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Abstract

A growing body of work has demonstrated the importance of ongoing oscillatory
neural activity in sensory processing and the generation of sensorimotor behaviors. It
has been shown, for several different brain areas, that sensory-evoked neural oscilla-
tions are generated from the modulation by sensory inputs of inherent self-sustained
neural activity (SSA). This paper contributes to that strand of research by introducing
a methodology to investigate how much of the sensory-evoked oscillatory activity is
generated by SSA, and how much is generated by sensory inputs, within the context of
sensorimotor behavior in a computational model. We develop an abstract model con-
sisting of a network of 3 Kuramoto oscillators controlling the behavior of a simulated
agent performing a categorical perception task. The effects of sensory inputs and SSAs
on sensory-evoked oscillations are quantified by the cross product of velocity vectors in
the phase space of the network under different conditions (disconnected without input,
connected without input, and connected with input). We found that while the agent
is carrying out the task, sensory-evoked activity is predominantly generated by SSA
(93.10%) with much less influence from sensory inputs (6.90%). Furthermore, the influ-
ence of sensory inputs can be reduced by 10.4% (from 6.90% to 6.18%) with a decay in
the agent’s performance of only 2%. A dynamical analysis shows how sensory-evoked



oscillations are generated from a dynamic coupling between the level of sensitivity of
the network and the intensity of the input signals. This work may suggest interesting
directions for neurophysiological experiments investigating how self-sustained neural
activity influences sensory input processing, and ultimately affects behavior.

1 Introduction
The brain spontaneously oscillates all the time regardless of whether someone is day-
dreaming or mind-wandering or engaged in some cognitive task (Raichle, 2010; Buzsaki,
2006; Cole et al., 2014; Deco et al., 2013; Ferezou & Deneux, 2017; Fox & Raichle,
2007; Sporns, 2010). Different mechanisms have been proposed for the generation of
spontaneous neural activity at different spatial scales, from the cellular (e.g. Dickinson
(1998); Kusters et al. (2007); Hashemi et al. (2012) to the network level (e.g. Kriener
et al. (2014); Tomov et al. (2016); Bojanek et al. (2020); Borges et al. (2020); B. San-
tos et al. (2021)). This view of an active nervous system has its roots in the work of
Brown (1914) and contrasts with the conception of the nervous system as being primar-
ily reflexive and directly driven by stimulus from the environment, which, as pointed
out by Raichle (2010), dates back to Sherrington (1906). Although the stimulus-driven
approach has made significant progress in understanding some aspects of brain oper-
ation, mainly in the sensory areas, it does not take into consideration the majority of
neural dynamics, which are internally generated (Vogels et al., 2005). As early as 1950,
armed with data from the most advanced EEG recording and analysis equipment of the
day, Grey Walter theorized that inherent self-sustained oscillations had a fundamental
functional role in perception (Walter, 1950). Since then a number of experiments have
provided evidence that such oscillatory activity does indeed play a functional, causal
role in perceptual tasks, and is not noise or incidental background chatter (Romano et
al., 2015; Samaha et al., 2020; Helfrich et al., 2014).

Recent empirical and theoretical research has investigated, from a number of differ-
ent perspectives, how external stimulation interacts with spontaneous neural oscillations
to generate sensory-evoked dynamics underlying behavior (Samaha et al., 2020; Pachi-
tariu et al., 2015; Romano et al., 2015; Sarracino et al., 2020; Belloy et al., 2019; Iemi
et al., 2017). Arieli et al. (1996), for instance, recorded the ongoing and evoked ac-
tivity in the cat visual cortex and found that evoked responses could be predicted from
preceding ongoing activity. They hypothesized that the “ongoing activity must play an
important role in cortical function and cannot be ignored in exploration of cognitive
processes” (Arieli et al., 1996, p.1868). Fisher et al. (2004) analyzed the relation-
ship between spontaneous neural activity and the response of visual cortical neurons
to dynamic scenes and random-noise film images in freely viewing ferrets. They found
that sensory-evoked neural activity is generated from the modulation of the ongoing
circuit dynamics by input signals, rather than simply reflecting the structure of the in-
put signal itself. Cole et al. (2014) used fMRI to measure the temporal relationships
between brain regions of subjects performing different tasks. They found that func-
tional networks during task performance are primarily shaped by an intrinsic network
present during rest. As they put it, their study establishes a strong relationship between
resting-state functional connectivity and task-evoked functional connectivity – areas of
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neuroscientific inquiry that are typically considered separately. Romano et al. (2015)
showed how spontaneous ongoing neural activity in the optic tectum of zebrafish lar-
vae predicted directional tail movements. The spontaneous activity in this brain area,
which is central to visually guided behavior, was found to be organized around topo-
graphically compact grouping of functionally similar neurons, producing networks that
were tuned to behaviorally relevant visual features, thus enabling robust extraction of
pertinent sensory information. In a remarkable experiment, Helfrich et al. (2014) were
able to manipulate human visual perception by forcing spontaneous brain oscillations
of the left and right visual hemispheres into synchrony using externally applied oscil-
latory stimulation; their findings are strong evidence that it is the neuronal oscillations
that drive the visual experience, not the experience driving the oscillations.

Computational models have also been used to investigate a variety of phenomena
related to self-oscillating dynamics and sensory input processing (Bick et al., 2018;
Moreno & Pacheco, 2004; Strogatz, 2000, 2001). Li et al. (2020), for example, imple-
mented a fully-connected self-oscillating network by using a modified version of the
Kuramoto oscillator (Kuramoto, 1975, 2012). They analyzed the collective response
of the network to input signals. They found that sensory input stimulates collective
synchronized states locked to similar frequencies, associated with a memory mecha-
nism. Another prominent model is the HKB-model, which describes the relative phase
dynamic between two non-linearly coupled oscillators, and has the input as a control
parameter that changes the vector field from multistable to monostable and eventually
metastable (Haken et al., 1985; Kelso, 2009). B. Santos et al. (2012) and Aguilera et
al. (2013) used the HKB-model to control the behavior of an agent performing sensory
gradient climbing behavior. They analyzed the dynamics of the HKB-model in a closed
sensorimotor loop and found that functional sensory-evoked metastable dynamics are
sustained not only by sensory inputs but also by the coordinated coupling of the agent’s
sensory and motor dynamics.

