback signal until it reaches the basin of the desired attractor. The
process can be interpreted as a continuous and deterministic version of trial-
and-error search that exploits the intrinsic chaotic behavior of the system.

3 The Integrated Exploration-Learning System

The architecture of the neural part of the system developed in this letter
is based on Kuniyoshi and Sangawa (2006) model, which is inspired by
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Figure 1: (A) A conceptual illustration of the state-space of a neural-body-
environment system coupled through physical embodiment, which consists of
three basins of attraction (A,B,C) with different performances. (B) An explo-
ration process to find the desired attractor, C, by varying the complexity of the
state-space landscape. Lump spaces and narrow passages in the landscapes of
higher complexities represent quasi-attractors and itinerant pathways, respec-
tively.

the organization of spinobulbar units in the vertebrate spinal cord and the
medulla oblongata (the lower part of the brainstem, which mainly deals
with autonomic, rhythmic, involuntary functions). But we use a more com-
pact and modular configuration for each joint of the limbed robot and sig-
nificantly extend the model to allow goal-directed exploration and learning.
It is intended to be applicable to a wide range of robotic systems. The ar-
chitecture consists of a number of identical control modules connected to
each of the body parts. Each neuromuscular system for a joint that receives
afferent sensory input and gives motor output to an antagonistic muscle
pair can be encapsulated as a single motor unit, and the whole system
consists of N identical motor units where N is the number of degrees of
freedom of the robot (see Figure 2). Therefore, the system consists of uncou-
pled identical weakly forced limit cycle oscillators and a series of first-order
leaky integrator equations. Prior work has demonstrated that uncoupled
weakly forced oscillator systems can operate in stable modes (Kuniyoshi
& Sangawa, 2006), and since our extensions to this work mainly involve
elements based on stable first-order dynamics, it was possible to develop
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Figure 2: (A) An overview of the integrated exploration and learning scheme.
Each degree of freedom in the robot’s muscle joint system has a dedicated motor
unit. Connections between the oscillator neurons are initially inactive, but they
are weakly coupled through the body and environment. An evaluation feedback
signal controls a global bifurcation parameter that alters the chaoticity of the
CPGs. As the system stabilizes on a high-performing pattern, the bifurcation
parameter reduces to zero and the connections between the oscillators become
active, their weights being set by a learning procedure that is smoothly linked to
the chaotic exploration process. The learning process further stabilizes, captures,
and memorizes the motor patterns. (B) A motor unit for a single degree of
freedom. A unit consists of two initially functionally disconnected oscillator
(CPG) neurons, which receive integrated information of other oscillators in
the system from the sensor (S), via body-environment interactions, and give a
control signal to the muscle (M). SAM performs homeostatic adjustment of raw
sensor signals by referring the antagonistic oscillator output, thus enhancing the
synchronicity between the neural and physical system (see the text for further
details). The numbers in parentheses refer to the corresponding equations used
for each subcomponent.

a system that can be stably operated with an arbitrary body-environment
configuration.

3.1 The CPG Model. Each motor unit has a pair of CPG neurons mod-
eled by Bonhoeffer-van der Pol (BVP) equations (Asai, Nomura, Abe, &
Sato, 2003), which drive the corresponding joint. When interacting with the
body and environment, the motor unit can adjust its chaoticity by vary-
ing the difference between control parameters of the oscillators in the CPG
pair. These differences change identically in all motor units as a function
of the evaluation signal, acting as the global bifurcation parameter for the
chaotic exploration with adaptive feedback. The BVP model allows the
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phase relationship between CPG activity and body motion to be flexibly
locked according to a loop delay (Ohgane, Ei, & Mahara, 2009), which is a
beneficial feature for covering a range of sensorimotor delays originating
from different body-environment configurations. All CPGs in the system
are fully interconnected in the electrical sense, but they are functionally dis-
connected during exploration (by having zero connection weights). When
the system dynamics are stabilized by discovering a useful pattern, the
connection weights become nonzero, according to a learning procedure
described later, and the fully interconnected network is activated.

In order to make them more amenable to this application, the center of
rotation of each BVP oscillator was translated by (0.2138, −0.7202) to locate
it at the origin. The center of rotation was determined by averaging each
pair of variables of a limit cycle for a sufficient duration. Including the
sensory input and the coupling from other oscillators, a pair of oscillators
in a motor unit m is expressed as follows:

τ ẋl = c

(
xl − x3

l

3
− yl + z1

)
+ δ(Hl (sl ) − xl ) + Fx

l , (3.1)

τ ẏl =
1
c
(xl − byl + a) + εHl (sl ) + Fy

l , (3.2)

τ ẋr = c
(

xr − x3
r

3
− yr + z2

)
+ δ(Hr(sr) − xr) + Fx

r , (3.3)

τ ẏr = 1
c
(xr − byr + a) + εHr(sr) + Fy

r . (3.4)

τ is a time constant, and a = 0.7, b = 0.675, c = 1.75 are the fixed param-
eters of the oscillator (Asai, Nomura, Abe et al., 2003). Each consecutive
pair in the set of 2N oscillators is sequentially allocated to each motor unit
as l = 2m − 1 and r = 2m (we use expressions such as mxl and mxr to refer
to the mth motor unit where it avoids confusion; see Figure 5). δ = 0.013
and ε = 0.022 are the coupling strengths for afferent input H(s), which
is a function of raw sensor output s, processed by the sensor adaptation
module (SAM) described in the next section. F j

i is a coupling term between
oscillators and is subject to the learning process. z1 and z2 are the control
parameters for adjusting the chaoticity of the motor unit. Their difference
(μ = z2 − z1) changes identically in all motor units and acts as the global bi-
furcation parameter. In the stable regime where the two control parameters
are symmetric, it had been found (Asai, Nomura, Sato et al., 2003) that the
two coupled BVP equations exhibit bistable phase locking of their oscilla-
tions in a parameter range of 0.6 < z1 = z2 < 0.88. From the observation of a
number of experiments on the oscillator dynamics, we chose to fix z2 = 0.73
and to vary z1 in order to ensure a higher probability of multistability of
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the system in its stable regime. Note that we need to preserve the topology
of indirect couplings between oscillators close to that of Asai’s basic form
(couplings from excitatory nodes to all nodes; Asai, Nomura, Abe et al.,
2003), but slight variations in the sensor input term need be made for some
sensor designs (refer to section A.2.1 in the appendix for examples).

3.2 Homeostatic Sensory Regulation. The sensor adaptation mod-
ule (SAM) performs homeostatic adaptation (Turrigiano & Nelson, 2004;
Turrigiano, 2008) for sensor input by calibrating the raw sensor signal us-
ing a linear transformation, which continuously adjusts the amplitude and
offset of the periodic sensor signal in order to closely match its waveform to
that of an antagonistic oscillator output. The sensory signal (in most cases,
mechanosensory information from haptic sensors or muscle afferents) may
vary according to the choice of sensors and the different body-environment
interaction conditions. If the incoming signal is too large, the chaoticity of
the system will be lost; if too small, the neural signals will be uncorrelated.
The regulation of sensory activation ensures that the oscillator pair in a mo-
tor unit maintains a certain level of information exchange close to that of a
weakly coupled oscillator pair so that the network dynamics are regulated
within an appropriate range to generate flexible yet correlated activities.
This also ensures the chaoticity of a motor unit is controlled in a system-
atic and collective way by the feedback signal regardless of the physical
properties of the robotic system and the type of sensors.

