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The dynamic formation of groups of neurons—neuronal assemblies—
is believed to mediate cognitive phenomena at many levels, but their
detailed operation and mechanisms of interaction are still to be uncov-
ered. One hypothesis suggests that synchronized oscillations underpin
their formation and functioning, with a focus on the temporal structure
of neuronal signals. In this context, we investigate neuronal assembly
dynamics in two complementary scenarios: the first, a supervised spike
pattern classification task, in which noisy variations of a collection of
spikes have to be correctly labeled; the second, an unsupervised, mini-
mally cognitive evolutionary robotics tasks, in which an evolved agent
has to cope with multiple, possibly conflicting, objectives. In both cases,
the more traditional dynamical analysis of the system’s variables is paired
with information-theoretic techniques in order to get a broader picture
of the ongoing interactions with and within the network. The neural net-
work model is inspired by the Kuramoto model of coupled phase oscilla-
tors and allows one to fine-tune the network synchronization dynamics
and assembly configuration. The experiments explore the computational
power, redundancy, and generalization capability of neuronal circuits,
demonstrating that performance depends nonlinearly on the number of
assemblies and neurons in the network and showing that the frame-
work can be exploited to generate minimally cognitive behaviors, with
dynamic assembly formation accounting for varying degrees of stimuli
modulation of the sensorimotor interactions.

1 Introduction

Since Hebb’s seminal work on brain activity (Hebb, 1949), the transient
formation of neuronal groups or assemblies is increasingly linked to cog-
nitive processes and behavior. In fact, there is a growing consensus that
ensembles of neurons, not single neurons, constitute the basic functional
unit of the central nervous system in mammalians (Averbeck & Lee, 2004;
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Nicolelis & Lebedev, 2009). However, labeling a certain group of neurons
as constituting an assembly is a challenging task that only recently has
been alleviated by more advanced recording techniques and analysis tools
(Buzsaki, 2010; Lopes dos Santos, Conde-Ocazionez, Nicolelis, Ribeiro, &
Tort, 2011; Canolty et al., 2012). Also, it is still unclear how neuronal groups
form, organize, cooperate, and interact over time (Kopell, Kramer, Malerba,
& Whittington, 2010; Kopell, Whittington, & Kramer, 2011).

One hypothesis that has gained considerable supporting experimental
evidence states that groups of neurons have their functional interactions
mediated by synchronized oscillations—so-called binding by synchrony
(Singer, 1999; Varela, Lachaux, Rodriguez, & Martinerie, 2001; Uhlhaas et al.,
2009). Because structural connectivity is relatively static at the timescale of
perception and action, the central idea is that the synchronization of neu-
ronal activity by phase locking of network oscillations is exploited to define
and encode relations between spatially distributed groups of neurons, and
information dynamics and computations within the network relate to the
timing of individual spikes rather than their rates. Indeed, phase relation-
ships contain a great deal of information on the temporal structure of neural
signals, modulate neuron interactions, are associated with cognition, and
relate to memory formation and retrieval (Izhikevich, 1999; Womelsdorf
et al., 2007; Masquelier, Hugues, Deco, & Thorpe, 2009; Kayser, Monte-
murro, Logothetis, & Panzeri, 2009). Moreover, recent work has shown that
specific topological properties of local and distant cortical areas support
synchronization despite inherent axonal conduction delays, thereby pro-
viding a substrate on which neuronal codes relying on precise interspike
time can unfold (Vicente, Gollo, Mirasso, Fischer, & Pipa, 2008; Pérez et al.,
2011).

Based on these concepts, in this letter, we focus on a pragmatic inves-
tigation of three aspects of computations in neuronal assemblies. Given a
computational task and a neural network model comprising many neurons
that are organized in an arbitrary number of assemblies, (1) does increas-
ing the number of neural assemblies improve performance? (2) does the
number of neurons per assembly affect performance? and (3) can dynamic
assembly reorganization alone, leaving aside other plasticity mechanisms,
be exploited to solve different tasks?

We approach these questions employing a neural network model based
on the Kuramoto model of coupled phase oscillators (Kuramoto, 1984). It
has been extensively studied in the statistical physics literature, with recent
applications in a biological context due to its relatively simple and ab-
stract mathematical formulation yet complex activity that can be exploited
to clarify fundamental mechanisms of neuro-oscillatory phenomena with-
out making too many a priori assumptions (Ermentrout & Kleinfeld, 2001;
Cumin & Unsworth, 2007; Kitzbichler, Smith, Christensen, & Bullmore,
2009; Breakspear, Heitmann, & Daffertshofer, 2010; Moioli, Vargas, & Hus-
bands, 2012). The model explicitly captures the phase dynamics of units
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that have intrinsic spontaneous oscillatory (spiking) activity and once con-
nected can generate emergent rhythmic patterns. The correspondence be-
tween coupled phase oscillators and neuronal models is grounded in the
phase reduction approach (Ermentrout & Kopell, 1986), according to which
analysis of neuronal synchronization phenomena based on complex models
can be greatly simplified by using phase models.

However, in addition to modeling constraints (described in section 2),
the original Kuramoto model has limited spectral complexity compared to
that of more biologically plausible neuronal models (Bhowmik & Shanahan,
2012). For this reason, recent extensions have been formulated to enhance its
suitability to study a variety of neurobiological phenomena, incorporating,
for example, spatially embedded couplings, transmission delays, and more
complex phase response curves (Breakspear et al., 2010; Wildie & Shana-
han, 2012). Nevertheless, it is possible to represent neurons as simple phase
oscillators and model the spiking of individual cells, and results can still be
of relevance. Indeed, this is exactly the objective: to avoid physiologically
precise models that could make the analyses laborious and instead use a
model that despite all the simplifications still presents complex and rele-
vant spatiotemporal activity. One particular extension, presented in Orosz,
Moehlis, and Ashwin (2009), allows one to fine-tune the synchronization
regime, the number of assemblies, and the number of neurons per assem-
bly, thus suiting our study, while also avoiding any problems in obtaining
phase information (an issue in other models that consider frequency and
amplitude dynamics; Pikovsky, Rosenblum, & Kurths, 2001). Hence, the
extended Kuramoto model is highly relevant, at a certain level of abstrac-
tion, to modeling neural mechanisms underlying adaptive and cognitive
behaviors and is used in the studies presented here.

The experiments were set up to encompass supervised and unsuper-
vised learning scenarios (Dayan & Abbott, 2001). In supervised learning,
there is an explicit target or supervisory signal mapping each set of in-
puts to expected outputs. In unsupervised learning, the system exploits the
statistical structure of the set of inputs and operates as a self-organized,
goal-oriented process. Although the latter is regarded as being more com-
mon in the brain, evidence suggests that both learning paradigms overlap
and may be implemented by the same set of mechanisms (Knudsen, 1994;
Dayan, 1999).

The first experiment, a supervised learning scenario, follows a method
described in Maass, Legenstein, and Bertschinger (2005) and Legenstein
and Maass (2007) to assess computational performance in generic neuronal
microcircuits. More specifically, we analyze the computational power and
generalization capability of neuronal networks with diverse assembly con-
figurations in a generic spike pattern classification task. The method is
especially suited to our goals because it proposes a measure to test the
computational capability of neural microcircuits that is not exclusive to
the task investigated here but to all computational tasks that need to have
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in common only which properties of the circuit input are relevant to the
target outputs. In networks with the same number of neurons, we show
that the performance of architectures constituted by many assemblies (and
fewer neurons per assembly) is higher than the ones with fewer assemblies
(and more neurons per assembly). We also show that in networks of var-
ied size, performance saturates as soon as a given number of assemblies is
formed, and the addition of neurons in each assembly does not influence
performance in the classification task. In both scenarios, an analysis of re-
dundancy and synergy, based on concepts of information theory, supports
and provides further insights into the properties of the system.

The pattern classification task mentioned above may reflect or mimic
some of the computations that are actually carried on in a real-world cog-
nitive scenario; nevertheless, it does not capture the main task of cognition,
which is the guidance of action. As Engel, Fries, and Singer (2001) pointed
out “The criterion for judging the success of cognitive operations is not
the correct’ representation of environmental features, but the generation of
actions that are optimally adapted to particular situations.” Therefore, in
the second experiment, an unsupervised learning scenario, we investigate
evolved embodied cognitive behaviors in a simulated robotic agent. Fol-
lowing an evolutionary robotics approach, we show that the same network
architecture of experiment 1 can be used as a control system for a simulated
robotic agent engaged in a minimally cognitive task and that assembly
reconfiguration can account for good performance in multiple, possibly
conflicting tasks. The analysis is centered on both the system’s variables
dynamics, illustrating the interplay between dynamic assembly formation
and the action being displayed by the robot, and the information dynamics
between some components of the system, which complements the former
analysis by quantifying and emphasizing the nonlinear relationships that
are present in the brain-body-environment interactions.

As a consequence of approaching different learning paradigms, the anal-
yses for the two experiments use distinct but appropriate tools. However,
it is important to stress that these experiments are conceptually connected
by the emphasis on neuronal assembly dynamics and its impact on task
performance. The methods employed to explore supervised learning tasks
struggle to operate in unsupervised scenarios because the former rely on
coordinated, time-specific perturbations and measurements, with a focus
on precise classifications, while the latter are mainly concerned with the
behavior of the evolved robots. Notwithstanding, the first experiment pro-
vides insights into the system’s dynamics, which contribute to the com-
prehension of the more elaborated second experiment. In this sense, the
supervised and unsupervised learning tasks and the respective methods
of investigation do not contradict but rather reinforce the flexibility of the
framework in addressing diverse learning problems.