While these studies demonstrate the fundamental importance of self-sustained os-
cillatory neural activity (SSA) in sensory processing, many details remain elusive. The
full particulars of how sensory inputs interact with the ongoing spontaneous oscillatory
activity are not yet clear, nor are the relative degrees of influence of the sensory input
and the inherent oscillations on the resulting sensory-invoked neural signal.The empiri-
cal work outlined above emphasizes the complexity of the interaction between sensory
input, spontaneous SSA and sensory-induced neuronal responses (Deco et al., 2013),
with the modulation of SSA by sensory inputs being an important element. In order to
contribute to this area, in this paper we work with a minimal, and therefore analytically
tractable, model which allows us to develop a novel analysis of how sensory inputs in-
teract with spontaneous self-sustained oscillations and ultimately generate sensorimotor
behaviors.

We implemented a brain-body-environment system where a simulated robot, con-
trolled by a network of self-oscillating Kuramoto oscillators, performs a categorical
perception task (Moioli et al., 2012; Beer, 2003). The central aim of this work is to
investigate how much of the sensory-evoked oscillatory activity is generated by SSA in
the neural controller, and how much is generated by sensory inputs, while the agent is
engaged in the task. By using the cross product of velocity vectors to compare the tra-
jectories in a particular state space for the network under different conditions (details in
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Section 2.4), we are able to precisely quantify how much of the task-related oscillations
are generated by sensory input (the ‘sensory effect’), and how much by SSA in the neu-
ral circuits. In turn this allows us to give a detailed account of a mechanism whereby
sensory-evoked neural oscillations are generated from the modulation of neural SSA by
sensory inputs. Specifically, we show how a dynamical coupling between the sensory
inputs and the level of sensitivity of the network generate (successful) trajectories in the
state space underlying the agent’s sensorimotor behavior. The sensitivity surface for the
system used in this analysis is generated via our novel measure of sensory effect. The
computational model and the methodology used in the analysis are described in Section
2.

There have been several previous investigations in this general area (Asai et al.,
2003; Moioli et al., 2012; B. A. Santos et al., 2012; Moioli & Husbands, 2013; Lee
et al., 2018; Zagha et al., 2013; Shim & Husbands, 2015), but here we introduce a
different perspective. To our knowledge this is the first attempt to precisely quantify the
relative contributions of sensory input and SSA to the evoked signals that are driving
a sensorimotor behavior. In tandem with a detailed dynamical systems analysis of the
agent and its behavior, this enables us to give a thorough account of how the interactions
between the sensory input, SSA, and evoked signals, in the context of the whole brain-
body-environment system, give rise to robust sensorimotor behavior. We show that even
when the sensory signal is degraded by a significant margin, the agent’s performance
only declines slightly, suggesting that the interaction between sensory input and SSA
is tuned to enable robust extraction of behaviorally pertinent information, as has been
observed in biological systems (Romano et al., 2015).

The next section gives detail of the model – the agent, environment, task and neural
architecture, along with an explanation of how a successful instance of an agent was
created for analysis, and the methods used for the analysis. Section 3 looks in detail at
the successful agent chosen for analysis, describing its behavioral and neural dynam-
ics. That sets up the central analysis, given in Section 4, which demonstrates the active
role of SSA, showing how it interacts with sensory input to generate robust sensorimo-
tor behavior; an analysis of the relative contributions of SSA and sensory input to the
evoked neural signal that drives the behavior is presented. The final section provides
conclusions.

2 Theoretical model and methods
It is important to point out that the computational model implemented here does not
aim at empirical accuracy. It reproduces, at a conceptual level of abstraction, a type of
neural dynamics that can be used to investigate the influence of spontaneous oscillations
on the processing of sensory inputs in embodied sensorimotor behaviors. The model
aims to raise and discuss theoretical issues that could help to understand the dynamical
aspects of neural sensory-evoked responses, while being computationally and analyt-
ically tractable enough to enable detailed study of the nervous system of a simulated
agent engaged in a non-trivial sensorimotor task.
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2.1 The agent and the task
The task implemented here is inspired by the categorical perception task proposed by
Beer (2003). It minimally replicates, at a conceptual level of abstraction, a behavioral
phenomenon where a subject has to identify the shape of an object by actively scanning
it in order to get sensory stimuli, which will eventually lead to a coherent sensation
of the object’s shape. Specifically, the model consists of an agent moving back and
forth along a horizontal line in a two-dimensional environment, reading the (scaled
Euclidean) distance from its sensor to an object placed in a fixed position (see Fig. 1).
In each trial of the experiment, a total of 20 objects (10 triangles and 10 circles) are
presented to the agent in a random sequence. Each object is presented for 6 seconds,
and the whole trial lasts 120 seconds. The agent should actively scan the object and
move either to the right if it is interacting with a circle or to the left if it is interacting
with a triangle. Notice that the agent has to keep interacting with the object during
the whole trial (without moving far away to the left or to the right) in order to detect
the shape transition that might happen every 6 seconds. The sensor activation is scaled
such that it is zero when the agent is vertically aligned with the center of the object and
increases as the agent moves either to the right or the left; its maximum value is 1 when
the agent is not aligned with any part of the object. In this way the sensory input (the
sensor reading) varies as the agent moves along the horizontal line.

3-3

Left Right

3-3

3 3

0

Agent’s sensor

0

Figure 1: Schematic representation of the simulated environment where the agent is
performing the discrimination task. The small black point along the horizontal line
represents the agent. Both the base of the triangle and the diameter of the semicircle
are 6 units long. The triangle’s height and the semicircle’s radius are 3 units long. The
agent moves along the horizontal line and has a sensor (represented by the dotted line).
The sensor returns d/3, where d is the Euclidean distance between the agent (dot) and
the object’s border. The sensor value varies between 0 (agent aligned with the center of
the object) and 1 (agent not aligned with any part of the object).

2.2 The agent’s controller
The agent is controlled by a network of 3 phase-coupled oscillators. Only the oscillator
θ1 (described below) is connected to the sensor, which provides continually varying
sensory input (s). The agent has two lateral motors mR and mL, where the subscripts
R and L stand for right and left (see schematic representation in Fig. 2).

