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Abstract

We study a novel deterministic online process for the ex-
ploration and capture of possible locomotion patterns of a
simulated articulated robot with an arbitrary morphology in
an unknown physical environment. The robot controller is
modelled as a network of neural oscillators which are cou-
pled indirectly through physical embodiment. Goal directed
exploration of coordinated motor patterns is achieved by a
chaotic search method using adaptive bifurcation. The phase
space of the indirectly coupled neural-body-environment sys-
tem contains multiple phase-locked states each of which is a
candidate for driving efficient locomotion. By varying the
chaoticity of the system as a function of evaluation signal,
it is able to chaotically wander through various phase-locked
states and stabilise on one of the states matching the given
criteria. The nature of the weak coupling through physical
embodiment ensures that only physically stable locomotion
patterns emerge as coherent states, which implies the emer-
gent pattern is well suited for open-loop control with little or
no sensory inputs.

Introduction

Properly coordinated rhythmic motor behaviours are ubiqui-
tous in animals. From insects to humans, locomotive ability
is one of the most fundamental survival mechanisms to have
evolved. As has been increasingly pointed out over the past
few years (Pfeifer and lida, 2004), studying neural circuitry
underlying the generation of rhythmic motor behaviour in
isolation ignores the considerable advantage that can be ob-
tained from incorporating the the physical body and its en-
vironment - an approach that can significantly reduce the
amount of information needed to develop successful motor
patterns.

This naturally led to efforts to exploit ready-made func-
tionality provided by the given physical properties of an em-
bodied system for the automatic generation of motor move-
ment. One such line of enquiry involves using frequency
adaptive oscillators that can be entrained to the resonant fre-
quency of the mechanical system (Buchli et al., 2006), in-
cluding the use of chaotic frequency scaling (Raftery et al.,
2008). Although frequency adaptation to a given physical
body accounts for a major part of the properties of loco-
motion, we believe that, in general, the appropriate phase

relationship between each limb should take priority among
other aspects when dealing with the creation of new mo-
tor patterns. One of the seminal works from this perspec-
tive is the exploration and acquisition of motor primitives,
for a simple robot, using a mechanism which is embodied
as a coupled chaotic field (Kuniyoshi and Suzuki, 2004).
Those researchers modelled an extreme version of embodied
coupling that had no electrical connection between neural
units at all: they were only coupled indirectly through body-
environment interactions. The neural oscillators were imple-
mented using a simple logistic map with chaotic behaviour,
and the system dynamics rapidly developed to a stable, co-
herent rhythmic motion by using mutual entrainment be-
tween the neural circuit and the body-environment interac-
tions. The process was completely deterministic. Later work
(Kuniyoshi and Sangawa, 2006) dealt with a more biologi-
cally plausible system in which a realistic musculo-skeletal
model was employed and the neural control circuit consisted
of a model CPG. While these previous studies have devel-
oped detailed biological models that have significant impli-
cations for the understanding of motor development, con-
crete general methodologies for applying such techniques to
the automatic generation of desired motor patterns for au-
tonomous robots remains a challenge.

In this paper we build on the prior work outlined above,
extending and generalising it as we attempt to develop a gen-
erally applicable methodology for neural-body-environment
coupled systems, based around self-organisation through
chaotic dynamics. We present a study of goal directed online
exploration of rhythmic motor patterns in a oscillator system
coupled through physical embodiment, specifically generat-
ing forward locomotion behaviours without prior knowledge
of the body morphology or its physical environment. This is
explored in the context of a simulated limbed robot. In an
important departure from the previous work outlined above,
in order to explore and drive system dynamics toward a de-
sired state, we employ the concept of Chaotic Mode Tran-
sition with external feedback (Davis, 1990), which exploits
the intrinsic chaoticity of a system orbit as a perturbation
force to explore multiple synchronised states of the system,
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Figure 1: (A) A conceptual illustration of the state space of a
neuro-body-environment system coupled through physical embod-
iment, which consists of three basins of attraction (A,B,C) with dif-
ferent performances. (B) An exploration process to find the desired
attractor, C, by varying the complexity of the state space landscape.
Lump spaces and narrow passages in the landscapes of higher com-
plexities represent quasi-attractors and itinerant pathways respec-
tively.

and stabilises the orbit by decreasing its chaoticity accord-
ing to a feedback signal that evaluates the behaviour. This
enables the system to perform a deterministic search guided
by a global feedback signal from the physical system, which
facilitates an active exploration toward a desired behaviour.
This research is intended to open up new directions in the
exploitation of chaos as a self-organising principle in em-
bodied autonomous systems, as well as to potentially shed
light on its role in biological systems.