This letter is organized as follows. Section 2 presents the neural net-
work model, including the rationale behind neural network models using
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coupled phase oscillators and the extension to the Kuramoto model, which
facilitates the study of assembly dynamics, and a brief introduction to in-
formation theory, which is the basis of some analysis carried on in the
experiments; sections 3 and 4 contain task-specific analysis methods and
the results of the first and second experiment, respectively. The letter con-
cludes in section 5 by highlighting the main contributions and giving a
general discussion of the results obtained.

2 Theoretical Background

2.1 Neural Network Model. Neural network models based on the
dynamics of voltage-dependent membrane currents (among which the
Hodgkin-Huxley model is perhaps the best known) can be described by
a single phase variable θ provided that the neurons are assumed to spike
periodically when isolated, their firing rates are limited to a narrow range,
and the coupling between them is weak (Hansel, Mato, & Meunier, 1995).
In fact, many neural oscillatory phenomena can be captured and analyzed
by studying the dynamics of coupled phase oscillators (Izhikevich, 2007),
provided that the above conditions hold. In this sense, the Kuramoto model
(Kuramoto, 1984) of coupled phase oscillators has been shown to be a use-
ful tool in studying oscillatory phenomena in a broad range of fields, from
semiconductor physics to fireflies’ blinking pattern. The model is described
by equation 2.1:

θ̇n = ωn + K
N

N∑
m=1

g(θn − θm), n = 1, . . . , N, (2.1)

where θn is the phase of the nth oscillator, ωn is the natural frequency of the
nth oscillator, K is the coupling factor between the nodes of the network,
g(θn − θm) = sin(θn − θm) represents the interaction between nodes, and N
is the total number of oscillators.

The phase interaction function (PIF) g assumes the mutual influence
among the symmetrically coupled oscillators to be periodic, that is, gnm(x +
2π) = gnm(x); it can thus be expanded into a Fourier series. The Kuramoto
model considers only the first term of this series, but when g incorporates
more complex interactions between the nodes rather than the first harmonic
only, the model displays a more complex spatiotemporal behavior and the
synchronization patterns observed are closer to the ones measured in real
brains (Hansel et al., 1995; Breakspear et al., 2010).

In particular, Ashwin, Wordsworth, and Townley (2007) and Words-
worth and Ashwin (2008) showed, when adopting a specific g, that the
model is able to display heteroclinic cycles, a fundamental mechanism of
cognition according to some authors (Ashwin & Timme, 2005; Rabinovich,
Afraimovich, Bick, & Varona, 2012). Additionally, Orosz and collaborators
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(2009) demonstrated how to design g so that the network organizes itself in
an arbitrary number of stable clusters with a given phase relationship be-
tween clusters. These clusters, which emerge as an attractor of the system,
remain stable up to a certain level of perturbations, applied in the form of
inputs, above which a reorganization occurs, maintaining the same num-
ber of assemblies but with different membership configurations. Therefore,
considering the aims of our study, this latter extension will be used in the
subsequent experiments and is used as an abstract representation of inter-
actions between spiking neurons. Equation 2.2 describes the model for N
oscillators (Orosz et al., 2009):

θ̇n = ωn + K
N

N∑
m=1

g(θn − θm) + εnIn(t), n = 1, . . . , N, (2.2)

where In(t) is an input scaled by a factor εn, and the PIF g(γ ) has the form
of equation 2.3:

g(γ ) = fM(γ ) + fM(γ − ξ ) (2.3)

where fM(γ ) = −2 tanh(M sin(γ /2)) sech2
(M sin(γ /2)) cos(γ /2) and ξ =

2π/M.
This PIF is obtained by a suitable choice of g and its derivatives to ensure

that a system with N oscillators will present M stable assemblies separated
equally in phase, with oscillators grouped according to their initial phases
(which will dictate their position in the attraction basin determined by the
total number of assemblies and parameter M). Assembly membership—
which oscillator belongs to which assembly—can be changed if one applies
an input to a given oscillator with a minimum magnitude and length.
These will depend on the number of oscillators and assemblies (parameter
M) of the network. Nevertheless, small perturbations still affect the overall
behavior of the system. Figure 1 illustrates the main properties of the model.

The network is composed of nine fully connected neuronal oscillators
with unitary couple (without loss of generality, the PIF is assumed to cap-
ture any effect due to larger or smaller couplings). The initial phases are
uniformly distributed in the interval [0, 2π), and the oscillators organize
in M = 3 different (but with equal number of members) assemblies after
a settling period (see Figure 1c). As the focus is on neuronal assembly in
terms of phase relationships, we set the natural frequency wn of all neurons
to 1. In Figure 1d, the raster plot shows the neuronal spikes that occur every
time the phase of each oscillator reaches a given threshold (0 in the example,
but any other marker is acceptable). Notice from both figures the formation
of three assemblies of three neurons each.

After a settling period, the system stabilizes in M assemblies and presents
a periodic firing behavior. However, inputs to one or more neurons can
change the network dynamics in two ways: it can modulate the ongoing
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Figure 1: Model simulation using the PIF described by equation 2.3, with pa-
rameters N = 9, M = 3, K = 1, and wn = 1. Oscillators form three clusters, and
inputs to a given oscillator cause a transition to a different cluster, if the mag-
nitude is high enough, or a modulation of the network behavior, if the input
is small enough. (a) Network topology model. (b) PIF diagram (see equation
2.3). (c) Phase dynamics of each oscillator. The initial phases are uniformly dis-
tributed in [0, 2π), and as the simulation progresses, the oscillators form M = 3
assemblies (assembly membership is represented by different gray tones in the
plot). The small plot shows the moment (t = 30; see the black arrow) one oscil-
lator moves from one assembly (solid light gray line) to another (dashed light
gray line). (d) Raster plot showing the neuronal spikes that occur every time the
phase of each oscillator reaches 0. (e) Effects of inputs on the system’s dynam-
ics, portrayed as the phase difference γn,1 of each node n to node 1: inputs can
cause an oscillator to change assemblies (black arrows) or modulate its ongoing
activity within the same assembly (gray arrow).
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activity in all assemblies without changing their organization, or it can
cause the assemblies to rearrange. Figure 1e illustrates the effects (see the
caption for simulation parameters). At the beginning of the simulation,
the initial phase values of each neuron will determine to which assembly
each neuron will be associated. The number of assemblies (parameter M)
determine the size of the attraction basin and hence the necessary input
amplitude and length to cause a given node to switch assemblies. In the
example, the phase of an oscillator has to be perturbed by an absolute
value greater than π/3 to change to a different stable cluster. At time t = 30,
an input of sufficient duration and magnitude is applied to one neuron,
causing it to “jump” and take part in a different assembly. At iteration
t = 50, an input of the same duration but smaller amplitude than the one at
t = 30 perturbs the overall dynamics of the network but does not result in
a change in assembly membership. Finally, at iteration 70, an input of the
same duration but opposite magnitude as the first causes the related neuron
to jump to another assembly. Notice, in the insert plot of Figure 1c and in
the raster plot in Figure 1d, the changes in phase dynamics and spiking
activity due to different forms of inputs.

2.2 Information Theory. Information theory provides a framework for
quantifying and emphasizing the nonlinear relationships between variables
of the system, hence its suitability in biology and robotics studies (Rieke,
Warland, van Steveninck, & Bialek, 1997; Lungarella & Sporns, 2006). Ac-
cording to the standard definition, information is not an absolute value
obtained from a measurement but rather a relative estimation of how much
one can still improve on the current knowledge about a variable.

Commonly, transmitter-receiver modeling involves random variables,
and the inherent uncertainty in trying to describe them is termed entropy
(Shannon, 1948; Cover & Thomas, 1991). It is an intuitive notion of a measure
of information, described by equation 2.4:

H(X) = −
∑
x∈A

p(x) log p(x), (2.4)

where X is a discrete random variable defined for an alphabet A of symbols
and probability mass function p(x).

In experiments 1 and 2, we present different measures of information,
based on the concept of entropy, to gain further knowledge on the relation-
ship of input spike trains, neuronal responses, and motor behavior.

3 Experiment 1

Maass et al. (2005) proposed a method to evaluate the computational power
and generalization capability of neuronal microcircuits independent of the
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network setup. In this first experiment, the model described in section 2
is used to analyze the computational performance of networks structured
in various assembly sizes with diverse numbers of neurons per assembly.
In the following analysis, different network configurations are obtained
varying the value of M (see equation 2.2) and the initial phase of each
neuron.

3.1 Methods

3.1.1 Classification Tasks, Computational Power, and Generalization Capabi-
lity. Maass et al. (2005) proposed the linear separation property as a quan-
titative measure for evaluating the computational power of a neuronal
microcircuit. The premises are that the microcircuit consists of a pool of
highly recurrently connected neurons and that the information encoded in
their activity can be extracted by linear readout neurons able to learn by
synaptic plasticity, with no influence from readout units to the microcircuit.
Although these simplifying assumptions have as impact on the biological
relevance of the results, they are still valid in the face of the many uncer-
tainties regarding electrochemical interactions in the brain and the nature
of neural coding. In fact, the literature on brain-machine interface (BMI)
studies has been able to show that a relatively simple linear readout unit
from a reduced number of neurons is able to extract the relevant neuronal
activity that relates to the action being performed (Lebedev et al., 2005).
Also, Buzsaki (2010) argues that cell assembly activity can be better un-
derstood from a “reader” perspective, able to produce outputs given the
ongoing activity.

Consider the model described by equation 2.2. Let us call the n size vector
θ (t0) the system state at time t0. Now consider a neuronal microcircuit C
and m different inputs u1, . . . , um that are functions of time. One can build
an n × m matrix M in which each column consists of the states θui

(t0); that
is, each column consists of the phase value of each node n at time t0 after
the system has been perturbed by an input stream ui. The rank r ≤ m of
matrix M can then be considered as a measure of the computational power
of circuit C. Based on linear algebra, the rationale is as follows: if M has
rank m, a linear readout unit of microcircuit C can implement any of the
2m possible binary classifications of the m inputs, that is, any given target
output yi at time t0 resulting from the input ui can be mapped by a linear
readout unit (Maass et al., 2005).