The motor’s activations are defined in Eqs (1) and (2).
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Figure 2: Schematic representation of the agent. The agent has a sensor (s), two motors
(mL and mR) and is controlled by a network of 3 oscillators (θ1, θ2 and θ3).

mR = c1(cos((θ2 − θ1) + (2πc2)) + 1) (1)

mL = c3(cos((θ3 − θ1) + (2πc4)) + 1) (2)

where θi is the phase of the ith oscillator (explained below), c1, c2, c3 and c4 are
constant parameters evolved by a genetic algorithm (explained below). The movement
of the agent is given by (mR − mL), that is, let x denotes the centroid of the agent,
then ẋ = mR −mL. Each node of the agent’s oscillatory network is governed by the
Kuramoto’s equation defined in (3) (Kuramoto, 1984):

θ̇1 = (ω1 + s c5) +
N∑
j=1

kj1sin(θj − θ1)

θ̇2 = ω2 +
N∑
j=1

kj2sin(θj − θ2)

θ̇3 = ω3 +
N∑
j=1

kj3sin(θj − θ3)

(3)

where θi is the phase of the ith oscillator which is integrated with time step 0.001
seconds using the Euler method, ωi is a constant representing the ith oscillator’s natural
frequency, s is the sensory input, c5 is a constant, N is the number of oscillators (here
3), and kji is the coupling factor from the jth to the ith oscillator. Note that the sensor
s is connected only to the oscillator θ1. The constant parameters of the model were
obtained by a genetic algorithm (explained in Section 2.3) and their values are shown
in Table 1.

The Kuramoto equation (Kuramoto, 2012) has been used to study a wide range of
neural oscillatory phenomena such as the dynamics of cortical regions and its gener-
ative mechanisms (Wilson & Cowan, 1973; Breakspear et al., 2010), the impacts of
topological connectivity in the development of synchronized neural activity (Gómez-
Gardeñes et al., 2010), the effects of lesions on cortical networks oscillations (Honey &
Sporns, 2008), and the effects of stimuli on the synchronization dynamics of neurons in
the visual cortex (Tauro et al., 2014).
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Parameters Value
k1,2 18.387
k1,3 1.290
k2,1 8.906
k2,3 0.417
k3,1 0.445
k3,2 13.276
w1 50.67 rad/s
w2 83.16 rad/s
w3 101.41 rad/s
c1 12.613
c2 0.7873
c3 18.815
c4 0.8678
c5 6.826

Table 1: Parameters evolved by the genetic algorithm.

2.3 Methods to obtain an agent for the dynamical analysis
A synthetic approach (Beer, 1995; Langton, 1997) was taken to produce an agent pow-
ered by a phase-coupled network capable of performing the task. A search algorithm
was used to find a successful instance of the class of agents described earlier. Such
an agent could then be analyzed. The microbial genetic algorithm (Harvey, 2001) was
used to adjust the parameters of the model, namely the motor strengths c1, c2, c3 and c4;
the sensory strength c5; the natural frequencies ωi ∈ [50, 110]rad/s; and the oscillator
connection weights (coupling factors) ki,j ∈ [0, 20] (numbers in brackets represent the
search space bounds for the genetic algorithm). The microbial genetic algorithm is a
minimal, but effective, steady-state GA, in which on each cycle a member of a geo-
graphically distributed (on a 1D torus) population is randomly selected, followed by
another geographically close randomly selected member, their fitnesses are compared,
the winner is replaced back into the population unchanged, the loser is ‘infected’ with
some proportion of the winner’s genetic material, via recombination, and then mutated
before being put back into the population. Fitter and fitter solutions will evolve as the
algorithm proceeds. There is no specific reason why this genetic algorithm was chosen;
the system is relatively simple and could have been optimized with other genetic algo-
rithms or search algorithms, the point was to use a search method powerful enough to
find successful instances of agents which could then be analyzed to understand their dy-
namics. The parameters were encoded in a genotype as a vector of real numbers in the
range [0,1] and linearly scaled, at each trial, to their corresponding range. The genetic
algorithm setup was: population size (30); mutation rate (0.05); recombination (0.60);
reflexive mutation; normal distribution for mutation (µ = 0, σ2 = 0.1).

In order to subject the agent to the full range of conditions, and thus encourage
robust behavior (Nolfi et al., 2016), each fitness evaluation of an agent consisted of 20
trials; each trial starting at a random initial position within a distance of [−3, 3] units
from the center of the object and with a random value of θi within [0, 2π) radians. A
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total of 10 circles and 10 triangles were presented to the agent as a random sequence
during each trial. Each object was presented for 6.0 seconds, giving a total of 120
seconds for a trial. That is, the shape of the object may or may not change every 6s, but
it is guaranteed the agent will interact with ten circles and ten triangles during a trial
(120s). At the end of each trial, the fitness of the agent was measured by Eq. (4):

Ftrial = FtriangleFcircle

Ftriangle =
1
10

∑10
p=1

{
1; if df < 0;
0; otherwise;

Fcircle =
1
10

∑10
p=1

{
1; if df > 0;
0; otherwise;

(4)

where Ftrial is the fitness of the agent at the end of a trial, Fcircle and Ftriangle are
the mean fitness over 10 presentations of circles and triangles, respectively; and df is
the final distance from the agent to the center of the object at the end of each six-second
section. The final overall fitness of the agent was given by the mean of Ftrial over the 20
trials. After evolving the parameters until most of the population were highly fit (with
mean of Fcircle = 0.93, Ftriangle = 0.93 and Ftrial = 0.86) we ran each individual of the
population for an additional 500 trials (without evolving the parameters) and selected
the fittest one for the analysis. In total, this fittest agent interacted with 10000 objects
(500 trials with 20 objects in each trial) and correctly responded to the shape of a circle
in 95% of the cases and to the shape of a triangle in 97% of the cases. The parameters
evolved by a genetic algorithm, which define this fittest agent, to be used for analysis,
are shown in Table 1.

2.4 Methods for dynamical analysis
The analysis of the model is based on the phase relations between the oscillators defined
as: φ1,2 = θ1 − θ2, φ1,3 = θ1 − θ3 and φ2,3 = θ2 − θ3. Although in our model, the state
space of phase relations consists of 3 dimensions φ1,2, φ1,3 and φ2,3, it can be reduced to
2 as one of them can be obtained from the others. We have chosen to analyze φ1,2 and
φ2,3 as their dynamics describe the phase relations of oscillators that become transiently
synchronized (shown in the Results). The phase relations between θ1 and θ3 are less
interesting, since they are continuously desynchronized.