The sensor processing function H(s, t) is the implementation of a SAM.
Given raw sensor signal s and antagonistic oscillator output n, the adapta-
tion function H(s, t) is

H(s, t)= (s − s)eA(t) + (s + B(t)), (3.5)

τh
dA(t)

dt
=

√
(n − n)2 −

√
(H(s, t) − H(s, t))2, (3.6)

τh
dB(t)

dt
= n − H(s, t), (3.7)

where x represents the continuous running average of x as calculated from
τhdx/dt = −x + x (this meaning for x is used throughout the letter). The
raw sensor signal s is linearly transformed by a multiplicative factor eA(t)

and an additive factor B(t). The multiplicative function A(t) is updated by
comparing the difference of the root mean square of the temporal average
of the squares of the antagonistic neural output n and the transformed in-
coming signal H(s, t), which is analogous to the signal energy that reflects
the strength or amplitude. B(t) is used as part of the scheme to remove
the offset bias: each signal is subtracted by its average offset (n and H(s, t))
before calculating the energy difference. B(t) is updated by the offset differ-
ence between two signals. The timescale of adaptation should be set longer
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than that of the oscillator, and we used τh as the timescale of performance
evaluation (τE) throughout this work, as described in the next section.

3.3 Evaluation and Feedback Bifurcation. During exploration, the bi-
furcation parameter continuously drives the system between stable and
chaotic regimes as a function of the evaluation signal. The evaluation signal
is determined by a ratio of the actual performance (e.g., forward speed)
to the desired performance. If the performance reaches the desired perfor-
mance, the bifurcation parameter decreases to zero, and the system stabi-
lizes. Since the robotic system is arbitrary, we do not have prior knowledge
of what level of performance it can achieve. Drawing on concepts from goal-
setting strategies (Barlas & Yasarcan, 2006) and the Rescorla-Wagner model
of conditioning (Rescorla & Wagner, 1972), the dynamics of the desired
performance are modeled as a temporal average of the actual performance,
such that the expectation of a desired goal is influenced by the history of
the actual performance experienced.

In the experiments described next, the locomotion performance E is
measured by the forward speed of the robot. Since the system has no prior
knowledge of the body morphology of the robot, it does not have direct
access to the direction of movement or information on body orientation.
In order to facilitate steady movement in one direction without gyrating
in a small radius, the center of mass velocity of a robot was continuously
averaged over a certain time window, and its magnitude was used as the
performance of the system. The performance signal E at any time instance
can be calculated by applying a leaky integrator equation to the velocity
vector as follows:

E(t) = ‖v̄‖, τE
dv̄
dt

= −v̄ + v. (3.8)

The timescale of integration was set as τE = 5T where T (≈8τ in our BVP
model) is the period of an oscillator. The time course of the bifurcation
parameter μ (=z2 − z1) is given by

τμ

dμ

dt
= −μ + μcG(E/Ed), G(x) = 1/(1 + e16x−8). (3.9)

τμ determines the timescale of the change of μ and is normally set faster
(τμ < T) than the oscillation period (T) of the controller. If its value is too
high, stabilization of the system dynamics is significantly delayed, which
results in a partition mismatch (Aida & Davis, 1994). If it is too low, μ fluc-
tuates too much according to the undulation of the robot movement, which
acts as a disturbance for stabilization, or the system can become locked in a
ring of undesirable patterns in a regime of intermediate chaoticity. τμ = T
was used throughout this work. G(x) implements a decreasing sigmoid



2196 Y. Shim and P. Husbands

function that maps monotonically from (0, 1) to (1, 0). 16x − 8 shapes the
sigmoid function so that the boundary value at x = 1 and its derivative
([ dG(x)

dx ]x=1) become almost 0 so as to make the function smoothly vanish
to zero. We automatically set G(x) = 0 when x ≥ 1, since the bifurcation
parameter μ should be zero in order to make the system completely stable.
The dynamics of the desired locomotion performance, Ed, which slowly
decays toward the current performance, is described by

τd
dEd

dt
= −Ed + E, (3.10)

where τd is set sufficiently large so that Ed does not follow E too fast (τd = 25T
in this work). Since Ed continuously decays toward E, the changing speed of
the control parameter μ depends on both τμ and τd. Since G(x) decreases to
zero asymptotically, μ was set to zero when it fell below a small threshold
(≈0.0001), which also allows some margin for the system to stay in the
stable regime (μ = 0) despite the small oscillation of E/Ed near unity. μ

varies in the range [0, μc] where μc is the maximum level of chaoticity of
the system. From the analysis of a single BVP oscillator, it is well known that
it exhibits Hopf bifurcation with an increase of the parameter z (Nomura,
Sato, Doi, Segundo, & Stiber, 1993). An analytically estimated critical value
of z1 for equations 3.1 and 3.2, without their coupling and input terms, is
z1 = zc = 0.38247, which indicates that the maximum possible value of μc
is μc(max) = 0.73 − zc = 0.34753. However, because the situation is different
from the dynamics of a single oscillator, experiments on the robotic systems
presented here revealed that the actual behavioral criticality of μc varies
slightly (e.g., μc(max) ≈ 0.38 for a swimmer, μc(max) ≈ 0.35 for a quadruped)
among different body and environmental settings. One way to determine
the system-specific criticality of the control parameter is to simply observe
the dynamics of the system with fixed μ = μc. If the system is beyond its
critical state, one of the oscillators in the motor unit will generate near-zero
amplitude by crossing a Hopf bifurcation point. Normally we chose μc to
be slightly less than its maximum observed value, taking into consideration
the saturating region of the sigmoidal function G(x), so that it does not stay
near the critical value for an unnecessarily long time when the oscillation
amplitude becomes small.

Although this evaluation strategy does not explicitly impose a bias for
continuously striving for higher-performing behaviors (because of the dy-
namics of Ed), an implicit bias toward better-performing behaviors is par-
tially imposed on the system by the way in which the bifurcation parameter
μ behaves as a function of E/Ed (see equation 3.9). Once the system has been
stabilized to some behavior, the speed of system destabilization, for a given
amount of behavior degeneration, depends on the performance level of the
initially stabilized behavior. In the quasi-periodic regime that occupies a
large portion of the entire system dynamics (μ in the lower saturation part
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near zero and middle part of the sigmoid function, G(x)) the phase relation-
ships of ongoing patterns shift slowly, while fast and catastrophic change
occurs in the chaotic regime where μ is located around the upper saturation
part (near μc) of G(x). When the actual performance E of a stabilized behav-
ior decreases by a given amount, a low-performing behavior is destroyed
more quickly because Ed will be relatively small, while a high-performing
behavior is smoothly degenerated, giving it much more of a chance of being
sustained or reentrained to itself. In this way, in practice, the system fully
stabilizes onto behaviors that exhibit stable relatively high performance.

3.4 Learning of Emergent Patterns. As the exploration process stabi-
lizes the system by discovering a high-performing locomotor behavior, the
synaptic connections between oscillators are dynamically wired using an
adaptive synchronization learning scheme. We adapted a learning model
developed by Doya and Yoshizawa (1992), that decomposes the problem of
weight learning between oscillators into a collection of cellular-wise pro-
cesses by adjusting the input connection weights (also called the phase-lock
matrix) of individual neurons to maintain a given phase relationship be-
tween the cellular activity and incoming signals. This is available only when
the phase relationship between the neuronal activity and input signals is
presented in advance, which provides a suitable interface for our explo-
ration system. The coupling strengths are continually adjusted to follow
the emergent patterns in parallel with the exploration process until the
system is stabilized by discovering a desired pattern. When a switching
parameter (η in equation 3.14, which is determined by the global bifurca-
tion parameter, μ) is triggered around the onset of system stabilization, the
decrease of the learning rate of the phase-lock matrix and the activation of
oscillator couplings simultaneously take effect. The learning rules are set
up such that during the exploration phase, the couplings effectively remain
functionally inactive. As dictated by equations 3.13 and 3.14, the coupling
gain g is turned on when the bifurcation parameter μ goes to zero, which
means learning is activated when the system is stabilized to some discov-
ered pattern. Otherwise (μ �= 0) the system is in an exploration phase and g
is set to zero, which turns off the learning. Since the coupling is not strong
and is activated gradually, highly unstable patterns that show short-lived
high performance are naturally filtered by the instability of the pattern it-
self during the activation period (the system destabilizes and returns to
the exploration phase). Thus, exploration and learning are merged as a
continuous dynamical process such that the desired locomotion pattern is
spontaneously explored, discovered, and memorized in a coherent way.