Another important measure regarding a neuronal microcircuit is its abil-
ity to generalize a learned computational function to new inputs. Consider
a finite set S of s inputs consisting of many noisy variations of the same
input signal. One can build an n × s matrix M whose columns are the
state vectors θus

(t0) for all inputs u in S. An estimate of the generaliza-
tion capability of this circuit is then given by the rank r of matrix M. (See
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Vapnik, 1998, and Maass et al., 2005, for a more complete description of the
method.)

In the experiment, we evaluate oscillatory neuronal networks comprising
of 80 ± 4 neurons organized in different assembly configurations. Ideally,
for consistency in the comparisons among the measurements, the system
should always have the same number of states across different trials; how-
ever, as we are interested on the gradient of performance when comparing
different assemblies’ setup, we have used architectures with a few more or
somewhat fewer states for a broader set of configurations.

In this way, for a variety of possible architectures of microcircuits C,
the task consists of classifying noisy variations u of 20 fixed spike patterns
arbitrarily divided into two classes (0 or 1). For one randomly chosen classi-
fication task (there are 220 possible classifications of the spike patterns), the
objective is to train a linear readout unit to output at time t = 4 s the class of
the spike pattern from which the noisy variation input had been generated.
Each spike pattern u consisted of a Poisson spike train with a rate of 1 Hz
and a duration of 4 s. Inputs are always applied to node 2 of the network,
according to equation 2.2. A Euler integration time step of 0.02 s is used.

At the beginning of a simulation, 20 fixed spike patterns are generated.
For each pattern, we produced 30 jittered spike trains by jittering each
spike in each spike train by an amount drawn from a gaussian distribution
with zero mean and standard deviation of 0.1 s. If after jittering, a spike
was outside the time interval of [0, 4] seconds, it was discarded. Twenty
of the jittered sequences are used for training, and 10 are used for testing
the performance. Figure 2a shows some examples of input spike trains and
the respective jittered versions. For each simulation, we randomly classified
10 spike patterns as belonging to class 1 and 10 to class 0 (recall that there
are 220 possible forms of classifying the patterns).

To calculate the computational power, we generated 76 different spike
patterns in the same way as for the classification task. The state vectors of the
neuronal circuit at time t = 4 s (θ (t0 = 4)) with one of the 76 spike patterns
as input were stored in the matrix M, and its rank r was estimated by
singular value decomposition. To calculate the generalization performance,
the procedure was similar to the one just described, but instead of using 76
spike patterns as inputs to the network, we used 38 jittered versions of two
different spike patterns, following the recommendation that the number of
network states should be superior to the size of S (Legenstein & Maass,
2007).

3.1.2 Redundancy and Synergy. Another insight into the activity of neu-
ronal assemblies can be given by measurements of redundancy and syn-
ergy (Reich, Mechler, & Victor, 2001; Schneidman, Bialek, & Berry, 2003;
Narayanan, Kimchi, & Laubach, 2005). In a given network composed of
many interacting neurons arranged in assemblies, if the information en-
coded by a given pair of neurons is greater than the sum of the information
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Figure 2: Simulation results for experiment 1. (a) Examples of spike trains used
as inputs. In each of the four panels, five spike trains are presented: the origi-
nal spike pattern (top train of each panel) and four respective jittered versions
(subsequent trains in each panel). (b) Classification performance (fraction of
correct classifications) obtained by architectures consisting of approximately 80
neurons arranged in a diverse number of assemblies; computational power, cal-
culated as the value of rank(Mn,m), where each column of M is the state θum

(t4)

of the network at time t = 4 s when submitted to an input um—the higher this
value, the better a linear readout unit can discriminate among different input
spike patterns (values are normalized between 0.6 and 1 to improve visuali-
sation); generalization capability, similar to the computational power, but the
inputs are now jittered versions of the same spike train—the smaller this values,
the more likely the variations in a spike train will be interpreted as noise in-
stead of consisting of a different spike train; performance prediction, calculated
as the difference between the computational power and generalization capabil-
ity. (c) Impact on the classification performance of three different architectures
(6, 16, and 39 assemblies composed of 13, 5, and 2 neurons, respectively) caused
by variations in three parameters of the input spike train (each parameter is
varied while keeping the other two constant): the standard deviation of the
gaussian jitter in the spike trains j (in s), the spike firing rate f (in Hz), and the
number of patterns to classify Np. (d) State separation and synergy (rescaled
to vary between 0 and 2 to improve visualization). Higher values of the first
indicate that the network state θ (t) reflects more details of the input stream
that occurred some time in the past; higher values of the latter indicate a more
synergistic (less redundant) system. All the previous results are mean values
over 20 different simulations, and shaded areas are the 95% confidence interval.
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encoded by the individual neurons, we say that there is a synergistic inter-
action; if it is less, we say that the interaction is redundant.

Consider a neuronal network with an activity set An of each individual
neuron n composed of a states and a finite set S of s inputs. The mutual
information (in bits) between the stimuli and the responses, I(S; A), that
is, the reduction of uncertainty about the stimuli given that the neuronal
activity A is known is given by

I(S; A) = H(S) − H(S|A) =
∑
s∈S

∑
a∈A

p(s, a) log2

[
p(s, a)

p(s)p(a)

]
. (3.1)

The equation for a pair of neurons is thus

I(S; A1, A2) =
∑

s

∑
a1,a2

p(s, a1, a2) log2

[
p(s, a1, a2)

p(s)p(a1, a2)

]
. (3.2)

Given equations 3.1 and 3.2, the synergy between a pair of neurons is
then defined as (Schneidman et al., 2003)

Syn(A1, A2) = I(S; A1, A2) − I(S; A1) − I(S; A2)

I(S; A1, A2)
. (3.3)

Notice that if the mutual information between the two neurons is 0,
that is, if they have unrelated activity, equation 3.2 reduces to I(S; A1, A2) =
I(S; A1) + I(S; A2), and the synergy value given by equation 3.3 is 0. Synergy
varies from −1, if the interaction between the neuronal pair is completely
redundant, to 1, when the information conveyed by the pair activity is
greater than the information conveyed individually by the neurons.

To estimate the synergy value, stimuli consisted of eight noisy varia-
tions of eight different spike patterns, lasting for 200 iterations and with
the same characteristics as detailed before, and the neuronal activity An is
the phase value of neuron n at the end of simulation. We performed 20
experiments for each pair of neurons, and 10 different randomly chosen
pairs were used. The results were then averaged. Sets S and A were dis-
cretized into eight equiprobable states, which improves the robustness of
the statistics (Marschinski & Kantz, 2002), and finally the joint probabili-
ties associated with the information-related measures were estimated using
histograms (Lungarella, Ishiguro, Kuniyoshi, & Otsu, 2007). In this way, at
the end of each experiment, a table whose columns are all the possible com-
binations of [a1, a2] and whose lines are all the possible stimuli s1, . . . , s8
is formed, and each field of this table contains the probability p(a1, a2|sn),
from which the synergy calculations were performed (see equations 3.1 to
3.3). An important point to stress is that ideally, we should have tested
all possible neuron pairs and assembly combinations, but that would have
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been computationally prohibitive. Nevertheless, considering the standard
deviations observed in the experiments that follow, we believe the results
are informative.

3.2 Results. Figure 2b shows the results for the classification perfor-
mance, the computational power, and the generalization capability of the
system. Notice the increase in performance as one moves from networks
with fewer assemblies (and more neurons per assembly) to architectures
constituted by many assemblies (and few neurons per assembly). The com-
putational power and the generalization capability have the same values
until a critical architecture is reached, after which they start to behave dif-
ferently. Recall that both measures are based on calculations of matrices’
ranks, which indicate the maximum number of linearly independent rows
or columns (whichever is smaller). With just a few assemblies composed
of several neurons, each assembly works as a single large oscillator, and
interassembly modulations due to external perturbations are minimum.
The rank value thus is directly connected with the number of assemblies
in the system. As the assemblies increase in number and decrease in size,
interassembly modulations become more prominent, and this is captured
by the rank of the state matrix. The results therefore indicate that networks
with more assemblies have the potential to classify a greater number of in-
put patterns. In contrast, the greater the value of the rank of the state matrix
M, the worse the generalization of the circuit is likely to be, which means
that small perturbations in spike times for a given spike pattern tend to be
classified as belonging to a different spike pattern.

Maass et al. (2005) and Legenstein and Maass (2007) showed that com-
bined, the above two measures may provide a good estimate of the com-
putational capabilities of a given neuronal microcircuit and may also be
used to predict its performance in a classification task. There is no ultimate
method for combining them both, but simply using the difference between
the computational power and the generalization performance can be a good
indicator. Figure 2b shows the result. Due to the properties of the model, the
matrix ranks calculated for each measure differ only for architectures with a
higher number of assemblies; the prediction of computational performance
therefore is applicable only for a subset of all possible configurations of our
model. Nevertheless, the prediction points at the correct region of possible
architectures where performance is maximum.

Consider Figure 2c, which shows the response of three different network
configurations to variations in some simulation parameters: the number
of different spike patterns presented to the network for classification, the
frequency of the input spike trains, and the noise rate used to generate the
jittered spike trains. Notice that increasing the value of the first or the latter
results in a fall in performance, while the performance peaks at an interme-
diate value of the input frequency. This shows that classifying 60 different
patterns (260 possible classifications) is harder than classifying 20 using the
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same framework. Also, the relatively small variation in performance due
to the input frequency indicates that the model has a good spike pattern
discrimination time resolution.