Chaoticity as Perturbation Strength

Conventional optimisation strategies generally use stochas-
tic perturbations on system parameters for search space ex-
ploration. However, a few studies address the effectiveness
of chaotic dynamics as behaving like a stochastic source (Ott
etal., 1994), and have found that a deterministic chaotic gen-
erator outperforms a stochastic random explorer (Morihiro
et al., 2008). In these cases, the chaotic dynamics acts as
an external module generating perturbations that cause sys-
tem parameters to wander in parameter space. However, as
we shall see, adaptive chaotic search methods using bifurca-
tion to chaos can directly drive the phase orbit of a bodily
coupled system for exploration because of the endogenous
existence of chaotic dynamics in the system itself.

The general idea of applying a chaotic search method
which uses adaptive parametric feedback control had been
previously presented in the field of optical sciences (Aida
and Davis, 1994) and for memory search (Nara and Davis,
1992). It has been argued that this method should be gener-
ally applicable when the target device is capable of support-
ing a variety of stable modes, with chaotic transitions exist-

ing between them, which interact with their environment and
give a feedback signal evaluating whether the mode is suit-
able or not. Chaotic transitions allow the system to try each
of the modes sequentially, and the mode which is evaluated
as suitable is selected and stabilised by changing a device
parameter to take it into a multistable regime. An indirectly
coupled neuro-body-environmental system, such as the one
used in this paper, has the required characteristics of such a
device, including multiple coordinated oscillation modes. It
is known that a properly designed coupled oscillator system
can have multiple synchronised states which exhibit stable
oscillations (Feudel and Grebogi, 1997), and the structure of
emergent behaviour in these systems often reflect the spatial
distribution of coupling strengths (Kaneko, 1994). Accord-
ingly, a network of oscillators coupled through physical em-
bodiment forms multiple synchronised states which reflects
the body schema and its interaction with the environment.

A conceptual description of the chaotic search process is
briefly illustrated in Fig. 1. The goal of the system can be
regarded as finding and becoming entrained in the basin of a
particular attractor which has high performance (denoted by
C) while escaping from the low performing attractors (A and
B) regardless of the initial point in the state space. The idea
is to ‘open’ a new pathway which connects those isolated
basins through use of an additional dimension afforded by
changing the system dynamics through tuning the chaotic-
ity according to the evaluation signal. The orbit will visit
and evaluate each of the attractor (A,B,C) systematically yet
chaotically by adaptively varying the bifurcation parame-
ter of the system according to the feedback signal until it
reaches the basin of the desired attractor. The process can
be interpreted as a deterministic version of trial-and-error
search which exploits the chaotic behaviour of system. For
the first time, this study attempts to implement and integrate
these concepts into an autonomous neuro-body-environment
system, making use of a continuous-time dynamical system
framework.

Method

The architecture of the neural part of the generic system de-
veloped is based on (Kuniyoshi and Sangawa, 2006), but
with a more compact and modular configuration for each
joint of the limbed robot. It is intended to be applicable to a
wide range of robotic systems. The architecture consists of
a number of identical control modules connected to each of
the body parts in their environment. Each neuro-motor-joint
system which receives afferent sensory input and gives mo-
tor output can be encapsulated as a single mofor unit, and the
whole system consists of identical motor units whose num-
ber is the same as the number of degrees of freedom of the
robot (Fig. 2). The signal from the sensor of a motor unit (in
most case a mechanosensory information) is fed, with op-
posite signs, to both of the pair of electrically unconnected
oscillators that each motor unit contains. This configura-
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Figure 2: (A) A motor unit for a single degree of freedom in
the joint-motor system. A unit consists of two electrically discon-
nected oscillators, which receive indirect integrated information of
other oscillators in the system from the sensor (S), via environ-
mental coupling, and give a control signal to the motor (M). (B)
A neural-body-environment system whose body has N degrees of
freedom. The complexities of all units are altered according to a
global evaluation signal.

tion eliminates muscle redundancies by constraining joint-
motors to be operated only by an antagonistic actuator pair,
thus giving more weight to inter-limb interactions.

