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Abstract— This paper presents an artificial homeostatic sys- some variables need to be kept within pre-determined bound-
tem (AHS) devoted to the autonomous navigation of mobile aries, either by evolutionary changes, physiologicaltieas,
robots, with emphasis on neuro-endocrine interactions. The sensory adjustment or by simply learning novel behaviours.

AHS is composed of two modules, each one associated with . o 2 .
a particular reactive task and both implemented using an Therefore, being within the specified boundaries, a regolat

extended version of the GasNet neural model, denoted spatially task that is attributed to the homeostatic system, the @gan
unconstrained GasNet model or simply non-spatial GasNet (NS- or the artificial agent can operate and stay alive inadility
GasNet). There is a coordination system, which is responsible zgne.

for the specific role of each NSGasNet at a given operational The biological inspiration combined with the theory pre-

condition. The switching among the NSGasNets is implemented . L .
as an artificial endocrine system (AES), which is based on a sys- sented by Ashby have motivated applications of homeostasis

tem of coupled nonlinear difference equations. The NSGasNets N the synthesis of autonomous systems in mobile robotics
are synthesized by means of an evolutionary algorithm. The [3][9][10].

obtained neuro-endocrine controller is adopted in simulated Harvey [10] investigated homeostatic adaptation in a sim-
and real benchmark applications, and the additional flexibility plified model, called Daisyworld model, used to explain the
f 7 L

provided by the use of NSGasNet, together with the existence o - g . . .
an automatic coordination system, guides to convincing levels adaptation of daisies to different weather conditions.slt i

of performance. shown that homeostasis can be achieved by the combination
of a "Hat Function” (a function that has a shape similar to a
I. INTRODUCTION hat) and the use of "Rein Control”. These ideas were applied
Learning and evolution are considered fundamental steﬁ%gft?'?iﬁcwert?erf ?prtl'orr; n i stilmulratedrtzobot[.)i Paclo 19
towards the synthesis of complex adaptive systems and the ploring particuiar homeostatic properties, aolo [9]

computational modelling of cognitive processes. Due to ir‘E\e/(t)vl\\I/eegn a;hréla:gsr:fsu@cheogtljg!g{emiri;gz C(I):;]:t?cdrlallss
trinsic properties of biological systems found in natures J P :

as decentralization, adaptability, scalability, selfamization The hcl)lm(ios(tjat\l/c Iprocl:essleslwiir eitlmiplem(lalnt/ii?] b{halrlr?vxémg
and robustness, bio-inspired computational tools have beg1e cells 1o develop focal plasticity, 1.. allowing them 1o

developed in an attempt to succeed where and when classigg?nge their connections weights whenever their activity

problem solving tools produce unacceptable performanc\’é'.ent out of bounds. As the computational power of a

Artificial neural networks [1] and artificial endocrine sgsts neuron 's relatﬁd :0 Its ds_,aturtagon st,tatLi_s, thlf] homeo_sdt_a .
[2][3] are examples of bio-inspired computational toolatth approach aimed at avoiding this saturation, nus providing

have been applied successfully to complex problems. to the system alternatives for maintaining its internatesta

There is evidence that the immune, nervous and endocriWehen confronted by disruptions. In order to study this

systems have an intrinsic relation, with coupled stimolagi omeostatic adaptation, the author proposes an experiment

and interdependence, fundamental for cognition and thrglated to radical sensory-motor distortions, in particuhe

. . . problem of adaptation to inversion of the visual field, a
maintenance of the internal state of an organism [4]. Thi ) . . :
o . euro-psychological problem investigated both in humah an
latter property, known as homeostasis, is considered to be.

fundamental for the successful adaptation of the individu gnimals [11][12]. It was shown that the controller was able

: . . . ?o adapt to this disruption, and the robots maintained terta
to dynamic environments, hence, essential for survival. Ac - :

. . e degree of stability. However, as emphasized by the author,
cording to Levine [5], the term homeostasis first appeared Qn

the work of Cannon in 1929 [6]. Nonetheless, for Pfeifer urther investigations are necessary to explain why doiss th

. . ' appen.
_Sche|er [7], homeostasis was .completely defined .by Ashby Following some of the ideas of the work of Di Paolo [9],
in 1960 [8]. For Ashby, the ability to adapt to a continuously , .~ o