Not surprisingly, noisier spike trains result in more classification mis-
takes, for an otherwise noisy train is now viewed as a different spike
pattern, but notice that the drop in performance is sharper for networks
composed of more assemblies (22.6% for a network with 40 assemblies in
contrast with a 10% fall for a network with 10 assemblies), in agreement
with what the generalization analysis predicted. One of the reasons this
might occur is illustrated in Figure 2d. It shows the state separation of the
system, a measure that captures how much the state θ (t) of one network
reflects details of the input stream that occurred in the past. Consider two
input patterns u and v over 3000 iterations that differ only during the first
1000, with the same properties as described before. The state separation
is given by

∥∥θu(t) − θv(t)
∥∥ for t = 3000. Notice that the architectures with

fewer assemblies have a lower value of state separation than the ones with
more assemblies, which means that perturbations caused by earlier input
differences persist more in the latter configurations. For noisy spike trains,
such amplified differences may have an impact on the overall pattern clas-
sification performance. The results also highlight that networks with more
assemblies are affected more by inputs, which can be explained considering
that in the latter case, the network state θ (t) at a given time t is less influ-
enced by the activity of a single neuron and more a product of the whole
network interaction.

The synergy analysis confirms this last point (see Figure 2d). Notice that
for architectures with fewer assemblies, the level of redundancy is high
(Syn = −1, equation 3.3), but it reduces as the number of assemblies grows.
The vast majority of networks with higher numbers of assemblies present
information independence (Syn = 0), that is, the information conveyed by
the pair of neurons is the sum of the information they convey separately.
Importantly, Schneidman et al. (2003) make the point that information in-
dependence may relate to neurons being responsive to different features
of the stimulus, but the synergy measurement reflects an average over the
whole set of stimuli S; for that reason, the neuronal pair may be redundant,
synergistic, or independent for different subsets of S. Also, Reich et al. (2001)
found neuronal pairs in nearby cortical neurons presenting varied forms of
interactions—more specifically, independent and redundant interactions.
Thus, the results portrayed in the figure may vary depending on which
pair is recorded and the measurements may be a result of averaging, not
from independence, across the whole trial.

In the results above, we investigated networks with roughly the same
number of states (Nassemblies × Nneurons/assembly ≈ constant). This constraint had
to be imposed in order for the calculations of computational power and
generalization capability to hold. However, another interesting aspect of
assembly computations is how performance and synergy change as one
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Figure 3: Simulation results for experiment 1. (a) Classification performance
and (b) synergy values (not normalized) for different network configurations.
In contrast to figure 2, in which all architectures had approximately 80 neurons,
here the numbers of assemblies and neurons are varied independently. Results
are mean values over 20 different simulations, and the small plot within each
figure is the standard deviation.

varies the number of neurons within each assembly for a given number
of assemblies in the network. Figure 3a shows the results. Performance is
predominantly higher in networks with more assemblies, regardless of the
number of neurons within each. In other words, performance increases as
the number of assemblies increases, but given a certain network with a fixed
number of assemblies, adding neurons to each assembly does not cause a
salient increase in performance (e.g., networks with 2 assemblies with one
or five neurons within each assembly have a classification performance of
approximately 0.6, whereas networks with 20 assemblies with one or five
neurons in each cluster have a classification performance of approximately
0.85). In contrast, the level of redundancy or independence is related mainly
to the number of neurons within each assembly, regardless of the total num-
ber of assemblies (see Figure 3b). For example, neurons in a network with
20 assemblies with 1 neuron in each assembly present a much more inde-
pendent activity than neurons in a network with 20 assemblies composed



Neuronal Assembly Dynamics 2949

of 10 neurons each. This is in accordance with results obtained in motor
cortex studies, which show that the synergistic or redundant interactions
depend on the size of each neuronal assembly, and redundancy increases
with the size of assemblies (Narayanan et al., 2005).

Recall that assemblies are formed by their phase relationship, that is,
two neurons belong to the same assembly only if they are synchronized
with near-zero phase lag. In this sense, the synchronization properties of
the network (dictated by the phase interaction function defined in equation
2.3) make the dynamics of neurons constituting the same assembly similar
and the dynamics of neurons constituting different assemblies dissimilar.
Thus, increasing the number of assemblies, not the number of neurons, has
an impact more on performance, and that is possibly due to an increase in
entropy. However, the rationale is not simple because of nonlinear effects
and the intrinsic dynamics of the network responding to inputs. Notably,
the Kuramoto model presents second-order phase transitions, and a given
node can influence in different ways other nodes in the network, depending
on the relationship between natural frequencies and on whether nodes
are directly connected. Some of these effects may be in place, given the
saturation in performance and the nonlinear impact on classification to
adding assemblies or neurons to the network. In this sense, it is not trivial
that adding neurons maximizes the classification performance because this
is determined by the way these neurons are organized (assemblies) and
limited by nonlinear effects (highlighted by the saturations depicted in
Figures 2b and 3a).

To conclude experiment 1, we explore the experimental evidence (Stein-
metz, Roy, Fitzgerald, Hsiao, & Johnson, 2000; Lakatos, Karmos, Mehta,
Ulbert, & Schroeder, 2008), which suggests that attentional mechanisms
can promote phase resetting and modulate the ongoing neuronal oscilla-
tions to respond differently to stimuli to investigate whether the system can
cope with multiple tasks by just relying on the phase dynamics, without
any changes in the readout unit after training. Therefore, as described in
section 2, we manipulate the phase relationship between nodes (emulating
attention mechanisms) and investigate the performance in opposite ver-
sions of a classification task. The network architecture has been arbitrarily
chosen to have 10 clusters of 8 neurons each, with similar results obtained
for other configurations.

To begin, we present to the network spike patterns that have to be clas-
sified. At the end of each pattern presentation, the network state θ (t) is
stored, representing the system’s response for this given input. After all the
patterns are shown, the phase relationships in the network are reorganized
(see Figure 4a). Then we present the same spike patterns once more and the
network state is stored, but the corresponding classification label (1 or 0) for
each pattern is made exactly the opposite from the ones previously used.
Finally, an output readout unit is trained by linear regression using the net-
work state and the desired classification label for each pattern. Essentially
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Figure 4: Multiple classification task with dynamic network reconfiguration in
an architecture of 10 assemblies with 8 neurons each. (a) Phase dynamics por-
trayed as the phase difference γn,1 of each node n to node 1. Dark gray solid and
dashed lines indicate nodes that change assembly membership (the black arrow
shows the moment of change). The solid black line depicts the phase behavior
of node 2, which has its ongoing phase dynamics modulated by the spike train
input that has to be classified. Light solid gray lines relate to the remaining
nodes. Phase a shows the washout phase, when the phase relationships stabi-
lize in 10 clusters of 8 neurons each, phase b shows the dynamics during the
classification task, phase c comprises the reorganization of the assemblies, and
phase d shows the classification task (same input train, opposite classification
labels). Assemblies are rearranged by perturbing the phase of a given node with
an input of magnitude ±1.7 for 20 iterations. Light gray arrows point at the per-
turbation caused by the input in node 2 (detailed in the small plot). (b) Impact
on the classification performance caused by variations in three parameters of
the input spike train (notation similar to Figure 2c): the standard deviation of
the gaussian jitter in the spike trains j, the spike firing rate f, and the number of
patterns to classify Np.
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the procedure replicates the previous experiment, but with the classification
task changing with a reorganization of the nodes’ phase relationship.

Figure 4a presents the resulting network dynamics. First, the system
goes through a washout phase (3000 iterations) and has its phase activity
stabilized in 10 clusters of 8 neurons each. Then a spike train input to node
2, lasting 200 iterations, modulates the phase dynamics; at the end, the final
network state is stored. In sequence, the phase relationships are rearranged
by inputs to certain nodes, and the same classification procedure is executed,
with the network state stored at the end. This process is performed for every
spike pattern used for training, and finally the readout unit weights are
calculated. Figure 4b shows the network performance obtained for different
parameter configurations. Notice that the performance is comparable to the
one obtained in the previous task (see Figure 2b), which suggests that the
phase reorganization dynamics can be exploited to solve different tasks
without the need for adaption or plasticity mechanisms at the readout unit
level.

The results for experiment 1 suggest that neuronal assemblies and phase
reorganization dynamics can play a significant part in supervised classifica-
tion tasks and, perhaps most relevant to cognition, can cope with multiple
classification tasks without the need for additional adaptive mechanisms.
However, the major part of (natural) neural and cognitive dynamics is
bound up in the generation of unsupervised embodied behavior. Hence,
in order to explore the possible roles of neuronal assembly dynamics fur-
ther, the properties of the model were investigated in a second experiment
in which it was used in an unsupervised embodied learning scenario, as
described in the next section.

4 Experiment 2

Plasticity mechanisms are a common feature in the brain and mediate many
(if not all) cognitive processes during learning and development (Turrigiano
& Nelson, 2004; Masquelier et al., 2009). There is a rich literature exploring
models of artificial neuronal networks with some kind of synaptic plastic-
ity in the context of real or simulated agents engaged in a behavioral task
(Urzelai & Floreano, 2001; Sporns & Alexander, 2002; Di Paolo, 2003; Edel-
man, 2007; Shim & Husbands, 2012), but normally the techniques involve
the modulation of the electric connections between nodes of the network
as a response to the agent’s actions and the environment. Here, we explore
the way in which neurons and assemblies relate to each other and how a
modulation of this relationship alone, without other plasticity mechanisms,
can be exploited to generate adaptive behavior.

We conduct the analysis following an evolutionary robotics (ER) ap-
proach, where an evolved simulated robotic agent controlled by a variation
of the system investigated in experiment 1 has to solve multiple tasks. In
the following sections, we first present the concepts of transfer entropy, an
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information-theoretic measure used to analyze the results; then we explain
the ER approach, the robotic model used, and the control system frame-
work, and the unsupervised learning task, and conclude with the outcomes
of the experiment.