The control signals for the basic motor patterns are gener-
ated by central pattern generators (CPG), which are com-
posed of a collection of neurons that produces an oscil-
latory signal for various locomotor patterns by synchroni-
sation with the movement of the physical systems. The
model consists of coupled Bonhoeffer-van der Pol (BVP, or
Fitzhugh-Nagumo) oscillators which are widely studied as
models of pacemaking cells and interlimb coordination. A
particularly interesting feature of coupled BVP equations,
that allows adjustment of the complexity of the system orbit,
had been presented by (Asai et al., 2003). A pair of coupled
BVP oscillators generates a stable limit cycle when the two
control inputs are the same, but a quasiperiodic/chaotic or-
bit otherwise. Another interesting feature of the BVP model
is flexible phase locking (Ohgane et al., 2009), where the
phase relationship between CPG activity and body motion
can be flexibly locked according to a loop delay. This is a
beneficial feature for covering a range of sensorimotor de-
lays originated from different body-environment configura-
tions. A pair of oscillators for a motor unit ¢, dealing with
its sensory input, is described by the following equations:

3

dedi’i =c(z1 — le),T —yri+21) + (L (si) —wrq) (1)
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where 7 is a time constant, and a=0.7, =0.675, c=1.75 are
the fixed parameters of the oscillator. §=0.013 and £=0.022
are coupling strength for afferent input 7(s) which is a func-
tion of the actual sensor value s. The time constant, which
represents the frequency of the oscillator, was set to 7=0.8

throughout this work, as this was found to be an appropri-
ate value. z; and 2o are control parameters for adjusting
the chaoticity of the motor unit. Their difference (z2-21)
changes identically in all motor units as a function of the
evaluation signal, which will act as the bifurcation parameter
for the chaotic search with adaptive feedback. In the stable
regime where z; and 2 are symmetric, (Asai et al., 2003)
found that the two coupled BVP equations exhibit bistable
phase locking of their oscillations in a parameter range of
0.6 < z1 = 22 < 0.88. From the observation of a number of
experiments on the oscillator dynamics, to ensure a higher
probability of multistability of the system, we chose to fix
z9 = 0.73 and to vary z;.

Evaluation and Feedback

The coherent integration of a performance evaluation signal
that is able to control the chaoticity of the system is an im-
portant contribution of the current work. In the experiments
to be described next, the performance evaluation signal £
is measured by the forward speed of the robot. Since the
system has no prior knowledge of the body morphology of
the robot, it does not have direct access to the direction of
movement nor of information on body orientation. In order
to facilitate steady movement in one direction without gyrat-
ing in a small radius, a temporal integration of the velocity
of the center of mass was formulated as an evaluation func-
tion. The center of mass velocity of a robot is continuously
averaged over a certain time window and its magnitude was
used as the performance of system. The performance signal
E at any time instance can be calculated by applying a leaky
integrator equation to the velocity vector as

Bt) =7, % = -viv 5)

dt

7E 1s the time scale of integration which is larger than that of
an oscillator (slower than the oscillator period), but typically
not exceeding it by more than an order of magnitude.

A global feedback signal determines the degree of
chaoticity of an oscillator network. The bifurcation param-
eter for feedback control is continuously modified by an
amount governed by the evaluation signal. If the current en-
trained state is not satisfactory, parameter p is increased to
where the orbit will follow quasiperiodic or chaotic dynam-
ics, and when a satisfactory pattern appears, p is decreased
so that the satisfactory mode becomes stable. The adaptive
control parameter u (= z2 — 21) is described as follows:

7 = —u+ G(E) ©
GE) = s PB= s ()