) . : : - Hoinville & Hnaff [13] presented a preliminary study on the
changing and unpredictable environment, i.e. adaptititys advantages of two bio-inspired homeostatic mechanisms in
a direct relation to intelligence. During the adaptive eres; neural controllers of legged robots. It was shown that the
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modules of predetermined behaviours, that is, we will emplo  The artificial homeostatic system proposed by Vaegzs.
a behaviour-based approach, and provide the system with 3¢ was composed of an artificial endocrine system (AES)
ability to dynamically switch among behaviours, given theand two multi-layer perceptron artificial neural networks.
current status of the navigation system. The AES consisted of three main modules: hormone level
This work is organized as follows: section Il presentgepository (HL), hormone production controller (HPC), and
the inspirations and adaptations towards the developmegndocrine gland (G). The hormone level repository has a
of an artificial homeostatic system, including the approactecord of the level of hormone in the organism; the hor-
adopted in this work. In section Ill the evolutionary rolesti mone production controller is responsible for controlling
paradigm is explored, and the GasNet model is presentte production of hormones in response to variations in the
as an alternative to the synthesis of the necessary reactinéernal state of the organism and external stimulatiort an
modules. Section IV contains the details of the new artificidhe endocrine gland receives inputs from the HPC, being
homeostatic system developed. Section V illustrates thiesponsible for producing and secreting hormones when
suggested tasks and its implementation details. Section ¥4quired.
contains the results of the artificial homeostatic system in The system dynamics is inspired by some of the main
simulated and real experiments. Finally, section VII pnése biological mechanisms of homeostasis, particularly pesit
final remarks and suggests directions for future investigat and negative feedback mechanisms of the endocrine system.
The HPC module sends excitatory signals, which work as
Il. ARTIFICIAL HOMEOSTASIS- PREVIOUS WORK a positive feedback to the gland G, which in turn starts to
roduce and release hormone 1, thus increasing the hormone

Apart from the origin of the term, it is a consensus th - .
the homeostatic process is strictly connected to the balangevel' Thg level of hormone will n trn alter the mternaﬁm
by driving neural network actions upon the environment.

of the system or organism and requires some special sens )}/sensin inhibitory signals that promote negative feellba
receptors skilled in detecting changes. In the human boc%' g Y sig P 9

. i . bm the internal state, the HPC module ceases the produc-
these receptors trigger specific responses in the nervolfls . . . . .
. . . . 10h of excitatory signals (positive feedback) until oncmia
immune and endocrine systems, which are the main systei Ssenses specific changes in the internal state
directly related with the process of homeostasis. This work b 9 '
is concerned specifically with neuro-endocrine interargio Iy 1S> 0

The nervous system, among many other fungtigns, has &,.,, (HP(t + 1) = (100 — %ES) x a(Maz(HL) — HL(t))
sensory role in the body, receiving and transmitting nerveejse HP =0
impulses as the result of internal or external stimulatibf] [ _ _ (1)

The endocrine System is Composed of g|ands7 Specia”zwerea is the target threShOld O-f the internal Stat-e |S, HP
cells, body tissues and organs [15]. They can produce,teecrts the hormone production; ES is the external stimulus;
and interact with chemical substances, called hormonés, the scaling factor; HL is the hormone level; anhds the
which are responsible for the performance of the endocririgne index. If the internal state IS is greater than or equal
system in tasks such as the maintenance of homeostaéfsa target threshold, then hormone will be produced at a
metabolism and reproduction. rate that will depend upon the level of the external stimulus
System’ which in turn can transmit nerve impu'ses aﬂ:ectinﬁ]e artifiCial Organism. OtherWise, |f the internal StateiSS

the production and secretion of hormones, thus estabgjshitfss than a target threshafd then hormone production will

a control loop mechanism. cease.
Timmis & Neal [16] suggested a mathematical mod- If  (BS > X) and (HL > w) then IS =0
i ifici i i > an > w) then =
elling for an artificial endocrine system applied to robot dse IS(E D) — 15(t) 1+ B(Man(15) - 18() o)