The oscillator learning process proceeds as follows. In order to improve
the readability of the following equations, let us denote the states x and y
(in equation 3.1 and equation 3.2) of oscillator i as x1

i and x2
i . Considering

M (=2N, where N is the number of degrees of freedom of the robot) fully
connected oscillators, the coupling term F for state j (= 1, 2) of oscillator i
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(x j
i ) can be written as

F j
i = g

M∑
k=1

2∑
l=1

pjl
ikxl

k i �= k, (3.11)

dpjl
ik

dt
= γ

{(
x j

i − x j
i
) −

M∑
r=1

2∑
s=1

pjs
ir
(
xs

r − xs
r

)}(
xl

k − xl
k

)
, (3.12)

where g is a small feedback gain term and gpjl
ik represents the adaptive

connection strength coupling from xl
k to x j

i , which forms a covariance-like
learning rule. x is the continuous running average of x calculated with
time constant τE . The full derivation of the learning rule can be found
in section A.1. During the exploration process, the feedback gain g and
the weight learning rate γ are adaptively adjusted according to the global
control parameter μ so that the couplings between oscillators are gradually
activated around the onset of system stabilization. g and γ are controlled
according to

g= α(1 − η), γ = βη, (3.13)

τη

dη

dt
= −η + D(μ − ε), (3.14)

where α and β are constants and D(x) is the heaviside function with very
small ε = 0.0001. As the incoming weights are learned in order to match the
sum of afferent signals close to the oscillator’s signal, it is sufficient to use
α = √

δ2 + ε2 (input weights in equations 3.1 and 3.2), which has similar in-
tensity to the sensory input. β = 1/τE was set to have the same timescale as
the evaluator. η is the smooth activation signal that controls both the learn-
ing rate of connection weights and feedback gain according to the value
of μ. This signal gradually activates the functionally connected network
rather than suddenly switching it on, thus preventing the destruction of
stable patterns while allowing unstable ones to be filtered out.

4 Experiments with Simulated Robots

Detailed experiments with the framework described above used the two
simulated robots shown in Figure 3: a four-armed aquatic swimmer and
a quadruped.1 Initial experiments used the swimmer, which has four fins,

1The flash streaming (FLV) as well as downloadable AVI files of the movies in this work
are available online at http://www.informatics.sussex.ac.uk/research/groups/ccnr/
movies/yssmovie.html. Videos 1–10 show the behaviors of 4-fin Swimmer and
quadruped, and videos 11–15 show other kind of robots that use controllers identical
to the quadruped’s except the number of motor units (video 14).
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Figure 3: Robotic simulation models of a 4-fin swimmer (4-DOFs, 2D move-
ment) and a quadruped (8-DOFs, 3D movement).

each at the end of a separate arm, placed in a simulated hydrodynamic
planar (2D) environment. Since the information transfer between CPGs is
mediated by sensory information, the information structure provided by
physical embodiment is considerably influenced by the design and choice of
sensory systems. While it is possible to use composite sensory information
from multiple sensors (e.g., a combination of the input from fin sensors and
muscle receptors), for simplicity we use only a single fin angle sensor for a
motor unit. This requires a slightly modified sensor input term in the CPG
equations in order to make the pair of CPGs in a motor unit deal with a single
sensor (see equations A.11 and A.12). The functional structure of coupling
between motor units through embodiment is formed by the transmission of
hydraulic reaction forces from one arm to the others as the body articulates.
The robot’s radially symmetric shape in a 2D underwater environment is
interesting because it makes generating continuous asymmetric propulsion
forces challenging: forward locomotion is nontrivial. The robot will not be
able to move in a single direction unless the movements of all four arms are
successfully coordinated with appropriate phase differences.

4.1 Exploration of Stable Patterns Without Oscillator Learning. First,
we fixed the bifurcation control parameter to the stable regime (μ = 0, no
chaotic search) and ran the 4-fin swimmer simulation to see what kinds
of behaviors emerged from various initial states. More than 1000 simula-
tion runs were tested in order to observe and categorize the behaviors.
Basic movement behaviors of the swimmer were categorized into motion
in four directions (along the body axes dir1, dir2, dir3, and dir4, as shown
in Figure 3), which met expectations given the symmetric shape of the
swimmer.

Taking the directional symmetry into account, we observed six different
behaviors and classified them according to the locomotion performance,
as shown in Table 1; their phase relationships are shown in Figure 4. The
forward locomotion involves straight movements (ST), moving in circles
(STC), and peg-leg (PL) motions. ST locomotion is a frog-like swimming ac-
tion that has the highest performance (see Figure 8), and STC motion moves
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Table 1: Categorized Emergent Behaviors Existing in the Stable Regime for the
4-Fin Swimmer.

Pattern Number of Variations Average E

1. Straight (ST) 4 (each dir) 0.7
2. Circular (STC) 8 (4×(CW,CCW)) 0.6
3. Rotate (R) 2 (CW,CCW) 0.06
4. Peg-leg (PL) 4 (each arm) 0.04
5. Vibration (VB) 2 (dir 1-3 and 2-4) 0.03
6. Bound antiphase (BA) 1 0.0
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Figure 4: Behaviors of the 4-fin swimmer. Time (oscillator cycle) versus instanta-
neous phase differences (πrad) for each behavior is depicted (calculated using
Hilbert-Huang method; Huang et al., 1998): (A) ST dir2, (B) STC dir2 CCW,
(C) PL arm2, (D) Rotate CW (period was doubled for clarity), (E) VB dir 1-3,
and (F) BA. STC motions are similar to ST with slight variations of both phase
and arm amplitude. The phase relationship of VB is qualitatively the same as
BA with a different arm combination. The interlimb coordination can fluctuate
(D) or even show continuous shift (C) when the corresponding arm moves
irregularly with small amplitude; however, their qualitative behaviors are main-
tained by the body-environmental coupling.

in a circle due to a slight asymmetry between contralateral arms caused by
passive fin dynamics and can be either clockwise or counterclockwise. PL
motions involve one of the arms moving with a small amplitude while
the other three arms all use the same large amplitude. The phase rela-
tionship of the PL pattern is essentially similar to that of bound antiphase,
except that the amplitude of one arm is smaller than the others and its phase
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continuously shifts (with a small irregularity) compared to the others, which
achieves a slow forward locomotion by asymmetric propulsion forces.

Also nonlocomotion movements were observed such as bound antiphase
(BA), vibration (VB), and rotation (R). BA motion results in no net movement
of the robot torso due to antiphase locking between adjacent pairs of arms.
VB arm movements are contralaterally antiphase and ipsilaterally in-phase
based on the vibrating axis. The movements of arms in the rotation motion
are out of phase with each other and fluctuate irregularly. The fluctuation
and shifting of phase relationships suggest that an emergent behavior does
not necessarily exhibit concrete phase locking between subsystems in the
neuro-body-environment setting.