The dynamics of phase relations is studied by analyzing relevant vector fields of
the system, here focusing on the spaces (φi,j, φj,k) and (φ̇i,j, φ̇j,k), the latter being the
time derivatives of the phase differences. An illustration of a single vector ~v built from
the components φ̇i,j = 0.02 and φ̇j,k = 0.01 is shown in Figure 3-A. If φ̇i,j = 0,
then the oscillators i and j are phase synchronized. If the magnitude of ~v (which we
call a velocity vector) is null, then the whole network is phase synchronized as the
phase differences between the oscillators are not changing over time. In this work, the
effect of the sensory input on the network’s spontaneous dynamics was calculated by
performing some operations with velocity vectors ~v, as follows.

For each point in the state space, three velocity vectors were calculated, one for each
of the following conditions: i) a connected network with input (~vci); ii) a connected
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Figure 3: Illustration of the method used to calculate the effect of the sensory input
on spontaneous oscillations. (A) A velocity vector obtained from the components
φ̇i,j = 0.02 and φ̇j,k = 0.01. (B) Area of the parallelogram obtained from the cross
product ~vc×~vci. This area quantifies the effect of the sensory input on the self-sustained
oscillations. (C) Area of the parallelogram obtained from the cross product ~vd×~vc. This
area quantifies the effect of the interaction between the oscillators and the network dy-
namics.

network without input (~vc), and iii) a disconnected network without input (~vd). When
the simulated agent was performing the task, at each time step, ~vci was calculated by
using the current value of sensory input (s), ~vc was calculated by setting s = 0, and ~vd
was calculating by setting s = 1 and removing all connections between the oscillators
(kj,i = 0, ∀j, i). Note that: i) a vector field consisting of vectors ~vci represents the
flow of trajectories of a connected network receiving sensory inputs; ii) a vector field
consisting of vectors ~vc represents the flow of trajectories of a spontaneously oscillating
network, and iii) a vector field consisting of vectors ~vd represents the flow of trajectories
of a disconnected network with its components oscillating at their natural frequencies.

The difference between ~vci and ~vc quantifies the effect of the sensory input on the
spontaneous oscillations. This difference can be measured by the cross product between
~vci and ~vc, as illustrated in Figure 3-B. The magnitude of the resultant vector obtained
from the cross product is equal to the area of the parallelogram determined by the two
vectors. The greater the area, the greater the difference between ~vci and ~vc, and also the
greater the effect of the sensory input. Formally, the effect of the input can be described
as in Eq. 5. It is important to mention that, in our model, the modulus of the angle
between the vectors is always between 0 and π

2
as values greater than π

2
would not

correctly represent the effect.

Ei = ~vci × ~vc (5)

Not only the sensory input but also the connections between the oscillators affect
the network dynamics. Following the same rationale, the effect of the connections can
be measured by the cross product between ~vc and ~vd, as illustrated in Figure 3-C. The
area of the parallelogram Ec quantifies the effect of the coupling factors on the network
operation and can be formally described as in Eq. 6.

Ec = ~vc × ~vd (6)

The sum of effects from sensory stimulation and from the interaction between the
oscillators can be written as Ei + Ec, as illustrated in Figure 4. Out of the total effect

9



(Ei + Ec), the amount due to sensory input can be written as in Eq. 7.
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Figure 4: Three vectors (~vd, ~vc and ~vci) with origin at P in the state space defined by
φ̇i,j (x-axis) and φ̇j,k (y-axis). The parallelogram Ec (obtained from ~vd × ~vc) depicts
the effect of the interactions between the oscillators on the dynamics of a disconnected
network. The parallelogram Ei (obtained from ~vc×~vci) represents the effect of sensory
inputs on the network self-sustained oscillations.

Ei(R) =
Ei

Ei + Ec
(7)

Ei(R) outputs a value within [0, 1] and represents the relative effect of sensory inputs.
If Ei(R) = 1, the network is driven solely by sensory inputs, and if Ei(R) = 0, then the
network dynamics is driven entirely by its internal activity. Note that each value of
Ei(R) represents the relative effect at a point of the state space. The total sensory effect
considering a set of points (i.e., a trajectory in the state space) can be quantified by
summing up the values Ei and Ec, at each point, and then calculating the total effect as
in Eq. 8.

ε =

∑
Ei∑

Ei +
∑
Ec

(8)

3 Description of the system dynamics
This section describes the behavioral and oscillatory network dynamics of the fittest
agent evolved for analysis. It provides an initial dynamical analysis of the system that
sets up the analysis of the relative effects of sensory input and SSA on the whole em-
bodied sensorimotor behavior which is presented in Section 4.

3.1 Agent’s behavior and its network dynamics
This section presents the agent’s behavior and the network dynamics during a single
trial of the experiment and shows how the network dynamics generates the agent’s right-
wards and leftwards movements.
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The agent’s behavioral response during a single trial of the experiment is presented
in Figure 5-A. During the first 16 seconds, the agent interacts with a triangle (blue
line) continuously moving back and forth along the horizontal line in the range ≈[-
2.5, 0]. When the object switches to a circle, at t=16s (green line), the agent goes to
the right side of the object and keeps moving back and forth in the range ≈[0.7, 2.3].
From t=36s to t=120s, the agent correctly responds to a sequence of shape transitions.
The time the agent takes to switch sides varies depending on its position and internal
state at the moment the shape changes. For instance, while in the time window t =
[42, 48]s the agent takes 1.2s to reach a position where x > 0, in the time window t =
[102, 108]s it takes 4.4s (more details about how the agent switches sides are presented
in the following).

Figure 5: Agent’s behavior and its network dynamics during a single trial of the experi-
ment. (A) Agent’s position x (x-axis) and time (y-axis). The interaction with a triangle
is shown in blue and with a circle in green (see legend). (B1), (B2) and (B3) zoom
(t = [12, 13.310]s) into the agent’s movement (x) and sensor activation (s) and network
dynamics, respectively, during the interaction with a triangle. Two points P1 and P2 (in
B1 and B3) highlight two moments where the agent changes the orientation of its move-
ment. The gray color in the background of B3 represents the orientation of the agent’s
movement (ẋ > 0 for dark gray and ẋ < 0 for light gray). In the border between these
regions, the agent does not move (i.e. ẋ = 0). (C1), (C2) and (C3) are similar to B1,
B2 and B3, respectively, but zoom into the interaction with a circle (t = [30, 30.275]s).