autonomous navigation. According to the authors, the idea
was to develop a system that could provide the capaci®yhere\ andw are pre-determined thresholds associated with
of maintenance of the internal equilibrium of an agenES and HL, respectivelys is the increasing rate of the
while it interacts with an external environment [2]. In thei internal state.
work, the artificial endocrine system consisted of equation The hormone level represents the amount of hormone stim-
that represented an aggregate of glandular cells thattsedwating the artificial neural network (ANN). It is submitted
hormones in response to external stimuli. to constant updating in its value due to its internal hd-li
Aiming at designing a more biologically plausible systemmeasure (parametgf) and the amount of hormone produced
Vargaset al [3] suggested an extension to the model ofEquation 3):
Timmis & Neal [16]. The hormones, which were previously T
stored in a sort of pool, are designed to be produced and HL(t+1) = HL(t) x ™" + HP() ®
released on demand through artificial glands. There is alt is important to stress that any variation in the internal
positive and negative feedback mechanism (represented dryd external states may promote or suppress the activity
coupled difference equations), which are reminiscent ef thof the nervous (ANN) and endocrine (AES) systems. For
biological endocrine system internal regulation. instance, the variation of the internal state of the organis



as a result of hormone production may act as a feedback

mechanism to the hormone production itself, resulting & th B 0, é <0 N 8
release of inhibitory hormones or in the cessation of horenon fla) = ]L\fJ_’ 1 el:ex < ®)
production. ’

where P[i] is the set of valuess! can assume in thev
[1l. EVOLUTIONARY ROBOTICS AND GASNETS positions array,D? is the genetically defined value @b?,
! . . .
Evolutionary Robotics is a particularly novel field of ¢y and C; are the concentrations of gases 1 and 2 at time

research, which aims to apply evolutionary computatioh-tec ! réspectivelyCo and i are global constants. _
niques to evolve the physical structure of the robot (itsjpod 1 ere are wo gases, gas 1 and gas 2. The transfer function
and/or the controller, for both real and simulated autonasno 2 1S increased by the presence of gas 1 and decreased by
robots. In spite of being a well-established research ard3€ Presence of gas 2.

with many achievements reported in the literature [17], it It_is believed that all _GasNet’s combined featurgs, in
has some intrinsic difficulties, mainly associated with th@artlcular, the spatial relation, provide to the networgfty-

time spent while evaluating an individual and the so calle§€Sired adaptation properties. Nonetheless, recent wiaries
"reality gagy, which is related to the transfer of a simulated?©€n investigating the effective relevance of this spatial
evolved controller to the real robot [18]. relationship among neurons. For instance, Vargjaal. [25]

The synaptic plasticity is considered fundamental to mo$OPosed a novel, spatially unconstrained GasNet model,
of the artificial models of the nervous system, from neurdi@med non-spatial GasNet (NSGasNet). In this model, there
networks [1][19][20] to other computational models basad o'S absence of the notion of space, thus any neuron is able

neuroscience [21][22][23]. Inspired by this synapticapl to reach any other node of the networl§, performing the
ticity, traditional models of artificial neural networks wee modulation via gases. The degree of stimulation between

extended. An architecture known as GasNet, was develophilf Neurons is determined by a genetically specified term

by Husbands [24] with the aim at reproducing the productioﬁalled Mbias (modulator bias)_, ranging from 0 to 1. A 0
and release of nitric oxide (NO) by real neurons, modulatiny®ue Means that the neuron is not affected by the specified
the behaviour of the neurons in its vicinity. This neuroEmitting neuron. A value above "0" means that the neuron

modulation acts in the neuron transfer function, modifyin ill be affected by the specified emitting neuron, at a rate

its behaviour. The GasNet is modelled as a recurrent neufiPPortional to the stimulation level. Equation 9 defines th

network with a variable number of nodes, which are spatiall§5oncemr"’ltlon of gas at the neuron.

embed_ded in_ a ZD Eu_clidean space. Each node can produce C(t) = Mbias x T(t) ©)

synaptical stimuli, excitatory or inhibitory, to other meus

to which it is connected, and also chemical stimuli, through FunctionsI'(¢) and H (z) (Equations 10 and 11) model the

artificial gases, to other spatially related nodes. spread of the gases; andts are the last time the neuron
The output of the network is given by Equation 4. At eaci$tarted and ceased the emission of gas, respectively;a

time stept, the output is a function of both the electric inputsconstant related to the build up and decay of the gas emission

and the gaseous modulation, determined by the amount &feach time step.

gases at the neuron site.