If a robot behavior was observed as being permanently sustaining, it
was identified as an individual behavior. The number of completely stable
behaviors in the absence of oscillator learning was determined to be six,
without counting their variations. The shape of the 4-fin swimmer robot is
radially symmetric, so different synchronized pairs of joints (variations) can
exist for a single behavior. For example, the straight swimming behavior has
four different combinations of synchronized joint pairs, all of which show
the same frog-like swimming behavior. As shown in Table 1, there are 21
different arm coordinations when including all variations. Careful viewing
reveals that the circling movement (STC) can show slightly different circling
radii resulting from small differences in passive fin tilting, but these are too
small to be considered separate distinguishable behaviors. In order to keep
the analysis clearer, these kinds of variations are not counted as different
behaviors.

Note that the PL patterns appear as a stable pattern only when sensory
homeostasis is present. Sensor adaptation makes the lame arm synchronize
with the corresponding motor unit with a small amplitude, resulting in
the partial loss of the phase correlation with the other arms as it transfers
the inertial or hydrodynamic forces less strongly to them through physical
embodiment. Again, the motion of the other three arms is coordinated in
such a way that the net forces are transferred at a reduced rate to the lame
arm. Therefore, the homeostatic regulation of sensory signal results in an
opposing effect, which leads to the diversification of limb motion, that is,
the multiple combinations of the amplitudes and offsets of limb motions
can be explored and stabilized by sending the standardized sensory input
signals to the neural controller (see Figure 9). In turn, different limb-wise
oscillations may cause different interlimb coordination as well.

The stable dynamics of the system begin to fluctuate as μ increases, ex-
hibiting a series of transient dynamics from quasiperiodicity to chaos (see
Figure 5). In the higher chaotic regime, complex transitory dynamics simi-
lar to chaotic itinerancy occurs, which drives the system to briskly explore
the phase space. To see the effect of chaotic search, the distribution of vis-
its to each of the behaviors identified in Table 1 was investigated under
the presence and absence of chaotic search. One hundred simulations were
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Figure 5: Time versus sampled trajectory of the neural outputs of the 4-fin swim-
mer with different μ fixed at (A) 0.2, (B) 0.32, (C) 0.336, and (D) 0.35. The agonist
signals of three motor units (2xl ,

3xl ,
4xl) are plotted when 1xl crosses the singu-

lar axis (vertical axis located at the unstable equilibrium point) of the periodic
orbit. The destabilized system with higher μ exhibits fully asynchronous (D) or
intinerant (C) behaviors. Even synchronous dynamics (A, B) often possess small
irregularities according to the initial condition and the physical environment.

performed for each case, and the visiting counts of six major behaviors
were recorded by observation. Figure 6 shows a clear difference between
the visiting ratios in the two cases, suggesting the effectiveness of chaotic
search, which tended to settle on high-performing dynamically stable lo-
comotion. During the search process, all variables and control parameters
vary continuously as parts of the neuro-body-environment system, and the
time evolution plots of phase differences, performances, and bifurcation
parameter (see Figure 7A and 7B) show that the stabilization and desta-
bilization of the system occur repeatedly in a trial-and-error manner until
it settles on an effective form of locomotion. The sensor parameters (see
Figures 7C and 7D) also change continuously and settle to different values
through adaptation.

Due to the symmetric shape of the 4-fin swimmer, the BA motion has in-
herent dynamic stability with large basins in the phase space, so the system
was often entrained in the BA pattern and sometimes took a relatively long
time to reach one of the desired states. This deficiency, the so-called deep-path
(Shim & Husbands, 2010), occurs when an orbit that tries to escape from BA
by system destabilization is reinjected to BA, so the actual performance E
stays low and the desired performance Ed decays close to E. This makes the
time spent in the chaotic regime shorter, resulting in reduced exploration
and increased time to escape. The escape orbit is often stabilized to PL pat-
terns, which indicates that these patterns are located in the vicinity of BA
in the phase space. However, the use of an adaptive Ed (see equation 3.10),
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Figure 6: Visiting ratio of each pattern. Appearance of behaviors with (A) no
control (μ = 0) and (B) chaotic search. Every run was started from the random
initial values of neural variables ([−1, 1]). The ST (number 1) and STC (number
2) movements are depicted as a stacked bar. Although PL movements have
relatively low performances, they were frequently searched because of their
high stability. The average performance of rotation (R) movement is slightly
higher than that of PL, but because of the large fluctuations in body position
without overall forward movement, it could not be stabilized by the search
process.
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Figure 7: A typical example of exploration and stabilization from the swimmer
experiment without learning (settles on to ST-dir2 locomotion). (A) Time versus
instantaneous phase differences between arms 1-2, 1-3, and 1-4. (B) Performance,
desired performance, and control parameter (E, Ed, and μ in equations 3.8 to
3.10). (C, D) Sensory adaptation parameters A(t) and B(t) (equation 3.5) for fins
1: black, 2: dark gray, 3: gray, and 4: light gray.

sensory adaptation and oscillator learning have all helped to significantly
alleviate this issue. Figure 10 shows an example of the exploration time
taken for stabilization of the systems with and without adaptation. The
fixed sensor gain of the nonadaptive system was chosen to produce a simi-
lar behavior category to the adaptive case. While the adaptive system was
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Figure 8: (Top) Snapshots of the straight swimming (ST dir3) behavior of the
4-fin swimmer. Images were taken every 1/10 gait cycle. The tip trajectories
of the fore (fin 3, 4: black) and rear (fin 1, 2: gray) fins are shown. (Bottom)
(A) Joint angles and (B) fin bending angles of the behavior. Each segment along
the vertical axis indicates the range [−1, 1] rad.
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Figure 9: An example of the effect of sensory homeostasis. The behaviors of PL
arm1 of the swimmer and the quadruped walking are depicted. From the top,
each graph shows arm and leg angles (θ ), reference neural output (n), calibrated
sensor input (H(s)), raw sensor signal (s), and the adaptation variables (A(t)
and B(t)). Since the swimmer uses a single sensor, only the behaviors of the
agonist side (related to left CPGs) are shown, as the motions of the antagonist
side are the same with different signs except for A(s).

stabilized within 1000 cycles in general, a number of runs of the nonadaptive
system showed it could take up to 10 times as long to stabilize compared to
the adaptive system. Also the nonadaptive system exhibited bad-lock (Shim
& Husbands, 2010) onto nonlocomotion patterns (rotation and vibration)



Chaotic Exploration and Learning of Locomotion Behaviors 2205

Figure 10: Final behaviors and their exploration time (oscillation cycles) until
stabilization with (left) and without (right) sensory adaptation. For each case,
100 simulations were run, and each behavior was ordered by the time taken to
stabilize. The raw sensor value for the system without adaptation used a fixed
sensor function (see equation 3.5) of H(s) = 7.4s.

Figure 11: Exploration and capture of transient locomotor behavior in
damaged-fin swimmer by oscillator learning. The oscillator wiring is triggered
(η in equation 3.13, 1: off, 0: on) at each stabilizing trial and attempts to sustain
the performance of the discovered pattern. The sensor parameters A(t) and B(t)
cooperate with the exploration learning for a given physical embodiment (see
the text).

where the bifurcation parameter μ does not reach zero but oscillates near
zero being phase-locked with other system variables.

4.2 Stabilizing Transient Patterns by Oscillator Learning. Often there
are high-performing locomotion patterns that are not completely stable
and appear for only a while during the exploration process. These transient
target behaviors can be captured and memorized by the oscillator learning
process. We tested this using a “damaged” version of the swimmer robot
by reducing the length of one of its fins (damaged fin) or removing one of
its arms (three-armed), such that there are few or no stable patterns in the
stable regime but there exist a series of useful transient patterns.