A zoom into the agent’s movement (x), sensor activity (s), and the underlying net-
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work dynamics during the interaction with the triangle are shown in Figures 5-B1, B2,
and B3, respectively. In this case, the agent converged to a limit cycle (shown in 5-B3)
with a period of 1.310s. The agent moves rightwards (ẋ > 0) when its network state is
in a dark gray region and leftwards (ẋ < 0) when it is in a light gray region. In the bor-
der between these regions, the agent changes the orientation of its movement (ẋ = 0).
At P1 (see Figure 5-B1 and B3), for instance, the agent changes the orientation of its
movement from rightwards (ẋ > 0) to leftwards (ẋ < 0). On the other hand, at P2, the
orientation changes from leftwards (ẋ < 0) to rightwards (ẋ > 0). A zoom into the
agent’s dynamics underlying the interaction with the circle is shown in Figures 5-C1,
C2, and C3. In this case, the limit cycle has a shorter period of 0.275ms. Changes in
the agent’s orientation are indicated by P3 and P4.

When the network dynamics settles in either limit cycle, the agent keeps oscillating
within x ≈ [−2.5, 0] for a triangle and within x ≈ [0.7, 2.3] for a circle without losing
contact with the object (by moving away to the right or to the left). The reason for that
is that the sum of ẋ considering a complete turn around the limit cycle is equal to zero;
that is, the sum of movements to the right is equal to the sum of movements to the left.
This balance between the sum of negative and positive ẋ breaks down when the shape
of the object changes. When the object changes from circle to triangle, for instance,
the agent has to move to a position where x < 0. This movement is carried out by
increasing the sum of negative ẋ in relation to the sum of positive ẋ, as exemplified in
Figure 6. From t=60.238s to t=60.430s, the agent changes its orientation to leftwards
and moves from x = 2.458 to x = 0.192. The network dynamics that generated this
leftwards movement is represented by the orange trajectory in 6-B. Note that this trajec-
tory is passing through a region of ẋ < 0 (with light gray background). After moving
rightwards from t=60.430s to t=60.520s, the agent again changes its orientation to left-
wards and moves from x = 1.428 to x = −0.772 reaching a position where x < 0 (see
red line in 6-A and red trajectory in 6-B).

This section illustrated the behavior of the agent carrying out a single trial of the
experiment, presented two limit cycles to which the network converged, and explained
how the dynamics of the network relates to the agent’s rightwards and leftwards move-
ments.

3.2 Natural frequency and coupling factor
In this section, we analyze how the parameters of the network (natural frequencies and
coupling factors) contribute to the generation of the network frequency dynamics. The
frequency dynamics depends on three variables: i) natural frequency of the oscillators;
ii) coupling factor between oscillators; and iii) effect of the sensory input. When the
effect of the sensory input is null, the network converges to self-sustained oscillations,
which are generated by combining the natural frequency of the oscillators with their
coupling factor. These variables are analyzed throughout this section.

The frequency dynamics of the network corresponding to the limit cycles shown in
5-B3 and C3 are presented in Figure 7-A and B, respectively. The frequency dynam-
ics is characterized by a pattern of alternated synchrony between the pair (θ1,θ2) and
the pair (θ2,θ3). While the oscillators θ1 and θ3 do not get synchronized and oscillate
at different frequency ranges (around 9Hz and 16Hz, respectively), the oscillator θ2
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Figure 6: (A) shows the agent’s movement (x-axis) and time (y-axis). At t=60s, the
shape of the object changes from circle to triangle. (B) shows the network dynamics
on the state space. There is correspondence between the colors shown in each graphic,
i.e. the leftwards movement shown in orange in graphic A is generated by the orange
trajectory shown in graphic B.

sometimes synchronizes with θ1 and sometimes with θ3.
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Figure 7: Frequency dynamics of the network corresponding to the agent’s behavior
presented in Figure 5-B1 and C1, respectively.

The natural frequencies of the oscillators are as following: ω1 = 8.06Hz (50.67rad/s),
ω2 = 13.23Hz (83.16 rad/s) and ω3 = 16.14Hz (101.41rad/s). The values of the cou-
pling factors ki,j are shown in Figure 8. The value of the coupling between θ1 and θ2 is
the strongest one, and between θ1 and θ3 the weakest one. The coupling factor between
θ1 and θ3 is half the value of the coupling between θ1 and θ2.

The coupling factor alone does not define the strength of a connection between a
pair of oscillators. The strength of a connection depends, as well, on the difference
between the natural frequencies of the oscillators. The same value for the coupling
factor ki,j can be considered weak when the difference is relatively high and strong
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Figure 8: Coupling factor ki,j (y-axis) for each pair of oscillators (i, j) (x-axis) in a
scale from 0 to 1.

Oscillators Difference in ω(rad/s) Coupling factor Strength

θ1 and θ2 83.16-50.67=32.49 18.387+8.906 = 27.293 0.840
θ3 and θ2 101.41-83.16=18.25 0.417+13.276 = 13.693 0.750
θ1 and θ3 101.41-50.67=50.74 1.290+0.445 = 1.735 0.034

Table 2: First column: pair of oscillators. Second column: difference in natural fre-
quency between the oscillators. Third column: coupling factor. Fourth column: cou-
pling factor divided by the difference in natural frequency.

when the difference is relatively low. Table 2 shows the value of the coupling strength
in relation to the coupling factor and difference in natural frequencies.

Although the coupling factor k3,2 is half the value of k1,2 (as shown in Figure 8), the
strength of the connection between θ3 and θ2 is actually 89% of the strength between θ1
and θ2 (0.1724

0.1934
= 0.89). Note that this result contributes to understanding the two modes

of frequency dynamics depicted in Figures 5-B3 and 5-C3 – i.e. while the oscillators
θ1 and θ3 keep oscillating around their natural frequencies, the oscillator θ2 sometimes
synchronizes with θ1 and sometimes with θ3.