As described in the last section, zo (Equation 3) if fixed,
hence z; (Equation 1) varies as p changes. G(F) is a mono-
tonically decreasing sigmoidal function of locomotion per-
formance E (Fig. 3). 7, determines the time scale of the
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change of p and is normally set faster (7, < 7T) than the
oscillation period (7") of the controller. If its value is too
high, stabilisation of the system dynamics is significantly
delayed which results in a partition mismatch (Aida and
Davis, 1994). If it is too low, p tends to fluctuate according
to the undulation of the robot movement which acts as a dis-
turbance for stabilisation, or the system can become locked
in a ring of undesirable patterns in a regime of intermediate
chaoticity. We used 7, = 0.5T throughout this work. The
evaluation function G(F) determines the level of chaoticity
by varying p in the range [0,u.] where p. is the maximum
level of chaoticity of the system. From the analysis of a sin-
gle BVP oscillator it is well known that it shows Hopf bifur-
cation with the increase of the parameter z (Nomura et al.,
1993). An analytically estimated critical value of z for equa-
tions (1) and (2), without its coupling term, is z~0.38247,
which indicates that the maximum possible value of . is
0.73 — 0.38247 = 0.34753. However, because the situation
is different from the dynamics of a single oscillator, exper-
iments on the robotic system presented here revealed that
the actual behavioural criticality of z varies slightly among
different body and environmental settings. Hence we chose
e = 0.35, taking into consideration the asymptotic charac-
teristic of the sigmoidal function G. E; indicates the desired
locomotion performance of a given robot. However we do
not have prior knowledge of how much performance it can
achieve. Hence the dynamics of E, is modelled using the
idea of a goal setting strategy (Barlas and Yasarcan, 2006).
With this concept the expectation of a desired goal is influ-
enced by the history of the actual performance experienced
in the past. When the robot has already achieved high perfor-
mance during a certain period in the past, the performance
expectation increases. The performance expectation decays
if it is not being met by the actual performance. We integrate
this strategy in terms of simple continuous dynamics for Ey,
which slowly decays toward the current performance. This
can be simply described by a leaky-integrator equation:

Td% — E,+E @®)
where 7, is set larger than 7. E, functions as a temporal av-
erage of E for a certain time window. Since E; continuously
decays toward FE, the changing speed of control parameter
u depends both on E and 7. Therefore 7, determines the
depth and the duration of chaotic wandering.

Experiments and Results

Initial experiments with the framework described above
used the simple simulated robot shown in Fig. 3: a four-
armed aquatic swimmer with fins at the end of each arm
placed in a simulated hydrodynamic planar environment.
The robot was modelled using ODE (Smith, 1998). A joint-
motor of the robot was modelled using a pair of servo motors
which generate torques in opposite direction. These mo-

4-Fin Swimmer

torso dimension (m) 0.2x0.2%0.2

arm dimension (m) 0.075%0.075% 0.15

torso weight (Kg) 1.6

arm weight (Kg) 0.34(x4)

joint range (rad) +1.0

fin dimension (m) 0.2%x0.2

fin weight (Kg) 0.005

fin stiffness (N/m) 0.1

fin damping (Ns/m) 0.045
D4 fluid density (Kg/m?®) 1000.0

Figure 3: The 4-Fin Swimmer and its parameters. The arrows at
each joint describe the direction of rotation. Arrows D1-D4 repre-
sent the possible directions of movement.

tors are used as effectors for the neuronal output by vary-
ing their desired angular speed according to the simulated
muscle force used by (Ekeberg, 1993). The functional struc-
ture of bodily coupling between motor units is formed by the
transmission of hydraulic reaction forces of one limb to the
others through body articulation. Each fin was modelled as a
nonlinear torsional spring and its bending angle (6) was fed
to the corresponding motor unit. The fin angle implements
the stretch receptor at each side of fin, so the afferent input 7
in the equations (1) and (3) were defined as: I1(0) = H(k0)
and I2(0) = H(—k6) where k (= 2.5) is input gain and
H(z) is heaviside function. Joint axes and motor unit ar-
rangements were set to be bilaterally symmetric which is
a dominant feature throughout the animal world. The ra-
dial symmetry of the body morphology ensures that possible
locomotion behaviours are not restricted to longitudinal di-
rections. The radially symmetric shape in a 2D underwater
environment is interesting because it makes generating con-
tinuous asymmetric propulsion forces challenging; in other
words forward locomotion is non-trivial. The agent will not
be able to move in a single direction unless the movements
of all four arms are successfully synchronised with appro-
priate phase differences. The other parameters used for the
search process was uc = 0.35, 7 = 5T and 74 = 57g