4.1 Methods

4.1.1 Transfer Entropy. Agent-environment systems pose extra chal-
lenges in devising and interpreting a sensible measurement of information
flow, for they normally have noisy and limited data samples, asymmet-
rical relationships among elements of the system, and temporal variance
(i.e., sensory and motor patterns may vary over time). Transfer entropy
(TE) (Schreiber, 2000), in this context, is suggested as a suitable and ro-
bust information-theoretic tool (Lungarella, Ishiguro et al., 2007; Lungarella,
Pitti, & Kuniyoshi, 2007), and has also been applied to investigate real neu-
ronal assemblies and other neuroscience problems (Borst & Theunissen,
1999; Gourévitch & Eggermont, 2007; Buehlmann & Deco, 2010; Vicente,
Wibral, Lindner, & Pipa, 2011); it will thus be used in our analysis.

TE is based on classical information theory and allows one to estimate
the directional exchange of information between two given systems. The
choice of TE in this work is based on a study conducted by Lungarella,
Ishiguro et al. (2007), who compared the performance of different IT tools
in bivariate time series analysis, which will be the case here, and concluded
that TE is in general more stable and robust than the other tools explored.
The next paragraphs describe the technique.

Consider two time series, X = xt and Y = yt , and assume they can be
represented as a stationary higher-order Markov process. Transfer entropy
calculates the deviation from the generalized Markov property p(yt+1|yn

t ,

xm
t ) = p(yt+1|yn

t ) where xm
t ≡ (xt, xt−1, . . . , xt−m+1)

T , yn
t ≡ (yt, yt−1, . . . ,

yt−n+1)
T , and m and n are the orders of the higher-order Markov process

(note that the above property holds only if there is no causal link between
the time series). Schreiber (2000) defines transfer entropy as

TE(X → Y) =
∑
yt+1

∑
xt

∑
yt

p(yt+1, xm
t , yn

t ) log
p(yt+1|yn

t , xm
t )

p(yt+1|yn
t )

. (4.1)

Therefore, from equation 4.1, one can estimate the information about a
future observation yt+1 given the available observations xm

t and yn
t that goes

beyond the information of the future state yt+1 provided by yn
t alone. It is

thus a directional, nonsymmetrical estimate of the influence of one time
series on another.

The original formulation of transfer entropy suffers from finite sample
effects when the available data are limited, and the results obtained may
not be correctly estimated. To attenuate these limitations, Marschinski and
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Kantz (2002) introduced an improved estimator, effective transfer entropy
(ETE), which is calculated as the difference between the usual transfer
entropy (see equation 4.1) and the transfer entropy calculated after shuffling
the elements of the time series X, resulting in the following equation:

ETE(X → Y) ≡ TE(X → Y) − TE(Xshu f f led → Y). (4.2)

The ETE formulation is the one used in this letter. We adopt the orders of
the Markov processes as m = n = 1 (see equation 4.1), and the conditional
probabilities are calculated by rewriting them as joint probabilities, which
are then estimated using histograms.

4.1.2 Evolutionary Robotics. Evolutionary robotics (ER) is a relatively new
field of interdisciplinary research grounded in concepts from computer
science and evolutionary biology (Harvey, Di Paolo, Wood, Quinn, & Tuci,
2005; Floreano, Husbands, & Nolfi, 2008; Floreano & Keller, 2010). Origi-
nally devised as an engineering approach to automatically generate effi-
cient robot controllers in challenging scenarios, where traditional control
techniques have limited performance, ER is now well regarded among bi-
ologists, cognitive scientists, and neuroscientists, as it provides a means
to simulate and investigate brain-body-environment interactions that un-
derlie the generation of behavior in a relatively unconstrained way, thus
penetrating areas that disembodied studies cannot reach.

Consider a real or simulated robot, with sensors and actuators, situ-
ated in an environment with a certain task to accomplish. Each solution
candidate (individual) is represented by a genotype, which contains the
basic information of the agent’s body or its controller’s parameters (e.g.,
the number of wheels the robot has or the values of the weights of an arti-
ficial neuronal network acting as its controller). According to some criteria,
normally the previous performance of that individual in solving the task
(fitness), parents are selected and undergo a process of mutation and re-
combination, generating new individuals, which are then evaluated in the
task. This process is repeated through the generations, eventually obtaining
individuals with a higher performance in the given task.

In this sense, ER is a reasonable approach to studying embodied and sit-
uated behavior generation because it can be used as a powerful model syn-
thesis technique (Beer, 2003; Husbands, 2009). Relatively simple, tractable
models can be produced and studied in the context of what have been
called minimally cognitive tasks (Beer, 2003), which are tasks that are simple
enough to allow detailed analysis and yet are complex enough to motivate
some kind of cognitive interest.

4.1.3 Robotic Model. The robot is based on the Khepera II model (K-
Team Corporation). It has two wheels with independent electric motors,
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(a) (b)

Figure 5: (a) Real Khepera II robot and (b) its schematic representation, includ-
ing the IR sensors and the camera.

eight infrared sensors, and a camera (see Figure 5). The sensors measure
the environmental luminosity (ranging from 65 to 450–65 being the highest
luminosity that can be sensed) and the distance to nearby objects (ranging
from 0 to 1023—the latter value represents the closest distance to an object).
The camera provides a 36 degrees 64 pixel gray-scale horizontal image from
its field of view. These 64 pixels are grouped into three mean inputs for the
system: the mean value of pixels 0 to 13 representing the left reading, the
mean value of pixels 24 to 39 representing the central reading, and the
mean value of pixels 48 to 63 representing the right reading. The readings
range from 50 to 175—the first value representing the maximum perception
of a black stripe. In all experiments, a sensorimotor cycle (time between a
sensory reading and a motor command) lasts 400 ms. The KiKS Khepera
robot simulator was used (Storm, 2004); it simulates with great fidelity
motor commands and noisy sensory readings that are observed in the real
robot.

4.1.4 Framework. The model studied in experiment 1 was adapted so that
it could be applied to control a simulated robotic agent. The framework,
illustrated in Figure 6, is composed of 12 fully connected oscillators, with
some nodes connected to the robot’s noisy sensors (1 sensor per node). The
rationale for a network with 12 nodes relates to richer dynamical behaviour
in the Kuramoto model with this number of nodes (Popovych, Maistrenko,
& Tass, 2005). The frequency of each node is the sum of its natural frequency
of oscillation, wn, and the value of the sensory input related to that node (0
if there is no input), scaled by a factor εn. The natural frequency wn can be
associated with the natural firing rate of a neuron or a group of neurons, and
the sensory inputs mediated by εn alter its oscillatory behavior according
to environmental interactions, thus improving the flexibility of the model
to study neuronal synchronization (Cumin & Unsworth, 2007) within a
behavioral context.
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1

Figure 6: Framework for application in evolutionary robotics. The oscillatory
network is composed of 12 fully connected neuronal oscillators, with nodes
2, 6, and 10 connected to the robot’s infrared sensors and nodes 3, 7, and 11
connected to the visual sensors. Nodes 4, 5, 8, and 9 receive internal inputs only.
The phase differences θn − θn−1, n = 2, . . . , 12, plus a bias term, are linearly
combined by a weight matrix W and fed into two nonlinear output units that
have as an activation function the sin function, which can be interpreted as two
output neurons that capture the ongoing network activity. The activation of
each output neuron is used to command the motors M1 and M2.

At each iteration, the phase differences γ from a node n to nodes n − 1,
n = 2, . . . , 12, are calculated following equation 2.2. Then the phase differ-
ences plus a bias term are linearly combined by a weight matrix W and fed
into two nonlinear output units that have as an activation function the sin
function, which can be interpreted as two output neurons that capture the
ongoing network activity. According to Pouget, Dayan, and Zemel (2008),
nonlinear mappings (such as the one developed here) can be used as a com-
prehensive method to characterize a broad range of neuronal operations
in sensorimotor contexts. The calculation results in two signals that will
command the left and right motors of the agent,

M = sin(W ′γ ), (4.3)

where M = [M1, M2]T is the motor state space, with M1 corresponding to
the left motor command and M2 to the right motor command.

In this way, the phase dynamics and the environmental input to the
robotic agent will determine its behavior. It is important to stress that nodes
that receive no input participate in the overall dynamics of the network;
hence, their natural activity can modulate its global activity.
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Figure 7: Scenarios used in experiment 2. (a) Obstacle avoidance training sce-
nario and the behavior displayed by a successfully evolved individual. (b) Task
scenario. The arena has a recharging area represented by two light sources lo-
cated next to a black stripe landmark (central top part of the figure). Light gray
and black trajectories show the robot’s behavior when controlled by different
assembly configurations.

4.1.5 Task. The robot described in section 4.1.3 has two main objectives:
it has to explore the environment while avoiding collisions (O1), and it
has to ensure that its battery level remains above a threshold (O2), actively
searching for the recharging area otherwise. The environment is a square
arena with a recharging area represented by two light sources located next
to a black stripe tag (see Figure 7(b)). Whenever the robot’s light sensory
readings are below 100, it is considered to be inside the recharging area.
The battery level BL dynamics is given by

BL(t + 1) =
{

BL(t) − α(BL(t) − Min(BL)), if ROCA

BL(t) + β(Max(BL) − BL(t)), if RICA
, (4.4)

where α and β control the battery consumption and recharge rate, respec-
tively, Min(BL) and Max(BL) are the lower and upper limit of BL (set here
to 0 and 100, respectively), and ROCA and RICA stand for Robot Outside
Charging Area and Robot Inside Charging Area.

The network consists of N = 12 neurons with initial phases uniformly
distributed in [0, 2π). Nodes 2, 6, and 10 are connected to the robot’s infrared
distance sensors, and nodes 3, 7, and 11 are connected to the camera sensors.
We set εn = 4 for n = 4, 8 and εn = −4 for n = 5, 9 (for n = 2, 3, 6, 7, 10, 11, εn
is evolved, and 0 otherwise (see the next section for details). We also adopted
M = 3 (see equation 2.3), which leads to the formation of three assemblies
with four neurons in each, denoted (1, 2, 3, 4)-(5, 6, 7, 8)-(9, 10, 11, 12) (see
Figure 8a).
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(a) (b)

Figure 8: Network assembly structure used in experiment 2. Nodes with same
shadings are synchronized. (a) Configuration at the beginning of the exper-
iment. (b) Configuration after an internal signal (caused by the drop of the
battery level below 15) changes the assemblies’ setup.