When θ2 is either synchronized with θ1 or θ3, the sensory input has a low effect on
the network activity, as depicted in Figure 9. The highest effect of the sensory input
on the frequency dynamics takes place when the network is on the border that divides
the regions of frequency synchronization between θ2 and θ1 (f(θ2) − f(θ1) = 0 on
the x-axis), and between θ2 and θ3 (f(θ2) − f(θ3) = 0 on the y-axis), where f(θi)
is the frequency of oscillator i. A more detailed analysis of the relationship between
the sensory input effect and the network spontaneous activity is presented in the next
section.
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Figure 9: Input effect Ei(R) of Eqn. 7 (see colorbar) in relation to the frequency differ-
ence between the oscillators (see axis). The frequency difference f(θ2) − f(θ1) varies
from -1.8 to 11.5 (see x-axis). The frequency difference f(θ2)− f(θ3) varies from -7.9
to 2.2 (see y-axis). Dashed lines highlight the middle of the frequency differences.

4 Active role of spontaneous activity on sensory input
processing

The analysis of how spontaneous oscillations actively influence sensory input process-
ing is carried out in two steps. In the first one, presented in Section 4.1, we analyze the
network dynamics decoupled from the agent’s sensorimotor loop. This analysis aims to
show how the network’s spontaneous activity responds to a “manually” changed input.
It sets the ground to understand the process of modulation when the network is coupled
to the agent’s body constantly receiving sensory inputs, presented in Section 4.2.

4.1 Oscillatory network under constant sensory input
In this section, we analyze the oscillatory network outside the agent’s sensorimotor loop
by “manually” changing the agent’s sensory input (variable s) and studying the effects
on the vector field of phase relations.

Modulation of the vector field by the parameter s

The sensory input s modifies the vector field generating different trajectories. Fig. 10
shows how s modifies the angle and the magnitude of two example vectors in the state
space defined by φ1,2 and φ2,3. The angle and magnitude change differently for each
vector (see Figures 10-A2, A3, B2 and B3). The magnitude of v1 decreases from
0.0357 for s = 0 to 0.0354 for s = 1; and the magnitude of v2 decreases from 0.0325
for s = 0 to 0.0257 for s = 1. The angle of v1 changes from 82.3 degrees for s = 0 to
93.4 degrees for s = 1 (an increase of 11.1 degrees), and the angle of v2 changes from
29.3 for s = 0 to 35.4 degrees for s = 1 (an increase of 6.1 degrees). While v1 and v2

change differently, their components vφ1,2 and vφ2,3 undergo the same transformation.
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The component vφ1,2 linearly decays from 0.0068 between s = 0 and s = 1 for both v1

and v2 (see Figures 10-A4 and B4), and the component vφ2,3 maintains a constant value
for both v1 and v2 (see Figures 10-A5 and B5). The components vφ1,2 and vφ2,3 of all
vectors in the vector field undergo the same transformation; i.e. vφ1,2 linearly decreases
and vφ2,3 remains constant for all vector in the vector field; despite that, the transforma-
tion in the resultant vector is not linear as it depends on the angle and magnitude of the
vector (as exemplified by v1 and v2 in Figures 10-A1 and B1).
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Figure 10: Modulation of two example vectors by the parameter s. The first vector is
referred to as v1, shown in A1, at (φ1,2 = 1.57, φ2,3 = 0). The second vector is referred
to as v2, shown in B1, at (φ1,2 = 3.14, φ2,3 = 0). As the value of the sensory input
changes (s=0, s=0.5 and s=1 – see values near the head of each vector) the angle and
magnitude of v1 and v2 also changes. Small graphics underneath show how the angle
and magnitude of v1 and v2 change for the continuum s = [0, 1] (see A2, A3, B2, B3).
The magnitude of the components for each vector are shown in A4 and A5 (for v1) and
B4 and B5 (for v2), see the title of the graphics.

Phase relation dynamics under constant sensory input

Figure 11 shows the vector fields and the state space trajectories of phase relations φ1,2

and φ2,3 for s = 0, s = 0.3 and s = 1. The magnitudes of the vectors are greater
than zero for s = 0, s = 0.3 and s = 1, showing that θ1, θ2 and θ3 do not all become
synchronized together at any time. For s = 0, synchronization either takes place be-
tween θ1 and θ2 or between θ2 and θ3 (but not all three); in both cases the oscillators
become synchronized with a phase difference at around 1.57 radians (see the peaks on
the density distributions, Fig. 11-A). For s = 0.3, the oscillators do not become syn-
chronized (see the distributions of phase relations in Fig.11-B with H(φ1,2) = 0.97 and
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H(φ2,3) = 0.99, where H(φi,j) is the Shannon entropy (Shannon, 1948), calculated
from the distributions). For s=1, θ1 and θ2 are transiently synchronized at around 1.57
radians, and θ2 and θ3 are most of the time desynchronized (H(φ1,2) = 0.98), Fig. 11-C.
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Figure 11: Vector fields and trajectories in the state space of phase relations for s = 0
(graphic A), s = 0.3 (graphic B) and s = 1 (graphic C). The state space is defined
by φ1,2 (x-axis) and φ2,3 (y-axis). For ease of visualization, the arrows are three times
greater than their original magnitudes. The grey line shows a trajectory in the vector
field during a 10-second time-window starting at the initial state φ1,2 = 5.0 and φ2,3 =
3.5 radians. Thick colored lines highlight the first 300 ms of each trajectory. Histograms
parallel to the axes show the distribution of phase relations considering the 10-second
trajectory. The number near each distribution represents the Shannon entropy.

The colored trajectory shown in each graphic depicts the first 300ms of the phase
relation dynamics starting from the same initial state. The main difference between
the trajectories can be seen in the range φ1,2 = [0, 1.57] and φ2,3 = 0 (bottom left
part of the graphics). For s = 0 (graphic 11-A), the trajectory turns to the right side
(≈ 180 degrees in relation to the x-axis) showing that θ2 and θ3 are synchronized and
θ1 and θ3 desynchronized. For s = 0.3 (graphic 11-B), the trajectory follows nearly a
diagonal as φ̇1,2 = φ̇2,3 > 0 and later on turns to the right showing that θ2 and θ3 is more
synchronized than θ1 and θ3. For s = 1 (graphic 11-C), the trajectory moves upwards
(≈ 90 degrees in relation to the x-axis) showing that θ1 and θ2 are synchronized.
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Sensitivity of the network to sensory input

Note that Figures 11-A and C depict the vector fields of a network without input (s=0)
and maximum input (s=1), respectively. While trajectories in the vector field shown
in Figure 11-A correspond to the network’s spontaneous oscillations, trajectories in the
vector field shown in Figure 11-C correspond to the oscillations under the maximum
input.