Observation of Emergent Behaviours

First, we fixed the control parameter to a target value (1 = 0,
no chaotic search) and ran the simulation to see what kinds
of behaviours emerged from various initial states. Numer-
ous test was done in order to observe and categorise the be-
haviours that emerged from the system. Basic movement
behaviours were categorised into motion in four directions
(along the body axes D1,D2,D3 and D4 as shown in Fig.
4) which met expectations given the symmetric shape of the
swimmer. For each direction of movement, four different
behaviours were observed and classified according to the lo-
comotion performance. These are straight movement, mov-
ing in medium radius circles, moving in small radius circles,
and moving in/out in a spiral. Each circling locomotion can
be either clockwise or counterclockwise. Also there were
non-locomotion movements such as rotation or vibrating at
a fixed position, and completely symmetric leg movements
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Pattern # of variations Avrg £
1. straight (ST) 4 body orientations | 0.45

2. medium R (MR) 8 (4x(CW/CCW)) | 0.25

3. small R (SR) 8 (4x(CW/CCW)) | 0.2

4. spiral (SP) 8 (4x(CW/CCW)) | 0.02-0.3
5. rotate (RO) 2 (CW/CCW) 0.03

6. vibration (VB) 2 (D1-D3/D2-D4) | 0.03

7. bound antiphase (BA) | 1 0.0

Table 1: Categories of emergent behaviours. The variations of
straight swimming are in 4 different body orientations. Circular
movements (pattern 2,3,4) have 8 variations by including two cir-
cling directions. Vibration has 2 variations which are in direction
of D1-D3 and D2-D4.

resulting in no movement (bound antiphase). The categories
of emergent behaviours of the swimmer robot and their av-
erage performances are shown in Table 1, which indicates
that the total number of movement patterns is 33.

In order to quantify an emergent pattern and its tempo-
ral dynamics we developed a method we call a Feature In-
dex (FI) plot which is inspired by multivariable data binning
techniques. A feature index is a scalar value which is calcu-
lated from the powered sum of the bin indices of the phase
differences between each DoF. Therefore, a feature index
can uniquely represent a given motor coordination. Since
the phase difference alone cannot capture the difference of
motor amplitudes we used two feature indices: one for the
phase relationship and one for the amplitude relationship. If
we define N phase differences of the limb movements, the
feature index F' can be written as:

N
F=Y kB k€L 9)
i=1

ki — (dz — dmzn) div {(dmam - dmzn)/B} (10)

where w is the width of a bin, B is the number of bins, and
d; is the ith wrapped phase difference which has the range
[dmin>dmaz]. The feature index for the amplitude relation-
ship uses the phase differences between two antagonistic
motor commands for d;. The range of wrapped phase dif-
ference were [—m,m] for the phase index and [0,2r] for the
amplitude index which indicates the phase difference of 7
between antagonistic motor signal is producing maximum
amplitude. The FI plots of four different straight locomo-
tions and the other behaviours are depicted in Fig. 4 using
the following four phase differences: leg 1-4, leg 2-3, leg
1-2 and leg 4-3.

Dynamics of Chaotic Search

The stable dynamics of the system begins to fluctuate as
w increases, exhibiting a series of transient dynamics from
quasiperiodicity to chaos. Fig. 5 shows the chaoticity
of the system with different control parameters. In the
higher chaotic regime complex transitory dynamics similar
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Figure 4: Limb cycle number vs. feature indices. In each pair of
plots, a phase plot is on the left and an amplitude plot is on the right.
From D1 to D4 are plots of straight locomotion in each direction.
The next four plots are from the circular movements whose body
orientation are D4 and rotating direction are counterclockwise. The
last two plots are for vibration and bound antiphase.