Figure 11 shows the exploration and learning of the robot with a dam-
aged fin, where the length of the fin on arm 4 was reduced by 90%. It had
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Figure 12: Alternating behavior of the 3-arm swimmer.

only one stable pattern whose phase relationship is the same as that of the
BA pattern in the undamaged robot, which has almost zero performance.
With learning, it captured one of the high-performing transient patterns
after a few trials. The approximate direction of locomotion is toward dir-3.
Figures 11C and 11D show that the sensor gain (A(t)) of the damaged
fin (fin 4) was increased to amplify its signal, and the fact that fin 1 has the
smallest gain tells us that arm 1 is the main source of propulsion. The salient
deviation of the offset (B(t)) of the fin 1 sensor (opposite side of fins 2 and
3) indicates that the discovered transient pattern involves the oscillation
of fin 1 in a tilted position, granted by its mechanical compliance; conse-
quently it compensated the asymmetric hydrodynamic forces and achieved
forward locomotion. The homeostatic sensory regulation participates in the
exploration process as the slow variables diversify the course of transient
patterns during search and slows them down at the onset of discovery,
which is beneficial to the real-time pattern capture by oscillator learning.
While the case of the swimmer robot has shown a relatively limited variety
of patterns due to its strong, embodied coupling resulting from the densely
structured physical environment it inhabits (the robot is always surrounded
by liquid and hence is continually subjected to significant hydrodynamic
forces), we will see later that the effect of sensory regulation on terrestrial
movements becomes more prominent. Figure 12 shows a particular case of
an alternative three-armed robot (formed by removing arm 4) where two
different locomotion patterns are periodically exchanged while not losing
the overall stability of the whole behavior. The robot alternates its moving
direction between dir-3 and dir-4 by exchanging two unstable undulating
motions. The periodicity of this conjoined behavior also exhibits a small
degree of irregular fluctuation as in the case of loosely coordinated behav-
iors previously shown in Figure 4. However, being captured by oscillator
coupling, it is sustained by global coordination between subsystems that
include adaptive sensor dynamics.
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Figure 13: Real-time recovery after a radical change to the body (damage).
(A) Instantaneous phase differences. (B) Performance variables and control pa-
rameters. Dashed lines and arrows indicate the time of damage, when the length
of fin 4 is decreased to 1/10 of its original length. The sensor gain of (damaged)
fin 4 (A(t) ≈ 5.0) in panel C was truncated for a better view of the other gain
plots. (E, F) The joint angles and the fin angles, respectively, where the un-
damaged motion (gray) and the readapted motion (black) are superposed. The
fiducial point for the superposed plots was set to the starting point of arm angle
1 in panel E.

Since the oscillator learning process is automatically regulated by a con-
trol parameter (η), it is possible to operate the exploration-learning system
continually without reset. Figure 13 shows a typical successful example
of the real-time recovery of locomotion behavior after body damage of an
unknown variety, that is, with no a priori knowledge. During an initially
learned stable behavior (similar to STC-dir3-CCW), the same damage as
in Figure 11 was sustained. The performance of the robot immediately
dropped below Ed, and the system entered into the search phase. After a
few hundred cycles, the system found a new locomotion behavior for the
changed body (undulating movement similar to Figure 11). The superposed
graphs of two behaviors (see Figures 13E and 13F) show a slight frequency
increase in arm movements after recovery due to the change of mechanical
impedance of the robot.

4.3 Quadruped Locomotion. We demonstrate the generality of the ap-
proach by also applying it to a quadruped robot in a 3D terrestrial environ-
ment. The stretching force (see equation A.13) experienced by a torsional
muscle was used as the sensory signal and fed to the CPG in the relevant
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Figure 14: An example of a quadruped gait captured by the exploration-
learning process. Snapshots were taken every 1/10 gait cycle. (A, B) The joint
angles of limbs. (C) The horizontal speeds of each foot (the tips of limbs 5–8) in
the direction of locomotion. (D) The height of each foot from the ground. The
two rear feet (V7, V8, H7, H8) show stick-and-slip movements on the ground un-
der Coulomb friction. The range of each plot is as follows; J1–J8: [−1.0, 1.0]rad;
V5–V8: [0.0, 2.0]m/s; H5–H8: [0.0, 0.08]m.

motor unit. Under conditions where static stability against gravitational
force is guaranteed in both the 2D swimmer and 3D quadruped, the walk-
ing machine has fewer behavioral constraints for producing forward loco-
motion since the resistance force is not always present in the 3D terrestrial
environment (e.g., there is no friction on a leg as it moves through the air
during a swing phase). The neural-body-environmental phase space of the
quadruped can be envisaged as an undulating landscape of rolling hills,
while the 2D swimmer case has a few deep basins of attraction. While this
increased the number of candidate patterns for forward locomotion in the
quadruped, there existed latent instabilities such as slipping due to dynamic
friction or the spontaneous occurrence of sharp-amplitude, high-frequency
perturbation stemming from the ground contact, all of which caused a slow
degeneration of the ongoing locomotor pattern. In practice, the movement
patterns of the quadruped observed in the stable regime of the oscillator
system exhibited no ultimately permanently sustained behavior (also true
in tests on other walking robots). Interestingly, locomotor patterns similar
to the quadruped walking gait frequently emerged during exploration (see
Figure 14). Other kinds of as-it-could-be gait patterns and their variations
that exploit given active and passive dynamics were also observed, which
are difficult to categorize qualitatively.
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The degeneracy of locomotor behavior could be greatly improved by
using homeostatic sensory adaptation and then completely stabilized by
oscillator learning. Figures 15A and 15B show the system behaviors for
quadrupeds with and without sensor adaptation. All experiments were
started from the same initial condition. In Figure 15A, the sensor adapta-
tion was turned off when the system was stabilized to the first discovered
pattern. The performance of the emergent pattern in the adaptive system
(see Figure 15B) degenerates much more slowly than in the nonadaptive
case. Sensor adaptation prevented abrupt changes in phase relationships by
buffering sudden changes of incoming sensor signals, so the initial move-
ment pattern slowly changed, giving it a greater probability of being main-
tained. The patterns could be completely stabilized by introducing oscilla-
tor learning (see Figure 15C). However, if oscillator learning was presented
without sensory adaptation (see Figure 15D), the pattern could not be sus-
tained completely because the oscillator coupling was not strong enough
to maintain the coordinated pattern against the degeneracy. As a result, the
role of homeostatic sensory adaptation becomes more prominent in the case
of terrestrial behaviors. The experiments with the 2D swimmer have shown
little variance of sensor parameters after convergence, and pattern degen-
eracy was hardly observed, which indicates that the transient patterns of
the swimmer are strongly attracted to a small number of stable patterns.
The adaptation of the sensor parameters of the quadruped yielded more
diverse values, where the offset parameter (B(t)) of lower leg muscles (leg
5–8) typically showed notable deviation under the effect of constant body
weight. In a few cases, the speed of degeneracy under the control of the
oscillators after adaptation is so slow that the locomotor behavior, which
appears stable, is eventually destroyed after a very long period of simula-
tion, which triggers a period of readaptation. This can also appear in the
form of a long-term behavioral periodicity (see Figure 16).