The influence of the sensory input that moves the system from spontaneous to
sensory-related oscillations can be measured by (Ei(R)), as described in Eq.7. Note
that (Ei(R)) quantifies the difference between two vectors (one generated under s=0 and
another under s 6= 0) at a specific point of the state space. To obtain the maximum
influence that the sensory input can have throughout the state space, the value of s
was set to 1, and (Ei(R)) was calculated for 3600 equally spaced points in the intervals
φ1,2 = [0, 2π] and φ2,3 = [0, 2π]. The resulting surface is shown in Fig. 12-A. This
surface is referred to as the sensitivity surface as it defines the maximum effect that an
input can have on the network oscillations.

Figure 12: Sensitivity surface of the network to the sensory input. (A) Sensitivity in
the state space of phase relations (see axes). (B) Probability Density Function (pdf) at
the left y-axis) and Cumulative Distribution Function (right y-axis) of the sensitivity
(x-axis).

In the dark blue region of the state space, the network dynamics are generated by
spontaneous oscillations (Ei(R) ≈ 0). In this region, even high sensory inputs (s=1)
have a minor or no effect on the network dynamics. In the light blue region, the network
presents low sensitivity to sensory input. Between the light and blue regions, there is
a border ((Ei(R) ≈ 1), represented by red points) where the sensory signals have the
highest effect on the network oscillations. The sensitivity is below 0.45 in 90% of the
state space – see the Cumulative Density Distribution (cdf) of Ei(R) on the right y-axis
of Fig. 12-B.
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Considerations about the active role of spontaneous oscillations on sensory pro-
cessing

We observed that the transformation of the resultant vector by the sensory input is not
linear as it depends on the angle and magnitude of the vector (as studied in Section
4.1 and exemplified by v1 and v2 in Figures 10-A1 and B1). This contributes to un-
derstanding why each point of the surface has a different level of sensitivity to sensory
input (as studied in Section 4.1).

The network’s spontaneous dynamics actively participate in sensory processing by
establishing different levels of sensitivity to sensory signals. The effect of sensory input
on the network operation depends not only on the sensory input itself but also on the
level of sensitivity determined by the state of the spontaneously oscillating network.
If, for instance, the sensory input is high when the network activity is predominantly
generated by internal activity (i.e., low sensitivity), or if the sensory input is low in areas
of high sensitivity, then the sensory input will not cause an effect on the oscillatory
dynamics.

4.2 Oscillatory network coupled to the sensorimotor loop
Dynamic coupling between self-sustained activity and sensory inputs

The aim of this section is to present how the sensory input dynamics couples to the
sensitivity dynamics and generates task-related oscillations.

The values of sensory input, sensitivity, and the relative effect of sensory input under
the interaction with circles and triangles are shown in Figure 13. In the limit cycle
underlying the interaction with the circle, there are two regions where the network is
more open to sensory stimulation – see points P1 and P2 in Fig. 13-A1. The values of
sensitivity at these points are 0.99 and 0.91, respectively. While the sensitivity is high
at both points, the input is high only at P1 (s=0.36 at P1 and s=0.04 at P2), as shown
in Fig. 13-A2. As the sensitivity and the input are high at P1, the sensory effect is also
high (0.98 – shown by P1 in Fig. 13-A3). On the other hand, a combination of high
sensitivity and low input generates a lower sensory effect (0.29) at P2. The sensitivity,
the input, and the relative effect of sensory input underlying the interaction with the
triangle are shown in Fig. 13-B1, B2, and B3, respectively. Two points P1 and P2 with
sensitivity equal to 0.50 and 0.97, respectively, are highlighted in Fig. 13-B1. While
at P1, an input of 0.85 generates a sensory effect of 0.46, at P2, a lower input of 0.34
generates a higher sensory effect of 0.90 (values obtained from Figures 13-B2 and B3).

Note that the intensity of sensory input and the state of the network are dynamically
coupled to produce the modulation of the vector field that generates the trajectory cor-
responding to the task-related oscillations underlying the agent’s successful behaviors.

Effect of the input on the network

The aim of this section is to show how much of the sensory-evoked neural activity is
generated by sensory inputs and how much is generated by the network’s self-sustained
activity.
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Figure 13: Sensitivity (A1), input (A2) and sensory effect (Graphic A3) throughout the
limit cycle underlying the interaction with circles. The same graphics for the interaction
with triangles are shown B1, B2, and B3. Points P1 and P2 highlight two regions of
state space, which are discussed in the text body.

The distribution of relative sensory effects underlying the interaction with circles
and triangles are depicted in Figure 14-A and B, respectively. For the circle and triangle
(14-A and B), 75% of Ei(R) values are below 0.05 and 0.17, respectively. During the
interaction with both types of objects, 75% of Ei(R) values are below 0.13.

While Ei(R) represents the relative sensory effect at a point of the state space, the
total sensory effect considering a trajectory in the state space can be quantified by ε,
as described in Eq. 8. The values of ε for the network trajectories underlying the in-
teraction with circles, triangles, and both types of objects are shown in Table 3. When
the agent is carrying out the task, interacting with circles and triangles, 6.90% of the
sensory-evoked neural activity is generated by sensory inputs. When it is interacting
only with circles or triangles, the effects are 3.26% and 9.62%, respectively. This anal-
ysis shows that most of the sensory-evoked activity is generated by the network’s inter-
nally generated activity with relatively limited influence from the sensory inputs.

We carried out an additional experiment to find out how much of the total effect
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Figure 14: Density distribution for relative sensory effect, Ei(R), under interaction with
circles (A), triangles (B), and while the agent is carrying out the task, interacting with
both types of objects (C). The probability distribution is represented by blue bars with
value on the left y-axes. The cumulative distribution is represented by the red line with
values on the right y-axes.