_f H(EE) emitting
T(t) = { H(H(f=te) — H(*=t=) not emitting (10)
Of =tanh | K{ | Y w0 +1If | +b, (4)
JEC; 0 x<0
whereC; is the set of nodes with connections to nade;; H(z) = f 2|S<ex <1 -

is the connection weight value (ranging from -1 to d)j,‘l
is the previous output of neurgp I} is the external inputto ~ The network genotype consists of an array of integer
neuron: at timet, if the node has external inputs, is the variables lying in the range [0, 99] (each variable occupies
bias of the neuron, an&’! represents the modulation of thea gene locus). The decoding from genotype to phenotype

transfer function caused by the gases. adopted is the same as the original model [24]. The NS-
The K! parameter has its value determined from the s€basNet model has 6 variables associated with each node
of Equations 5 to 8: plus 1 modulator bias for each node, plus task-dependent

parameters (not specified in the genotype below).
K; = P[D;] ©)
< genotype >::< rec >< TE >< CE >< DY >

P= {-4.0,-20,-1.0, -0.5, -0.25, -0.125, < bias >< s >< Mbias; > ... < Mbiasij) >

0.0, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0 ©)

The rec parameter determines if the recurrent connection
ct 0) @ is excitatory, inhibitory, or inexistent]’E stands for the

Ci
TGy x &P circumstances under which the neuron will emit a gas: if its

0
o V- Di)

Di=r (Dt



electrical activity exceeds a predetermined thresholdhef &
concentration of gas 1 exceeds a predetermined threslifiold, i (4 4
the concentration of gas 2 exceeds a predetermined thdgshol n ol i ‘ )
or if the neuron does not emit gases under any circumstance; U U :
CE specifies which gas the neuron emits, gas 1 or gd3’2; Kj 1 ;'"
bias ands are referred in Equations 7, 4 and 10, respectively, .- — P
and theM bias parameter is the modulation bias of the node.
For a more detailed explanation of the mechanisms of the @) (b)
GasNets and NSGasNets, the reader should refer to [24] 31'519 2. (a) Displacement of the eight infrared sensors of thepéra Il
[25]. robot. Six sensors in the front and two sensors in the baglg¢al Khepera

As it will be further described in the next section, the/! Robot
NSGasNet model will be adopted in this work, thus replac-
ing the multi-layer perceptron neural networks used in the

original model of the artificial homeostatic system. The use of evolution in the design of an AHS justi-

fies itself for the advantages of evolving artificial neural
networks against previous training, as stated by Yao [26]
and others [27][28][29]. The NSGasNet uses evolutionary
computation techniques for the adjustment of size, topolog
and parameters of the network. Moreover, in applications of
control of autonomous robotics agents, the original GasNet
presents evolution time and performance superior to tech-
nigues that employ the classical models of neural networks
[24][30][31][32]. It is important to stress that this work
presents the first application of the NSGasnet model in robot
autonomous navigation. Nonetheless, this model showed to
be superior than the original GasNet model in other tasks as
stated in the work of Vargast al. [25].

Figure 1 gives the system overview illustrates the inter-
action of the artificial endocrine system (AES) with the
artificial neural networks (N1 and N2), the interactions of
both of them with the environment (external stimulus) and
the artificial agent. The environment is perceived by the
artificial neural system, here represented by two NSGasNets
previously evolved to accomplish specific tasks. The output
of the networks are then modulated by the presence or
absence of hormones, which are influenced by internal and
external stimulus to the AES. The responsibility of the hor-
mones are to coherently coordinate, through its concéotrat

There is a consensus that the homeostatic process isystrigvels, the outputs of the networks by choosing how much
connected to the balance of the system or organism afiffluence each of them should have in determining the action
requires some specific sensory receptors specially evédvedperformed by the system (here the outputs of the networks
detect changes. In the human body, these receptors triggge directly connected to the motors of the robot, establish
specific responses in the nervous, immune and endocrififeir velocities), aiming at preserving the internal stafe
systems, which are the main systems directly linked to th@ie system. This action may cause the external stimulus to

process of homeostasis. It is important to highlight thathange, hence triggering the whole cycle again.
our work is concerned specifically with neuro-endocrine

interactions. For interactions with the immune system, the
reader should refer to [16].

In the homeaostatic system developed here, an artificial en-The first set of experiments consisted of a simulated
docrine system is employed as a control system to coordinatgbotic agent that should learn previously two different
two evolved artificial neural networks in a robot autonomousasks: explore the scenario while avoiding collisions and
navigation task. chase a light source (related here to a power source). Both

Evolutionary theory proposes that the brain has evolvetdsks were learned through the evolution of the NSGasNets,
to control behaviour in order to ensure our survival [17]independently. These two experiments are designed tosasses
Additionally, it is agreed that intelligence manifestslfsn  the competency of the NSGasNet model in the autonomous
behaviour. Thus we must understand behaviour before webotics domain, and will also be used as modules of
can completely understand intelligence [17]. behaviour within the artificial homeostatic system.