5 Summary and Discussion

We have presented an integrated system that can explore and learn the
emergent behaviors of a neuro-body-environment system coupled through
physical embodiment by applying a novel chaotic search method. The
whole system is treated as a single high-dimensional dynamical system
using intrinsic chaotic dynamics as a driving force for the exploration of
its own emergent patterns. The search process is completely deterministic
and is able to selectively entrain the system orbit to one of the patterns
by imposing goal directedness toward a desired behavior. Adaptive cali-
bration of incoming sensor signals was established by using homeostatic
sensory regulation. By adjusting the waveforms of input signals to be close
to those of the neural activities, the synchronicity between the neural and
physical system was enhanced, and the neural system was able to cope with
an arbitrary robotic system. The regulation in the input system resulted in
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Figure 16: Long-term periodicity of quadruped behavior observed in a small
number of cases. The coordinated pattern (straight walking) slowly shifts over a
period of hundreds of cycles, followed by a short catastrophic transition (circling
motion by asymmetric gait) and then reentrained to the same walking pattern.

the diversification of output behaviors in which the same neurosensory
coordination could be achieved by different limb movements, accomplish-
ing multiscale exploration. The discovered rhythmic pattern is memorized
and sustained by wiring initially disconnected oscillators using an adap-
tive synchronization method. The oscillator learning process was naturally
merged with the exploration system by using the emergent pattern as a
supervising signal and could capture both stable and transient locomotor
patterns in real time.

The overall process from the perspective of creating a new behavior can
be briefly sketched as follows. The mutual entrainment between the neural
and physical systems initially creates a phase space that contains several
stable and transient patterns. If the current entrained state is not satisfactory,
the system bifurcates to a chaotic state in order to escape from that state
and restabilizes when a desired pattern appears. However, the phase space
of the restabilized system differs from the previous one because some of
the system parameters (sensor parameters) have also been changed by the
chaotic drive. If we define the onset of stabilization (at the time μ becomes
0) as the time of returning, whenever the state orbit returns to the target
space, it never experiences exactly the same phase space as before. This pro-
cess is what we call multiscale exploration, and its eventual behavior after
the onset of stabilization varies over different physical embodiments. The
final dynamics of sensor adaptation after returning involves each param-
eter being locked around a particular value (potentially different for each
parameter) with small oscillations. This diversity of parameter convergence
can be regarded as the neutral stability of the system since different mo-
tor movements can cause the same sensory input. For the case of the 2D
swimmer, which has a small number of strong basins of attraction, the
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sensor parameters tend to converge to one of the previous distributions,
although their precise values may differ. The neutrality in the convergence
of sensor parameters has a wider range in the case of the quadruped; hence
more diverse stabilized behaviors are exhibited. Even in the case where
the sensor parameters eventually converge to the same set of distributions,
the intermediate trajectories before convergence can take various routes,
which can be captured by oscillator learning, resulting in the creation of a
new behavior. Therefore, this process differs from a simple action selection
mechanism where predetermined stable patterns are selected by a chaotic
jump. Rather, it creates various streams of transient patterns by driving
both the state orbit and the system parameters using chaotic dynamics.

Although our system has demonstrated a good degree of generality and
an ability to automatically adapt to unknown bodies and environments,
further analysis is necessary in order to determine the optimum values of
fixed parameters used in the search process. For example, the timescales of
slow dynamics such as evaluation (τE), goal seeking (τd), sensor adaptation
(τh), and feedback bifurcation (τμ) affect the search dynamics. Preliminary
results of investigating the effect of different timescales revealed that the
ratio between the timescales for evaluation, goal seeking, and feedback bi-
furcation determines the balance between the memorizing and forgetting
of patterns during the search process (Aida & Davis, 1994), implying there
might be an optimal ratio that allows the system to stay in the chaotic
regime for an optimal duration (just enough to be uncorrelated with the
previously visited pattern), enabling fast search with a very small proba-
bility of being trapped in a bad state for a long time. The timescale of the
sensor adaptation can influence the landscape of phase space as well as the
neutrality of convergence. A test using the 2D swimmer showed that when
τh was decreased by 1/2, a new stable pattern appeared where the two
arms moved with large amplitudes, whereas the movements of the other
two were small and irregular. However, too fast a timescale caused large
fluctuations in parameters, which disturbed stabilization or diminished the
diversity of behaviors synchronized with the fast state dynamics. Another
factor that influences the system is the amount of bandwidth of the infor-
mation flow between neural elements mediated by physical embodiment,
which is determined by the design of body-environment interactions. In the
case of the 4-fin swimmer presented here, the functional coupling strength
between motor units varies with body mass. Increased body mass will re-
sult in an increased moment of inertia, which causes less transmission of
the hydraulic force from one leg to the others, and vice versa. A similar
effect will be caused by decreasing the density of the surrounding fluid or
by increasing fin stiffness.

As Kuniyoshi and Sangawa (2006) have stated, completely decoupled
CPGs are an extreme model, which might deviate from biological reality.
However, some biological studies point out the evidence for functional
decoupling of the neural system during certain phases or behaviors. It
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has been hypothesized that decoupling of locomotor CPGs (as in our sys-
tem) serves as a potential mechanism for the evolution of novel behaviors
(Dubbeldam, 2001). Motion analysis of Siren lacertina, an eel-like amphibian
(Azizi & Horton, 2004) has found strong evidence that the axial and appen-
dicular CPGs are decoupled during aquatic walking (a pattern somewhere
between aquatic and terrestrial locomotion), which supports the hypothesis
that the decoupling of CPGs has led to the evolution of this novel behavior.
In a broader perspective, Rosslenbroich (2009) pointed out that the loco-
motor neural processes of more evolved vertebrates are uncoupled from
one another so that these parts can act in more differentiated and partly
independent ways, which may contribute to the increase in organismic
autonomy necessary for evolutionary innovation.

These emergent patterns may be refined and selected at the supraspinal
level by reward-based reinforcement, which is thought to be one of the
primary functions of the basal ganglia (BG) (Redgrave, Prescott, & Gurney,
1999; Schultz, 2006; Chakravarthy, Joseph, & Bapi, 2010). Recent model-
ing studies on BG (Sridharan, Prashanth, & Chakravarthy, 2006; Magdoom
et al., 2011) hypothesize that the indirect striato-pallidal pathway through
the subthalamic nucleus subserves exploratory behavior for goal-directed
learning, gated by the dopamine signal from the substantia nigra which
serves as the global learning signal for reward prediction. We hypothe-
size that goal-directed chaotic exploration may possibly take a role in such
mechanisms in connection with self-organized behaviors. In this context, it
might be possible to use our system to draw some implications about opti-
mal parameters in relation to metalearning and neuromodulation centered
around the BG (Doya, 2002).

Recent work has demonstrated the efficacy of morphological change
within the context of locomotion behaviors created through an evolution-
ary search process (Bongard, 2011). An interesting area of future research
will be to investigate whether the advantages of growth and development
demonstrated in that work carry over to our method.

The system has also been successfully tested on other kinds of robots
using identical neural controllers with the quadruped, further demonstrat-
ing its generality (see the movies presented in the URL in footnote 1).
Although the final movement patterns produced by our work are never
poor, they are not always perfectly optimized. Future work will explore the
use of slightly more complex evaluation signals in this context. Also, we
intend to incorporate adaptation to external perturbations, such as deal-
ing with nonstationary environments. This might be achieved by using
another adaptive system on top of the learned locomotion controller, or it
may well be possible to develop such behavior within a slightly extended
version of the current system. More intelligent and complex locomotion
behavior could be achieved by using conventional learning methods or
fuzzy control in conjunction with the concepts encapsulated in our system.
The novel neuro-robotic system presented in the letter has been shown to
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be general and effective. The seamless interaction between the exploration
and learning processes results in a system that can be thought of as con-
tinually self-monitoring in order to maintain an appropriate level of motor
function. As well as being an effective means of developing robotic con-
trollers, the method has more general implications for truly autonomous
artificial systems, which must maintain their integrity on several levels,
including behavioral. The work demonstrates the possibility of the spon-
taneous emergence of meaningful behaviors in a continuous dynamical
system framework, an approach that deviates from conventional learning
algorithms making use of repeated trials.