Interaction ε

circle 3.26%
triangle 9.62%

circle and triangle 6.90%

Table 3: First column: type of object the agent is interacting with. Second column:
effect of sensory inputs (in percentage) on the network dynamics.

(6.90%) is actually exploited by the network to generate the trajectories underlying the
agent’s successful behavior. To do that, we measured the agent fitness for gradually
reduced values of effect ε. The values of ε were reduced by setting a percentage of
random sensory inputs to zero drawn from a uniform distribution over the trial. As
shown in Figure 15, the fitness is equal to 99% of the peak fitness (with unreduced
ε) for ε = 6.43(93.2% of original value), which means that if 6.8% (100%-93.2%) of
sensory inputs are discarded, the agent’s overall performance is reduced by only 1%.
The agent’s fitness drops to 98% for ε = 6.18(89.6%), which means that if 10.4%
(100%-89.6%) of sensory inputs are discarded, the agent’s behavior degrades by only
2%. From this point onward, the rate of decay increases, for ε = 4.07(59%), for
instance, the fitness is equal to 52%; that is, decreasing 41% of the sensory input effect
reduces the fitness by 48%.

This finding is reminiscent of the observation that spontaneous neural activity in
visual areas of some animals’ brains plays an active role in enabling robust extraction
of pertinent sensory information (Romano et al., 2015). In our agent, the interaction
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between sensory input and SSA is tuned to enable extraction of behaviorally relevant
information – even when the sensory signal is degraded – in order to distinguish circles
from triangles and complete the required sensorimotor task.
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Figure 15: Agent’s fitness (y-axis on a scale from 0% to 100%) for different values of
effect ε (see inverted x-axis) as sensory input is degraded. Numbers in parenthesis on
the x-axis show the percentage of ε in relation to its maximum value (6.90). Each value
of fitness is the average of 100 trials. See text for further details.

Conclusions
Empirical works have posited that sensory-evoked neural oscillations are generated
from the modulation of ongoing spontaneous neural dynamics, rather than simply re-
flecting the structure of the sensory activity itself (e.g., Arieli et al. (1996); Fisher et al.
(2004); Romano et al. (2015); Samaha et al. (2020)). The work described in this paper
contributes to the understanding of how this modulation takes place.

The analysis of how the sensory input modulates the vector field of phase relations
contributes to explaining why the sensitivity varies throughout the entire state space. It
was shown that as the sensory input s increases from 0 to 1, the component vφ1,2 linearly
decreases and vφ2,3 maintains a constant value. Despite this linearity, the transformation
in the entire vector field is not linear as it depends on the angle and magnitude of each
vector.

We have seen that spontaneous oscillations define different levels of sensory pro-
cessing sensitivity – these levels were plotted throughout the state space of phase re-
lations and denoted as a sensitivity surface. By defining different levels of sensitivity,
the spontaneous oscillations actively participate in sensory input processing. Note that
most, if not all, dynamical systems respond differently to sensory inputs depending on
their internal states; i.e., they have their sensitivity surfaces. What is important in our
work is not that the system has a sensitivity surface, but how it was built and, conse-
quently, the information it provides us about the operation of the system. The surface
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was built by quantifying the difference in the trajectories, for each point of the state
space, considering the network with (Ei in Eq.5) and without (Ec in Eq.6) sensory in-
puts. From the values of Ei and Ec, the effect of the sensory input in relation to the
effect of the self-sustained dynamics was measured on a scale from 0% to 100%, as
described in Eqs.7 and 8. While Eq.7 quantified the sensory effect at a specific point of
the state space, Eq.8 quantified the sensory effect for a trajectory in the state space. Al-
though previous works have analyzed the effect of inputs on the spontaneous dynamics
of brain-body-environment systems (e.g. Fernandez-Leon (2012); Moioli et al. (2012);
Shim & Husbands (2015)), they use different methodologies and consequently give a
different perspective on how this interaction takes places.

The points in the sensitivity surface and the trajectories underlying the agent’s be-
havior have shown a predominance of points with low effect of sensory inputs. When
the agent was carrying out the task, interacting with both types of objects, the sensory-
evoked activity was predominantly generated by self-sustained activity (93.10%) with
relatively little influence from sensory inputs (6.90%). By reducing the sensory in-
fluence by 10.4% (from 6.90% to 6.18%), the agent’s performance dropped only by
2%. That is, besides the low influence of sensory inputs on the network trajectories,
the network does not depend on the whole set of sensory inputs to sustain the agent’s
functional behavior.

The analysis of the dynamic coupling between self-sustained activity and sensory
inputs showed that task-related oscillatory dynamics underlying the agent’s behaviors
are not standalone entities in a neural system waiting for sensory inputs to be acti-
vated. Instead, they are generated by a fine-grained dynamic coupling between the
self-sustained oscillations and the agent’s sensory dynamics. The idea of coupled dy-
namics in brain-body-environment systems is of course not new, and has been explored
by several researchers (e.g. Beer (2003); Mirolli (2012); B. Santos et al. (2012); Aguil-
era et al. (2013)). Those studies have shown, from a variety of perspectives, that the
sensory activity dynamically couples to the network’s sensitivity generating trajectories
in the state space that will ultimately produce functional sensorimotor coordination.
However, to our knowledge, no previous work has systematically quantified the effect
of sensory inputs on the network’s ongoing dynamics. Here we have quantified how
much of the network activity is due to sensory input and how much is due to the agent’s
internal activity, thus allowing a deeper level of analysis. This quantification was en-
abled by the novel method described in Sec. 2.4, which has not been used in the context
brain-body-environment systems before.

The results obtained from our abstract model may suggest interesting directions for
future research that investigates how ongoing neural activity influences sensory input
processing and ultimately affects behavior. In this general area some researchers have
tried to predict sensory-evoked neural dynamics based on the ongoing neural activity
before the stimulus onset (e.g., Barik et al. (2019); Samaha et al. (2020); Michail et al.
(2021)). Barik et al. (2019), for instance, predicted, with an accuracy of 75%, the out-
come behavior of subjects in a go/no-go task by using the pre-stimulus ongoing neural
activity. Our abstract model can suggest angles to investigate on how these predictions
are possible – e.g. it is possible that most of the sensory-evoked activity underlying
the subject’s behavior predominantly consists of pre-stimulus ongoing dynamics with
limited influence from the sensory inputs.
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