NSGasNet

sn|NWINg [BUIBIXT

Fig. 1. Artificial Homeostatic System overview

IV. TOWARDS THEEVOLUTION OF AN ARTIFICIAL
HOMEOSTATIC SYSTEM

V. METHODS
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The Khepera Il is a mini-robot, shown in Figure 2. It

has a diameter of 70 mm and is 30 mm high, weighting,as developed to cope with the KMatLab interface, which

around 80g. A robot with this reduced size allows thgyas created to control the Khepera Robot from the MatLab
implementation of experiments in a small-size platform angnyironment [33].

with a low consumption of energy. The robot gets its energy
by wire or by its internal batteries, which have an autonomf?. NSGasNet Evolution

of 1 hour, approximately; it is sustained by two wheels, The evolution of the networks used a distributed genetic
responsible for its motion. The wheels have independegigorithm [35][36]. Individuals of the population, with ma
electric motors and, by applying different speeds in thgom genomes at the beginning, are arranged in a 4x4 toroidal
wheel, direction adjustments are obtained. The maximughd, with all fitnesses evaluated. In a breeding event, a
speed of the robot is 1 m/s, and the minimum is 0.08m/s. ;andom point in the grid is chosen, and a mating pool
The robot has in its basic structure 8 infrared sensors th@gether with its 8 neighbours is formed. A single parent
incorporate emitters and receptors. The sensors meagire fithen chosen through rank-based roulette selection,rend t
environment luminosity (ranging from 50 to 500, 50 beingmytation operators are applied, producing a new individual
the highest luminosity that can be sensed) and the obstaglgich is evaluated and placed back in the mating pool in a
distance (ranging from 0 to 1023, the latter being the closegosition determined by inverse rank-based roulette setect
distance to an object). The range of the sensors, relatedNg crossover is used. A generation is defined as sixteen
obstacles, is 10cm, maximum. The time of data acquisition @freeding events, and the evolutionary algorithm runs for a
each sensor is 2.5ms and, at each 20ms, a complete measig&imum of 50 generations.
is done. The output of each measure is an analogic valueThere were two mutation operators, each applied in 10%
converted to a 10-bit number. of the gene locus. In the first operator, only for continuous
Some external factors, like the presence of incandescepriables, each locus was altered by an amount/inld, 10]
lamps, can cause interference in the measurements of U&%ge. In the second operator, the randomly chosen gene
distance sensors. This is due to the fact that the same sengey;s is altered to a new value that can be anything belonging
is used for both tasks (distance and luminosity detectiony the whole range ([0,99]), in a uniform distribution.

For example, the distance sensor emits an infrared ray andeor further details about the genetic algorithm and the
calculates the distance to the obstacle based on the tisie thiytation operators, the reader should refer to [24].

ray took to left the emitter and return to the receptor. How-
ever, if there is an incandescent lamp nearby, its lumiposiC. Evolution of an Obstacle Avoidance Behaviuor

will cause intgrference on the receivgd rays, changing the oy the straight motion with obstacle avoidance behaviour,
sensorial reading. Though, as the luminosity sensors @se e network had 4 inputs: the most stimulated left distance
infrared range, we must apply lamps that are on the infraregnsor, the most stimulated frontal distance sensor, the mo
zone. So, it is important to take care when developing agimuylated right distance sensor and the most stimulated
experiment. This fact appears to have been noted by thgckward distance sensor. Two different neurons were con-
manufacturer, and the new Khepera series, Khepera Ill, ha¥Rjered to be output neurons, so the network consisted of 6
distance sensors based on ultrasound, being immune to ligid;rons. The output neurons corresponded to the motor neu-
interference [33]. rons, responsible for driving the robot. The fitness functio

The simulations were carried out using a software namggquation 12) and the training scenario (Figure 3(a)) were
KIKS [34]. It is a robot simulator that reproduces the sepsorinspired by the work of [17]:

behaviour of the real robot, which facilitates the migratio
from the virtual environment to the real environment. It p=V(1—-VAv)(1—1) 12)
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where V is the sum of the rotation speed of the wheels 200