Whenever the battery level drops below 15 (t = tlow), an internal signal
is generated that reorganizes the network in terms of neuronal synchro-
nization (see Figure 8b). This signal consists of an input lasting 400 ms
(the same duration of a sensorimotor cycle) applied to nodes 4, 5, 8, and
9, that is, considering equation 2.2, I4,5,8,9(t) = 1 for tlow ≤ t ≤ tlow + 0.4, 0
otherwise. Given the setup of the network described in the previous para-
graph, this input shifts the phase of oscillators 4 and 8 and lags the phase of
oscillators 5 and 9 enough to move them from their original basin of attrac-
tion to a neighboring assembly. The network final configuration is thus
(1, 2, 3, 5)-(4, 6, 7, 9)-(8, 10, 11, 12). Whenever the battery level increases
above 95 (t = thigh), an internal signal I4,5,8,9(t) = −1 for thigh ≤ t ≤ thigh + 0.4,
0 otherwise, brings the network back to its original configuration (see Fig-
ure 8a). Recall, from the task description in the previous paragraph that
the goal is to investigate if dynamic assembly formation can underpin the
coordination of different, possibly conflicting behaviors in an autonomous
agent.

Tasks are conflicting in the sense that the first (O1) requires the agent to
move and explore while minimizing sensory readings (and hence avoiding
collisions), whereas in the latter (O2), it has to approach a certain area of the
environment and maximize the inputs from the light sensors (to recharge)
while suppressing its movement to increase the time spent in the charging
area (until the battery is recharged above the threshold).

4.1.6 Genetic Algorithm. We used a geographically distributed genetic
algorithm with local selection and replacement (Husbands, Smith, Jakobi, &
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O’Shea, 1998) to determine the parameters of the system: the input weights
εn ∈ [−0.5, 0.5], n = 2, 3, 6, 7, 10, 11, and the two output neurons’ weights,
WN,o, o = 1, 2, with elements in the interval [−5, 5], resulting in a genotype
of length 30.

The network’s genotype consists of an array of integer variables lying in
the range [0, 999] (each variable occupies a gene locus), which are mapped
to values determined by the range of their respective parameters. For all the
experiments in this letter, the population size was 49, arranged in a 7 × 7
toroidal grid. There are two mutation operators: the first operator is applied
to 20% of the genotype and produces a change at each locus by an amount
within the [−10,+10] range according to a normal distribution. The second
mutation operator has a probability of 10% and is applied to 40% of the
genotype, replacing a randomly chosen gene locus with a new value within
the [0, 999] range in an uniform distribution. There is no crossover.

In a breeding event, a mating pool is formed by choosing a random point
in the grid together with its eight neighbors. A single parent is then cho-
sen through rank-based roulette selection, and the mutation operators are
applied, producing a new individual, which is evaluated and placed back
in the mating pool in a position determined by inverse rank-based roulette
selection. (For further details about the genetic algorithm, see Husbands
et al., 1998.)

During evolution, we adopted a shaping technique (Dorigo & Colom-
betti, 1998; Bongard, 2011), in which the robot is required to execute and suc-
ceed in one task environment before proceeding to more complex scenarios.
This technique has been shown to improve the evolvability of controllers
in tasks that involve the accomplishment of many different objectives.

Therefore, considering the task previously described, the first phase of
evolution, phase 1, consists of 800 iterations of the algorithm where the
fitness f is defined as the robot’s ability to explore the environment while
avoiding collisions with the environment walls and obstacles (see equation
4.5, based on Floreano & Mondada, 1994). Note that there is no influence of
the battery level in this first stage of evolution. Figure 7a depicts the training
scenario.

f = V(1 −
√


v)(1 − i), (4.5)

where V is the sum of the instantaneous rotation speed of the wheels (stim-
ulating high speeds), 
v the absolute value of the algebraic difference be-
tween the speeds of the wheels (stimulating forward movement), and i is the
normalized value of the distance sensor of highest activation (stimulating
obstacle avoidance).

A generation is defined as 10 breeding events, and the evolutionary
algorithm runs for a maximum of 300 generations. If, at the end of this first
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evolutionary process, the agent attains a fitness above 0.4, it can proceed to
the next phase.

During phase 2 (the scenario depicted in Figure 7b), robots are evaluated
according to their ability to avoid collisions and the time they spend with
the battery level below the threshold, that is, if the battery level is above 15,
fitness is scored following equation 4.5; otherwise, fitness is given by the
fraction of time it took the robot to recharge its battery above 95:

f =
{

V(1 − √

v)(1 − i), if BL(t) ≥ 15

1 − tb/T, if BL(t) < 15 and BL(t + τ ) < 95
, (4.6)

where V , 
v and i, and BL are as described in equations 4.5 and 4.4, respec-
tively; tb is the number of iterations the robot spent with its battery level
below 15; and T is the number of iterations counting from the moment the
battery dropped below 15 until it reached a level above 95.

At each iteration of the trial, the corresponding fitness value is calculated,
and the final fitness is given by the mean fitness obtained across the whole
trial. Notice that there is a selective pressure toward agents that reach the
recharging area as fast as possible and remain in the area until the battery
is recharged. Also, the learned behavior in phase 1 cannot be completely
overwritten in phase 2, as part of the evaluation function still accounts
for the robot’s ability to avoid collisions and explore the environment.
Importantly, the second part of the fitness function described in equation
4.6 does not reward a specific sequence of actions, only the final behavior
of the robot (reach the recharging area as fast as possible and remain there
until recharged). There is no influence of the light or camera sensors in the
calculations; thus, the robot has to associate the distance sensors and vision
information to find the area where recharge occurs.

4.2 Results. Robots successfully evolved to execute phases 1 and 2.
Figure 7a portrays one of the evolved agents that navigates throughout the
environment while avoiding collisions (phase 1). Notice that because the
agent is surrounded by walls and obstacles, sensory readings are nearly
always present; thus, the maximum fitness obtained is less than the max-
imum 1. Figure 7b shows the same agent after phase 2 of evolution, and
Figure 9 shows the spiking activity (based on the phase dynamics) for every
node of the network, the battery level, the distance and camera sensors, and
the motor commands. The next paragraphs explore in detail the results of
this latter phase.

At the beginning of the task, the agent wanders around the environment
in straight lines, adjusting its trajectory only when faced by a wall. Notice
from Figure 9 that both motor outputs are close to the maximum value of
10 and change only in response to the distance sensors’ stimuli; the motors
remain unresponsive to changes in the camera input (recall that the network
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Figure 9: Experiment 2 variables dynamics. From the top down: network raster
plot (the dark and light gray shaded areas relate to different network configura-
tions, the small plot shows details of the phase dynamics, the black arrow shows
how sensory stimulus modulates the ongoing dynamics, and the gray arrow
points at a moment of assembly reorganization); the battery level, with dashed
lines indicating when the agent is within the recharging area (0 is outside, 100
is inside); the distance sensors (0 when there is no obstacle, 1023 if very close
to one); the camera sensors (175 if no black stripe is seen, 50 if all the camera
pixels detect black); and the motor commands (positive values indicate forward
movement—backward movement otherwise). Letters A, B, and C refer to the
trajectories displayed in Figure 7b.

receives input from all sensors at all times, and there are no ontogenetic
plasticity mechanisms). Incidentally, the robot passes near the recharging
area (the gray arrow near iteration 50), but because its battery level is still
above the threshold, the predominant behavior remains “explore and avoid
collisions.”

However, near iteration 300, the battery level drops below 15 (point A
in Figures 7b and 9), which triggers an internal signal that reorganizes the
network configuration. The agent now should stop exploring the environ-
ment and drive toward the recharging area as fast as it can to maximize
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its fitness. Notice that at the moment this occurs, the robot is far from the
recharging area, so it has to use its visual information to orient and move
toward the correct direction. The adopted strategy is to move in circles until
the visual stimulus (the black landmark) is perceived and then progress in a
straight line toward it. This can be seen in Figure 9, with the consistent cam-
era readings. As the robot approaches the landmark, the distance sensory
readings increase but do not cause the same response as before the network
reorganization: the agent remains relatively still within the recharging area
until the battery is recharged and does not display the characteristic turn
around movement of obstacle avoidance. After the battery is above 95, an-
other internal signal is triggered, and assemblies are rearranged to their
previous state. The robot returns to explore and avoid obstacles.

This same sequence of behavior can be observed near iteration 500
(point B in Figures 7b and 9). The turning behavior, brought about by
differential wheel speeds, is much more noticeable here, and although the
robot is closer to the recharging area, it does not have the visual stimulus at
the time the battery drops below 15. When the first visual stimulus is per-
ceived, the agent fixates on the landmark, and the sensory readings increase
as it slowly moves toward the black stripe. A similar sequence of behavior
is displayed as the task continues, but the following moments when the bat-
tery drops below 15 occur when the agent has a visual stimulus; therefore,
there is no need to move in circles before heading toward the recharging
area (points C).

Figure 10 depicts the activity of the assemblies during the task, repre-
sented by the phase difference γn,1 of each node n to node 1. The oscillators
rapidly synchronize and form three neuronal assemblies equally spaced ac-
cording to their phase differences (see Figure 8). Each assembly has inputs
from one distance sensor and one camera sensor. This sensory stimuli mod-
ulate the ongoing network activity, causing small phase deviations from the
respective assembly’s mean phase (examples are indicated by light gray ar-
rows in Figure 10), yet all nodes remain within the basin of attraction of
their respective cluster; they do not change their assembly membership.
The small phase modulations of each cluster are captured by both output
neurons and are responsible for adjusting the agent’s motor commands
and, consequently, its trajectory. Internal signals triggered by the battery-
level dynamics change the assemblies’ original arrangement (compare with
Figure 9, top), and this new phase relationship, together with the sensory
modulation, accounts for the change in the robot’s behavior.