to chaotic intermittency occurs which drives the system to
briskly explore the phase space. To see the effect of chaotic
search, the distributions of visits to each of the behaviour
identified in Table 1 was investigated under the presence
and absence of chaotic search. 100 simulations were per-
formed for each case and the visiting counts of seven major
behaviours were recorded. Fig. 6 shows a clear difference
between the visiting ratios of the two cases, suggesting the
effectiveness of chaotic search (B and C) which tended to
settle on effective straight motion. In the search with fixed
desired performance (Fig. 6B) any pattern below the criteria
did not appear while the case of flexible E, (Fig. 6C) shows
a wider range of behaviours although the highest performing
patterns still dominate. During the search process all vari-
ables and control parameters vary continuously as parts of
the neuro-body-environment system, and the time evolution
plots (Fig. 7) show that the stabilisation and destabilisation
of the system occurs repeatedly in a trial-and-error manner
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Figure 5: Poincare plots of the output of oscillators which corre-
spond to the flexor neurons for legs 0 and 1 with different value of 1
((A) 0.2, (B) 0.34, (C) 0.346). We can see weak and strong chaotic
intermittencies (the regions indicated by arrows) in high u (B,C)
while there is smooth and periodic transition of phase relationships
in A.

90% - 90% 90%
80% 80% 80%
70% 70% 70%
60% - 60% 60%
50% 50% 50%
40% 40% 40%
30% - 30% 30%
20% - 20% 20%
10% - 10% 10%
0% = 0% 0%
ST MR SR SP RO VB BA ST MR SR SP RO VB BA ST MR SR SP RO VB BA
A B C

Figure 6: Visiting ratio distribution. (A) No chaotic search. (B)
Search with £y = 0.2. (C) Search with adaptive E as in Equation
11. Lighter shaded bars indicate visiting ratios in exclusion of ST-
D4 pattern through the deep-path (see text).

until it settles on an effective form of locomotion.

Bad-Lock and Deep-Path

Although the system exploits chaotic dynamics for the ex-
ploration of motor patterns, unwanted synchronisation be-
tween chaotic movements of limbs, resulting in low perfor-
mance (bad-lock), can arise from some initial conditions.
In the case of fixed E;, a local minimum was occasionally
observed in which the system dynamics are locked in a nar-
row range of phase differences while the precise values of
variables vary chaotically (Fig. 8). Although this is unde-
sirable for the purpose of this work, it should be noted that
this phenomena is observed in real biological systems (e.g.
in walking and heartbeat rhythms). The bad-lock phenom-
ena occurred more frequently if we set i below the onset of
chaos, indicating that the system has less exploratory ‘per-
turbation force” when using low chaoticity.

Adaptive E; was successful in enabling the goal seeking
strategy for the unknown robotic system, as well as sup-
pressing the bad-lock local minima outlined above by intro-
ducing an additional slow variable to the system. However
another kind of deficiency, so called deep-path, was some-
times observed in this case. This involves the orbit becom-
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Figure 7: Time evolution of the search process. (A) Unwrapped
phase differences between legs. (B) Performance and control pa-
rameters. (C,D) Phase and amplitude feature indices.

ing entrained in some periodic state for a long time before
it eventually reaches the desired state (Fig. 9). This is due
to the time spent in the chaotic regime becomes very short
because the difference between E and E, is too small, re-
sulting in the system taking a long time to escape from the
local minimum. The possibilities of bad-lock and deep-path
always exist because the system is fully deterministic with-
out stochastic sources, but it should be possible to reduce
them by using more sophisticated goal seeking strategies.

Physical Stability for Open Loop Control

Previous work on embodied coupling (Pitti et al., 2009)
showed that the causal information flow between the con-
troller and physical system is highly biased toward the
sensor-to-motor direction, suggesting the controller strongly
exploits the body-environment dynamics. Since the neuro-
body-environment system used in the current paper is
weakly coupled only through physical embodiment it can be
inferred that the emergence of movement patterns is highly
influenced by the dynamic stability of locomotion. There-
fore we hypothesise that the more dynamically stable move-
ment patterns remain longer as coherent states. A previous
study (lida and Pfeifer, 2004) provide the evidence that the
intrinsic body dynamics of a properly designed controller-
body system can self-stabilise into a periodic locomotion
pattern without any sensory input. From the experiment in
our study, we have shown that chaotic search of locomotion
using a bodily coupled system is capable of naturally finding
such stable patterns. This feature, together with the ready-
built servo controller means the robot should be able to per-
form stable locomotion in an open-loop manner without any
sensory information. This accomplishes “cheap” locomo-
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Figure 8: Local minima with fixed Eq = 0.2. The phase feature
index plot (middle) indicates that the behaviour is locked around
the vibrating (VB) pattern while the amplitudes fluctuate periodi-
cally.

tion, meaning that we should be able to readily capture a
wide range of useful transient patterns which appear during
the search process without being stabilised.