Appendix

A.1 Oscillator Learning. Let us consider M oscillators that are fully
connected to each other. We denote the state j of the oscillator i as xj

i and
write a compact expression for equations 3.1 and 3.2 with the coupling term
F,

τ
dx j

i

dt
= f j(xi, t) + F j

i , j = 1, 2, (A.1)

where xi = (x1
i , x2

i )
T is the state vector. The sensory input term was regarded

as part of the oscillator dynamics to promote sensory influence in the global
coordination of the learned oscillator network. Assuming that the oscillators
produce sinusoidal waveforms, the phase-locked solution of the state vector
of oscillator i and those of the other oscillators can be expressed as a linear
relationship,

xi =
M∑

k=1

Pikxk, i�=k, (A.2)

where Pik is the 2×2 phase-lock matrix for the oscillators i and k. Suppose we
already have a certain phase relationship between xi and other oscillators
during the exploration process; then we can drive xi in order to satisfy the
equality in equation A.2 by using a simple error feedback to the oscillator
using the gradient of an objective function Ei such that

Ei =
1
2

∥∥∥∥∥xi −
M∑

k=1

Pikxk

∥∥∥∥∥
2

= 1
2

2∑
j=1

{
x j

i −
M∑

k=1

2∑
l=1

pjl
ikxl

k

}2

, (A.3)

F j
i = −g

∂Ei

∂x j
i

= g

(
M∑

k=1

2∑
l=1

pjl
ikxl

k − x j
i

)
. (A.4)
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pjl
ik represents the (j, l)th element of the matrix, and g is a feedback gain,

which should be set small enough so that the ongoing oscillation is not
distorted. Thus, we can rewrite equation A.1 by neglecting the small decay
term gx j

i in equation A.4 as

τ
dx j

i

dt
= f j(xi, t) + g

M∑
k=1

2∑
l=1

pjl
ikxl

k i�=k. (A.5)

We can see that the feedback term represents the coupling term from other
oscillators in that gpjl

ik is the coupling connection strength from xl
k to x j

i .
The coupling matrix Pik can be obtained using the same gradient descent
learning with regard to pjl

ik. In order to eliminate any bias effect, the deviation
of signal from its temporal average (τE

dx̄
dt = −x̄ + x) was used for learning,

dpjl
ik

dt
= −γ

∂Ei

∂ pjl
ik

= γ

{(
x j

i − x j
i
) −

M∑
r=1

2∑
s=1

pjs
ir
(
xs

r − xs
r

)}(
xl

k − xl
k

)
, (A.6)

where γ is the adaptive learning rate.

A.2 Robot Simulation. The robot simulations were implemented using
open dynamics engine (Smith, 1998). The CPG and other differential equa-
tions were integrated using the Runge-Kutta (4th order) method with a step
size of 0.0025 sec (the ODE simulation used the same step size). All code
was written in C++.

A torsional muscle is activated by the α motoneuron (see Figure 2) and
produces forces that cause movements of the body. We employed a simple
yet biologically relevant actuation model proposed by Ekeberg (1993) and
Wadden and Ekeberg (1998), where the motoneuron output linearly con-
trols a muscle spring constant. The torque exerted on a joint by a pair of
symmetric muscles is

T = α(σl − σr) − β(σl + σr + γ )θ − δθ̇ , (A.7)

where σl and σr are the output signals from the two motoneurons and θ

is the joint angle. α is the muscle activation gain, β is the stiffness gain, γ

is the tonic stiffness, and δ is the damping coefficient. Although they can
be chosen arbitrarily from a wide range of values, we set those parameters
for the muscles at rest to behave close to a critically damped system (see
the values in Table 2). The above arrangement enables the neural signal not
only to control the muscle torque but also to control the muscle tone.

Each motoneuronal output σ is contributed to by CPG output (x) and
a simplified muscle stretch reflex (sm) according to the following canonical
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Table 2: Robot Simulation Parameters.

4-Fin Swimmer Quadruped

Torso dimension (m) 0.2×0.2×0.2 Torso dimension (m) R: 0.05, L:0.9
Arm Dimension (m) 0.075×0.075×0.15 Leg dimension (m) R: 0.05, L:0.3
Torso weight (Kg) 1.6 Torso weight (Kg) 7.6
Arm weight (Kg) 0.34 (×4) Leg weight (Kg) 1.44 (×8)
Joint range (rad) ±0.25π Joint range (rad) Upper: ±0.15π

Fin dimension (m) 0.2×0.2 Lower: ±0.1π

Fin weight (Kg) 0.375 Friction coefficient 1.0
Fin stiffness (Nm) 0.1 Muscle parameters
Fin damping (Nms) 0.045 α (Nm) 7.935
Fluid density (Kg/m3) 1000.0 β (Nm) 1.684
Muscle parameters γ (Nm) 20.0

α (Nm) 1.076 δ (Nms) 1.156
β (Nm) 0.108
γ (Nm) 20.0
δ (Nms) 0.152

formulas based on the literature (Prochazka, 1999; Yakovenko, Gritsenko,
& Prochazka, 2004):

σl,r = tanh(x ∓ kmsm), (A.8)

sm = θ/� + R(θ̇/�), (A.9)

R(v) = sgn(v)
√

|v|. (A.10)

km = 0.1 is a constant, and � is a denominator that normalizes the angle and
the angular velocity of torsional muscle by the unit of its resting angle, and
it is set to the maximum available joint angle (� = 2α

βγ
) by assuming that the

angle of the torsional muscle is stretched twice as much as its resting angle
when the joint is at its neutral position. Although several types of propri-
oceptive feedback mechanisms, including groups Ia, Ib, II, and cutaneous
afferents, operate on the spinal reflex system and their collective interac-
tion accounts for the regulation of ongoing locomotor activities (Grillner &
Wallen, 1985; Hiebert & Pearson, 1999; Pearson, Ekeberg, & Büschges, 2006;
Rossignol, Dubuc, & Gossard, 2006), it would be sufficient to support the
mechanical stability of muscles using a minimal model for a basic reflex
loop since the group Ia pathway is the most sensitive of all. From the view-
point of the global system, even the muscular-motoneuronal reflex loop can
be broadly considered as part of the intact anatomical properties that may
vary across the different robotic designs, which should be covered by the
exploration process.
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A.2.1 4-Fin Swimmer. The swimmer was constructed using a 3D rigid
body simulator, but it was constrained to move only on the x-y plane, so
that it effectively undergoes 2D dynamics. Each fin of the 2D swimmer was
modeled as a nonlinear damped torsional spring, which is subject to sim-
ulated hydrodynamics (Shim & Kim, 2006), and its bending angle (φ) was
fed to the corresponding motor unit. The fin angle implements the stretch
receptor at each side of the fin, so the afferent inputs s in equations 3.1 to 3.4
were defined as sl = φ and sr = −φ. By assuming that a fin sensor reflects
the output difference of the oscillator pair in the corresponding motor unit
(i.e., sl,r = f (xr,l − xl,r)), we use the following slightly reformulated CPG
equations for the 4-fin swimmer.

τ ẋl,r = c

(
xl,r − x3

l,r

3
− yl,r + z1,2

)
+ δHl,r(sl,r) + Fx

l,r, (A.11)

τ ẏl,r = 1
c
(xl,r − byl,r + a) + ε(Hl,r(sl,r) + xl,r) + Fy

l,r. (A.12)

Thus, the reference neural signal for sensory adaptation in equation 3.6
should also be changed to nl = −nr = xr − xl . The time constant and the
maximum bifurcation parameter used were τ = 0.8 and μc = 0.35. All other
parameters are as defined in equations 3.1 to 3.4.