The relationship between the rearrangement of the assemblies and the
different behaviors displayed by the agent can be seen by plotting the net-
work’s phase differences together with the corresponding motor outputs
at every sensorimotor time step. Because there are γi,i−1 = 11 phase differ-
ences, we have to perform a dimension reduction to visualize the system’s
dynamics. This is done by projecting the original phase differences into
the first two principal components calculated using a principal component
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Figure 10: Phase dynamics portrayed as the phase difference γn,1 of each node
n to node 1. The inset shows the moment of an assembly reorganization (solid
and dashed light gray and dark gray lines show the change in assembly mem-
bership). Gray arrows point at examples of phase modulations due to sensory
stimuli; black arrows indicate moments of assembly reorganization. Notice how
sensory stimuli modulate the ongoing dynamics in the whole network but ulti-
mately do not cause an assembly change.

analysis (PCA) (Jolliffe, 2002). A single time series is obtained from the two
motor commands by subtracting the left from the right wheel commands.
Figure 11a shows the results. Note that there are two clearly discernible
regions in the state-space—one comprising trial iterations 1–124, 356–503,
777–1039, and 1194–1465, and the other iterations 125–355, 504–776, 1040–
1193, and 1466–1600. These regions relate to different assembly configura-
tions (see Figure 9, top, and Figure 10); therefore, rearranging the assemblies
causes movement in the state-space of the network motor system, which
has a direct correspondence with the behavior of the robot.

The assembly reconfiguration is the main mechanism responsible for
changing the way the robot behaves; there are no other plasticity mecha-
nisms, and both distance and visual sensors are always fed into the network.
The effects of the inputs (or their relevance to the behavior observed) vary
depending on the assembly configuration. Observe the black arrows near
iterations 900 and 1300 in the camera sensors panel in Figure 9. The battery
level is above 15 and the robot is exploring the environment and avoid-
ing collisions (notice the distance sensors dynamics), but it also receives
visual input. This input, however, does not affect the ongoing behavior (see
the motors dynamics). To highlight this effect, we conducted an informa-
tion dynamics analysis, exploring how information flows from sensors to
motors and from motors to sensors as the task progresses.

Figure 11b shows the transfer entropy between the robot’s distance and
camera sensors and its motors for the duration of the trial, calculated
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Figure 11: (a) System dynamics depicted by the projection of the 11 phase dif-
ferences γi,i−1, i = 2, . . . , 12, of the 12-node network into their first two principal
components (PC1 and PC2), and the motor output represented by the difference
between the values of M1 and M2 (see equation 4.3). Solid and dashed lines
relate to different iteration intervals. Notice that whenever there is an assembly
rearrangement (see Figures 9 and 10), there is a corresponding shift in the net-
work motor state-space region, which relates to different behaviors displayed
by the robot. (b) Transfer entropy between the distance sensors’ time series and
the motors’ time series (top panel) and between the camera sensors’ time series
and the motors’ time series (bottom panel). A sliding window of length 200
iterations is used to obtain each time series at every iteration of the transfer en-
tropy analysis. Results are smoothed using a gaussian filter with time constant
0.08.

according to section 4.1.1. To obtain the time series, we used a sliding
window containing data from the past 200 iterations; therefore, note that
the results reflect a history of interactions and are not an instantaneous
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measurement of information flow. More specifically, the sensors’ time se-
ries (three infrared sensors and three camera sensors) are submitted to PCA
to perform a dimension reduction. The calculated principal component and
the original time series of each sensor modality are used to create a single
time series that captures the most significant features of the multidimen-
sional input space. The motor commands are also combined to generate
a single time series by subtracting the value of the left wheel command
from the right wheel command. This data were then discretized into six
equiprobable states, and finally the transfer entropy is calculated. We per-
formed a series of analyses with different parameter choices, and although
there were differences in the values obtained, the overall qualitative aspect
of the curves was maintained.

In the top panel, the information flow from distance sensors to the mo-
tors (in other words, the causal influence from distance sensors to motor
commands) oscillates throughout the task and has peaks between iterations
375 and 550, 900 and 1075, and 1300 and 1500. In the bottom panel, the in-
formation flow from visual sensors to the motors also oscillates throughout
the task and has peaks between iterations 375 and 550, 700 and 900, and
1100 and 1400. Comparing these with Figure 9, one can see a relationship
between the distance and camera sensors and the respective information
flows. This relationship is to complex brain-body-environment interactions
and not only to the presence of sensory stimulus, as, for example, one can
verify observing iterations 500, 900, and 1350 in the camera sensors plot (see
Figure 9) and the respective information flow plot: although there are vari-
ations in the visual input, there is no corresponding increase in the transfer
entropy values. Therefore, sensory inputs may or may not affect the mo-
tor commands, and the current assembly configuration will modulate this
interaction.

The information flow dynamics offers another perspective in the robot’s
behavior analysis. Notice that the information flow magnitude is nearly
twice as much in the bottom panel as in the top panel. We saw in the previous
dynamics and behavior analyses that when the battery drops below 15,
the robot moves toward the recharging area, but it does not display the
otherwise natural obstacle avoidance behavior when it eventually finds a
wall. The transfer entropy analysis highlights that the visual information is
the main source of behavior modulation even though the distance sensors
still have some influence. This is clear between iterations 1075 and 1250: the
visual information flow (bottom panel) increases as the robot approaches
the recharging area (higher visual input), and on finding the wall, there
is an increase in the flow from motors to sensors in the top panel. This
means that the robot’s trajectory, mainly influenced by the visual inputs,
determines the incoming sensory readings—the robot actively “produces”
its inputs—while the information flow from distance sensors to motors
decreases, meaning that there is little influence of the distance sensors in
the robot’s behavior.
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Figure 12: Values of the weights of the output unit neurons (a, b) and of the
input weights εn of nodes that have sensory input (c) at the end of phase 1 (solid
black) and phase 2 (dashed black) of evolution. Values are normalized between
0 and 1 to improve visualization. See Figure 6 for details.

Finally, to stress the relevance of assembly reorganization in the evolu-
tionary process, observe Figure 12. It shows the values at the end of phases 1
and 2 of evolution of the weights of the output unit neurons and of the input
weights of nodes that have sensory input (see Figure 6). Notice that though
there are minor adjustments in the value of a few parameters, most of
them remain unchanged as evolution progress from one phase to another.
This further supports the relevance and flexibility of dynamic assembly
reorganization in multi-objective tasks.

5 Discussion

It is now established that synchronization mechanisms and dynamic as-
sembly formation in neuronal networks have a relationship with cognitive
processes and behavior; however, the underlying computational functions
and interplay with behavior are still to be uncovered. In this work, we
conducted experiments in both supervised and unsupervised learning sce-
narios exploring concepts drawn from the binding-by-synchrony hypoth-
esis, which considers neuronal assembly computations from a spike time
perspective. In fact, a growing body of literature attests that neuronal codes
based solely on spike rates underperform or do not contribute in a variety
of cognitive tasks (Borst & Theunissen, 1999; Carmena et al., 2003; Jacobs
et al., 2009; Rabinovich et al., 2012).

The neuronal network model used is inspired by the Kuramoto model of
coupled phase oscillators and allows one to fine-tune the network synchro-
nization dynamics and assembly configuration. The model has an intrinsic,
ongoing oscillatory activity that can only be modulated—not determined—
by external stimuli, in contrast with models that consider a static system
with responses elicited only by stimulus onset. As reiterated throughout
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this work, cognitive processes unfold over time and therefore cannot rely
only on external events. Also, one can precisely determine the number and
constitution of assemblies in the model. Although evidence points at assem-
bly formation as a result of emergent processes, and several models capture
this property (Izhikevich, 2006; Burwick, 2008; Ranhel, 2012), it is hard to
foresee or design how the network will self-organize; hence, the model
presented here contributes to studies that require a consistent emergent
configuration and studies focused on a systematic exploration of different
synchronization regimes.

In experiment 1, a supervised learning task, we studied the influence
of the number and size of neuronal assemblies in a spike pattern classi-
fication task. The input spike patterns and the network phase dynamics
both had roughly the same spike count across the task, similar to what has
been observed in real cortical neuronal ensembles (Carmena et al., 2003). A
linear readout unit generated the circuit outputs based on the state of the
network nodes at a particular time, which resembles the approach adopted
in brain-machine interface studies (Lebedev et al., 2005; Hatsopoulos &
Donoghue, 2009) but is also suggested as a more appropriate form to un-
derstand assembly activity (Buzsaki, 2010). Although it is still not clear how
the temporal relations in the brain are organized, and thus how reading the
network state at a predetermined time could be justified, there are some
possible solutions that may have evolved in natural brains: a redundancy
in the circuitry may exist so that at any time an event occurs or a classifi-
cation task is required, an output is produced (Ranhel, 2012); there can be
an interaction of the external rhythms with internally generated ones, forc-
ing synchronized firing events to occur in strict time windows (Masquelier
et al., 2009; Kopell et al., 2010); attention mechanisms may also interfere
and promote phase resetting (Steinmetz et al., 2000; Lakatos et al., 2008).