We tested this using a ‘damaged’ version of the robot
by removing one of its fins, where there is no stable pat-
tern when p = 0 but there exist a series of useful transient
patterns. The chaotic search process was run for the 3-fin
swimmer, and if some high performing pattern appeared the
sensory input was gradually decayed to zero. We call this
process pattern capturing for open-loop control rather than
acquiring because it does not deal with the cortical memori-
sation of discovered patterns. The time course of the search
process of the damaged robot (Fig. 10a) shows multiple
transient patterns appear for a while, with high performing
patterns among them. After the sensory inputs are removed
the captured pattern is stably retained, providing fast loco-
motion; successful open-loop control is achieved. In order
to see the dynamic stability of the captured behaviour, an ex-
ternal perturbation was applied by exerting random forces to
each of fins (Fig. 10c). The stability of locomotion was re-
markable, as the robot maintained a good locomotion perfor-
mance even when the perturbation strength was over 200%
of the average hydraulic force the fin receives during normal
locomotion.

Discussion

We have modelled and investigated the emergent behaviours
of a neuro-body-environment system coupled indirectly
through physical embodiment and have shown the efficacy
of exploring useful motor patterns by applying a novel
chaotic search method. The whole system is treated as a
single high dimensional continuous dynamical system con-
taining intrinsic chaos as a necessary driving force for the
exploration of its own dynamics. The search process was
completely deterministic, and was able to selectively entrain
the system orbit to one of the patterns by imposing goal di-
rectedness toward a desired behaviour. The emergent loco-

Figure 9: Deep path in the search process with adaptive E4. The
uppermost graph is an example of the typical search process, and
the lower three graphs show the deep-path. The system is locked
in a periodic state for a long time (see the time length) with very
short duration of chaotic perturbation then eventually stabilises on
the straight locomotion.

motion behaviours involved inherently stable physical dy-
namics, enabling stable open-loop control without a need
for sensory information.

The method has been tested with a simple underwater
robot, but it is generally applicable to a wide range of differ-
ent robot morphologies and physical environments. How-
ever, further analysis is necessary in order to determine the
optimum values of various parameters used in the search
process. For example, the time scales of slow dynamics
such as evaluation, goal seeking and feedback bifurcation
(tE,74,7u) influence the search performance as well as the
probability of being trapped in a local minima. Preliminary
results of investigating the effect of different time scales re-
vealed that the ratio between the time scales for evaluation
and goal seeking determines the balance between the ‘mem-
orising” and ‘forgetting’ of patterns during the search pro-
cess, implying there might be an optimal ratio which allows
the system to stay in the chaotic regime for an optimal du-
ration enabling fast search with less local minima. Another
crucial factor which influences the system is the amount of
bandwidth resulting from the design of body-environment
interactions. In the case of the 4-fin swimmer presented
here, the functional coupling strength between motor units
varies with the body mass. Increased body mass will result
in an increased moment of inertia which causes less trans-
mission of the hydraulic force on one leg to the others, and
vice versa. Similar effect will be caused by decreasing the
density of the surrounding fluid or by increasing fin stiffness.

Our method is also applicable to terrestrial robots where
a torque sensor is used for the sensory information. A few
examples of initial results of our method applied to other
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Figure 10: Capturing a transient locomotion pattern. (A) Normal
behaviours of damaged robot. (B) Captured pattern by cutting sen-
sory inputs. The initial condition is same as (A). (C) Stability of
captured locomotion under perturbations. Over three equal time
intervals random force vectors (/V) whose strength were in ranges
(DH[—0.1, 0.1], (2)[—0.5,0.5], (3)[—1,1] were exerted on each fin.
The typical hydraulic force that a fin receives is around £0.3N.

kinds of robots can be found in supplementary movie clips
(http://email kebi.com/~necromax/explore.html). Although
the movement patterns produced by our work can deviate
from perfect patterns for highly adaptive locomotion, we be-
lieve it can make an important contribution as a basic ex-
ploratory element in more complex robotic system - such as
providing supervisory pattern for the learning of locomotor
CPGs.
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