A.2.2 Quadruped. The quadruped body was configured as bilaterally
symmetric, and the Coulomb friction model with a coefficient of 1.0 was
used. It has 8 motor units (16 oscillators), which is as many as the number of
degrees of freedom. The sprawl posture of the legs and the proper setting of
joint ranges ensure that the robot will not overturn during exploration. The
CPG equations described in equations 3.1 to 3.4 are used unaltered for the
quadruped. Because there are two separate sensor signals from each muscle,
in this case the sensor design matches the forms of the CPG equations.
τ = 0.4 and μc = 0.32 were used for the controller. The stretching force
(pulling torque) that a muscle experiences (the collective effect not only
of the antagonistic muscle but also the whole-body motion) was chosen
as the appropriate sensory signal, which contains well-blended neural-
body-environmental information. At any given time instance, if a torsional
muscle is stretched by φ from its resting angle, the pulling torque that the
muscle receives can be expressed using the muscle activation level (σ , which
linearly controls the muscle spring constant) and the stretched angle. This
relationship can be written in a processed form using the joint angle θ as

sl,r = (σl,r + 1)

(
1 ∓ θ

�

)
− 2. (A.13)
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The equation was centered around zero to have a range [−2, 2] and fed
to the relevant SAM. Neurobiological studies on the spinal or decerebrate
cat (Conway, Hultborn, & Kiehn, 1987; Pearson, Ramirez, & Jiang, 1992;
Pearson & Collins, 1993; Pearson, 2008) suggest that a major component of
sensory signals from the ankle extensor muscle receptors, which influence
the central rhythm-generating network, is related to the force in the muscles,
which primarily arises from the Golgi tendon organs (group Ib afferent),
while the group Ia afferent from muscle spindles has a lesser effect.

A.3 Simulation Parameters. The detailed parameters for robots and
physical simulation are described in Table 2.
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Pearson, K. G., Ekeberg, O., & Büschges, A. (2006). Assessing sensory function in
locomotor systems using neuro-mechanical simulations. Trends in Neurosciences,
29(11), 625–631.

Pearson, K. G., Ramirez, J. M., & Jiang, W. (1992). Entrainment of the locomotor
rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Experi-
mental Brain Research, 90, 557–566.

Pfeifer, R., & Bongard, J. (2007). How the body shapes the way we think: A new view of
intelligence. Cambridge, MA: Bradford Books.

Pitti, A., Lungarella, M., & Kuniyoshi, Y. (2005). Quantification of emergent behaviors
induced by feedback resonance of chaos. Advances in Natural Computation, 15(3),
199–213.

Pitti, A., Niiyama, R., & Kuniyoshi, Y. (2010). Creating and modulating rhythms by
controlling the physics of the body. Autonomous Robots, 28(3), 317–329.

Prochazka, A. (1999). Quantifying proprioception. Progress in Brain Research, 123,
133–142.

Raftery, A., Cusumano, J., & Sternad, D. (2008). Chaotic frequency scaling in a
coupled oscillator model for free rhythmic actions. Neural Computation, 20(1),
205–226.

Rapp, P., Zimmerman, I., Albano, A., Deguzman, G., & Greenbaun, N. (1985). Dy-
namics of spontaneous neural activity in the simian motor cortex: The dimension
of chaotic neurons. Physics Letters A, 110(6), 335–338.

Redgrave, P., Prescott, T., & Gurney, K. N. (1999). The basal ganglia: A vertebrate
solution to the selection problem? Neuroscience, 89, 1009–1023.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Varia-
tions in the effectiveness of reinforcement and nonreinforcement. In A. H. Black &
W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–69).
New York: Appleton-Century-Crofts.

Riley, M., & Turvey, M. (2002). Variability and determinism in motor behaviour.
Journal of Motor Behavior, 34(2), 99–125.

Rossignol, S., Dubuc, R., & Gossard, J. P. (2006). Dynamic sensorimotor interactions
in locomotion. Physiological Review, 86, 89–154.

Rosslenbroich, B. (2009). The theory of increasing autonomy in evolution: A proposal
for understanding macroevolutionary innovations. Biology and Philosophy, 24(5),
623–644.

Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual
Review of Physiology, 57, 87–115.

Shim, Y. S., & Husbands, P. (2010). Chaotic search of emergent locomotion patterns
for a bodily coupled robotic system. In Proceedings of 12th International Confer-
ence on the Synthesis and Simulation of Living Systems (ALIFE XII) (pp. 757–764).
Cambridge, MA: MIT Press.

Shim, Y. S., & Kim, C. H. (2006). Evolving physically simulated flying creatures for
efficient cruising. Artificial Life, 12(4), 561–591.



2222 Y. Shim and P. Husbands

Skarda, C., & Freeman, W. (1987). How brains make chaos in order to make sense of
the world. Behavioral and Brain Sciences, 10, 161–195.

Smith, R. (1998). Open dynamics engine (ODE). Available online at http://ode.org/.
Sproewitz, A., Moeckel, R., Maye, J., & Ijspeert, A. J. (2008). Learning to move in mod-

ular robots using central pattern generators and online optimization. International
Journal of Robotics Research, 27(3), 423–443.

Sridharan, D., Prashanth, P. S., & Chakravarthy, V. S. (2006). The role of the basal
ganglia in exploration in a neural model based on reinforcement learning. Inter-
national Journal of Neural Systems, 16, 111–124.

Stein, P. S. G., Grillner, S., Selverston, A., & Stuart, D. G. (Eds.). (1997). Neurons,
networks and motor behavior. Cambridge, MA: MIT Press.

Steingrube, S., Timme, M., Worgötter, F., & Manoonpong, P. (2010). Self-organized
adaptation of a simple neural circuit enables complex robot behaviour. Nature
Physics, 6, 224–230.

Terman, D., & Rubin, J. (2007). Neuronal dynamics and the basal ganglia. SIAM News,
4(2). Available online at http://siam.tekdevelopment.com/old–issues/2007/
march–2007/.

Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic scaling of excitatory
synapses. Cell, 135, 422–435.

Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing
nervous system. Nature Reviews Neuroscience, 5, 97–107.

Vadivasova, T. E., Sosnovtseva, O. V., Balanov, A. G., & Astakhov, V. V. (1999). Phase
multistability of synchronous chaotic oscillations. Discrete Dynamics in Nature and
Society, 4, 231–243.

Wadden, T., & Ekeberg, O. (1998). A neuro-mechanical model of legged locomotion:
Single leg control. Biological Cybernetics, 79, 161–173.

Wheeler, M. (2005). Reconstructing the cognitive world: The next step. Cambridge, MA:
MIT Press.

Wright, J., & Liley, D. (1996). Dynamics of the brain at global and microscopic scales:
Neural networks and the EEG. Behavioral and Brain Sciences, 19, 285–320.

Yakovenko, S., Gritsenko, V., & Prochazka, A. (2004). Contribution of stretch reflexes
to locomotor control: A modeling study. Biological Cybernetics, 90(2), 146–155.

Zhang, C. K., & Shao, H. H. (2001). A hybrid strategy: Real-coded genetic algorithm
and chaotic search. In Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics 4 (pp. 2361–2364). Piscataway, NJ: IEEE.

Received July 26, 2011; accepted January 14, 2012.

http://ode.org
http://siam.tekdevelopment.com/old-issues/2007/march-2007/