Considering a network with a total number of neurons equal to 80 ± 4,
our results show that performance boosts as we increase the number of
assemblies, and that can be predicted up to a certain extent by the computa-
tional power and generalization capability of the system following the same
procedure described in Legenstein and Maass (2007), although in our case,
it is possible that simply using the difference between these two measure-
ments may not be the most appropriate form of combining them; this is an
open problem that goes beyond the scope of this work. A further analysis,
which varied the number and size of assemblies, revealed that the first has
an impact more on performance than the latter does, a fact that can be at-
tributed to the increased variability of possible network states due to a larger
number of emergent clusters rather than fewer but larger assemblies. Also,
the system presents a saturation in performance with respect to the number
of clusters. Therefore, the results indicate that simply increasing the num-
ber of neurons or assemblies in the system does not necessarily originate
a corresponding increase in performance. A similar phenomenon is de-
scribed in neuronal assembly physiology as “the neuronal mass principle”
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(Nicolelis & Lebedev, 2009), which states that a minimal number of neu-
rons is needed in a neuronal population to stabilize its information capacity
(captured by a readout unit) at a satisfactory level. Reducing the number of
neurons causes an increasingly sharp drop in the information capacity of
this population, whereas increasing the number of sampled neurons above
a certain level does not increase the accuracy of predictions (Carmena et al.,
2003; Lebedev et al., 2008).

Also, the results showed that in our model, most of the neuronal architec-
tures were highly redundant, most of the neurons in the higher-performance
configurations presented independent activity, and increasing the number
of neurons in a network with a fixed number of assemblies increased the re-
dundancy. All of these findings resemble the results obtained in real cortical
experiments; therefore, a few remarks should be made: first, real neuronal
ensembles are highly redundant, and that can be associated with resistance
to error and natural mechanisms of probability distribution estimation (Bar-
low, 2001; Szczepanski, Arnold, Wajnryb, Amigó, & Sanchez-Vives, 2011);
second, neuronal independence (as observed in our results) can be linked
to code efficiency because the information capacity of individual neurons
is not compromised by redundant scenarios (Schneidman et al., 2003); and
third, there is still a lack of studies comparing the information flow dynam-
ics due to neuronal interactions and due to single neurons alone—attesting
that the timescales of the interactions as well as spurious effects such as
averaging are still works in progress (Reich et al., 2001; Narayanan et al.,
2005).

The computational power analysis emphasized that multiple readout
units could be trained to perform different classification tasks based on the
same network state. In contrast, to conclude experiment 1, we investigated
whether the system could cope with multiple classification tasks relying
only on a manipulation of the phase dynamics by means of an internally
generated signal, employing the same readout unit without any plasticity
mechanisms. To support the approach, there are clinical studies suggesting
that intracortical electrical stimulation can induce cortical plasticity (Jack-
son, Mavoori, & Fetz, 2006), but functional plasticity can also be obtained
faster as a result of attentional processes (Steinmetz et al., 2000; Lakatos
et al., 2008; Schroeder & Lakatos, 2009). Our results show that the system
can be trained in multiple classification tasks on rearrangement of assembly
configuration.

Although the results of the first experiment show that such a temporal
code carries information and suggest that it can be exploited in a variety of
tasks, it is challenging to determine to what extent the brain uses a temporal
code. Moreover, there is evidence that the neuronal activity evoked by the
body’s sensorimotor interactions with the environment differs from the
activity evoked by passive stimulus (Lungarella & Sporns, 2006; Eliades &
Wang, 2008). Hence, research on temporal neuronal codes and assembly
formation benefits if linked with behavioral studies (Engel, 2010; Panzeri,
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Brunel, Logothetis, & Kayser, 2010); in this sense, evolutionary robotics
emerges as a suitable technique to combine both approaches (Floreano
et al., 2008; Floreano & Keller, 2010).

In experiment 2, an ER unsupervised learning task, we evolved a sim-
ulated robotic agent, controlled by a variation of the system investigated
in experiment 1, to solve multiple tasks depending on its battery state. The
results showed that the evolved framework, together with the dynamic
assembly formation, can generate minimally cognitive behaviors. In in-
creasingly complex tasks, the changes in the parameters of the system are
relatively small, which indicate that the different assemblies formed dy-
namically also facilitate the evolutionary process. Finally, we highlighted
the context-based neuronal dynamics showing that the phase space formed
by the motor readings and the nodes’ phases have different orbits due to
changes in assembly organization, and an analysis of the information flow
in the network reveals that such changes modulate the influence of the
inputs in the robot’s behavior (determined by the motor commands).

Taken together, experiments 1 and 2 employed information theory and
decoding methods to provide further evidence that the dynamic formation
of assemblies and the relative neuronal firing times can mediate processes
involving the classification of spike patterns and can selectively modulate
the influence of external signals in the current network activity. Ultimately
there is no guarantee that the brain makes use of a time-based decoding
procedure, neither that it is able to exploit the information content revealed
by the synergy analysis and the transfer entropy approach; nevertheless,
it may shed light on aspects of brain-body-environment interactions and
provide upper bounds on code efficiency when testing hypotheses (Quiroga
& Panzeri, 2009; Jacobs et al., 2009).

There are several directions for future research. First, it is common to
construct the Kuramoto model (and its variations) having additive noise at
the input level equivalent to noise applied at the network level (Acebrón,
Bonilla, Pérez Vicente, Ritort, & Spigler, 2005). Based on equation 2.2, the
following equation shows the usual form of the Kuramoto model with
inputs In(t) and noise χn(t):

θ̇n = ωn + K
N

N∑
m=1

g(θn − θm) + In(t) + χn(t), n = 1, . . . , N. (5.1)

In this sense, experiments 1 and 2 had a subset of noisy neurons (only
neurons that had inputs). Given the relevance of widespread noise to many
neuronal and cognitive phenomena (Rolls & Deco, 2010), future investiga-
tions should explore in depth its impact on the framework. As a prelimi-
nary study, we have run two further simulations of experiment 1 adding
gaussian noise of zero mean and standard deviation σ to all nodes of the
network. The results are presented in Figure 13. Notice that classification
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Figure 13: Effect of gaussian noise of zero mean and standard deviation σ

applied to all nodes of the network in the performance of the system. Results are
mean values over 20 different simulations; shaded areas are the 95% confidence
interval.

performance falls with increasing noise magnitude (an effect also present in
Figures 2c and 4b), but the trend observed in our original results is kept, and
higher performance levels are obtained in architectures with more assem-
blies. Thus, at least for this experiment, noise applied to all neurons alters
the classification performance in a quantitative rather than a qualitative
way.

How would additive noise affect measures of redundancy and synergy?
The intuition that noisy scenarios are better tackled with redundant architec-
tures is justified: there is work showing that cortical circuits, which operate
in an intrinsically noisy environment, are highly redundant (Narayanan
et al., 2005; Szczepanski et al., 2011). However, there is criticism regard-
ing the interpretation of information-theoretical measurements such as re-
dundancy (Schneidman et al., 2003; Latham & Nirenberg, 2005), as well as
findings showing predominantly synergistic or independent activity in neu-
ronal circuits, instead of redundancy, depending on factors such as which
area and which neurons are recorded or which kind of task is performed
(Reich et al., 2001). Additionally, as Szczepanski et al. (2011) showed, neu-
rons can dynamically switch their interactions during the execution of the
task; thus, synergetic, independent, or redundant activity may be masked
by averaging processes. Finally, redundancy and synergy are found to be
largely influenced by the network architecture and the decoding unit used
(Schneidman et al., 2003). The conclusion is that redundancy is not nec-
essary for good performance in noisy scenarios, but, most important, it
depends largely on the experimental paradigm used.

One limitation encountered in the methods used in experiment 1, chosen
for their ability to assess computational performance in generic neuronal
microcircuits independent of task paradigm, is that in some circumstances,
noisy neurons may make the computational power and generalization
capability analyses inconclusive due to state matrices having complete
rank most of the time (Legenstein & Maass, 2007). This was not an issue in
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previous work that used these methods (e.g., Maass et al., 2005; Legen-
stein & Maass, 2007) because emergent properties of the neural architecture
resulted in highly silent networks with dynamics that were marginally
affected by noise; conversely, the model in this letter is composed of self-
sustained oscillators, which are always active. Considering that silence in
the brain is still a point of much controversy (Shoham, O’Connor, & Segev,
2006), the applicability of the methods used in experiment 1 to a variety of
problems and neural architectures remains an open question.

Another possible future extension to the model would be to substitute
the continuously coupled oscillators used in this work with pulse-coupled
oscillators, which are not only a more biologically plausible abstraction of
neuronal synaptic activity but also present rich metastable dynamics that
can be exploited to compute arbitrary logic operations (Neves & Timme,
2009, 2012; Wildie & Shanahan, 2012). However, the network cluster states
in the works just cited are emergent processes found numerically (despite
the switching dynamics being controllable), while the model studied in this
work can be systematically tuned into predefined assembly configurations.

Finally, it would be interesting to extend the model to include multiple
assembly membership (i.e., entitle a given neuron to participate simulta-
neously in two or more assemblies), as it has been shown to enhance the
computational power of a neuronal circuit (Izhikevich, 2006).

To conclude, implementing the methods or the experiments described
in this work in a biological network is impractical at the moment for limita-
tions in both recording and stimulation technologies: the best technologies
are able to record and stimulate a limited number of neurons. However,
more important than trying to implement the methods or experiments in a
biological network are the insights and future work opportunities we gain.
There are many open questions in neuroscience regarding neural assem-
blies, their properties, and their relationship to behavior. This very simple
model, based on a model that is being increasingly applied to study neu-
roscience problems (the Kuramoto model), has shown promising results in
supervised and unsupervised learning tasks. The point to stress is not solely
performance levels—support vector machines, for instance, would surely
excel in experiment 1, attaining far better results than our approach—but
the ability to solve relatively complex tasks mimicking mechanisms that
current research suggests is exploited by the brain: neuronal assembly dy-
namics. Therefore, a better understanding of the framework, its limitations
and possible extensions, and ultimately understanding of the computa-
tional properties of neuronal assembly dynamics, whether at solving data
mining tasks or as part of novel behavior generation mechanisms, should
precede biological implementations.
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