(stimulating high speeds)Av the absolute value of the 3s0

algebraic difference between the value of the speeds of 300

the wheels (stimulating forward movement), ahds the 2501

normalized value of the distance sensor of highest adbiati 2001

(stimulating obstacle avoidance). tsor

Figure 3(a) illustrates the behaviour of a higher fitness oo

individual in the training scenario, and Figure 4 shows the 6" 500 1000 1500 2000 2500 3000 300 4000

evolution of population fitness. Note that, as the robot is

always close to an obstacle, and consequently always a Fig. 7. External Stimulus

distance sensor is stimulated, the fitness value is not ttose

its maximum. A trial is considered to be 2000 iterations of

the control algorithm. At the end of each trial, the robot is VI. RESULTS
randomly replaced in the scenario.

D. Evolution of a Phototaxis Behaviour A. Experiments with a Simulated Robotic Agent

The network structure for the phototaxis behaviour was In the experiment, the robot begins to explore the arena,
similar to the obstacle avoidance network. Only the digtancontrolled by the obstacle avoidance network, while itsinee
sensors were replaced by the luminosity sensors. Thertgpinifor recharging its battery remains low. The AES was designed
scenario consisted of a squared arena, where the robot Hedmanage the internal state “desire to recharge” of the
an initial, fixed position at the beginning of each trial. The'obot. As this necessity grows, the production of the horenon
light was randomly positioned relatively far from the ropotrelated to the decrease of energy causes the switching of the
but it could perceive it anywhere in the scenario. A triafitificial neural network to be employed, gradually reptaci
is restricted to the robot exploring the scenario chasirg ttihe behaviour of exploration by the behaviour of searching
light. Whenever it was “captured”, the robot is placed backhe light (phototaxis). After recharging its battery (syohb
at the starting point and the light is randomly repositianedsed by staying closer to the light), and the consequente
Each trial corresponds to 2000 simulation steps. The fitneggcrease in the related hormone level, the robot returns to
function is presented in Equation 13. Theparameter, its original behaviour of exploration.
referred to sensory activation, is maximized when the robot Figure 6 shows the hormone and the internal state levels
is near to the light (due to the sensory structure of the roband Figure 7 shows the external stimuli of the frontal sensor
described in Section V-A). Note that the function is quiteduring 4000 iterations or navigation steps. The hormone and
similar to the previous one. However, the component thaternal state values range from 0 to 100 units at most. Note
stimulated forward movement is now omitted. This meanthat when the hormone level increases above a predetermined
that the robot could stay turning around the light and yghreshold, the robot stops exploring the scenario andsstart
have a higher fitness. Figure 3(b) illustrates the behavioghasing the light (illustrated by the inferior peaks of ligh
of an individual which presents a high fitness in the trainingeadings in Figure 7). This confirms the influence of the
scenario, and Figure 5 shows the evolution of populatiohormone level over the robot's autonomous behaviour. The
fitness. parameter values adopted in this simulation @res 0.001;

o = 0.005;7 = 70.0; A = 100;w = 65.0; andd = 75.0, and
¢=V(1-1i (13)  were defined empirically.



B. Experiments with a Real Robotic Agent

architectures of artificial neural networks. As one of the

The main idea of this experiment is to use the same contrglain difficulties confronted when evolving robot contredle
system developed for the simulated robotic agent in a rell the time needed to evaluate the individual performance,
robotic agent. Due to the robustness of the evolved network&>GasNets should be considered in future works within the

no adjustments were required to cross the reality gap.

evolutionary robotics domain.

Figure 8 shows a complete trajectory in an environment 10 achieve higher levels of automation, the parameters of
surrounded by walls, with a light source in the corner. Théhe artificial endocrine system should also be evolvedyallo

robot starts exploring the scenario while avoiding cabiis.

ing the agent to self-determine its internal thresholdsrwhe

When its internal state level exceeds a predetermined limifitéracting with the environment. Moreover, it is believed
the artificial endocrine system stimulates the productibn dhat this could enable the system to deal with internal and
hormone, thus increasing the hormone level. This will cauggternal disruptions. Future work will include this apprba

the robot to follow the light (to recharge its battery). As
soon as the robot reaches the light, the hormone level starts
to decrease and the robot switches back to the exploratio[f]i]
behaviour. The partially evolved AHS was able to keep thep;
internal state of the robot within limits, thus proving its

homeostasis. [

(4]
(5]
(6]
(7]
(8]
(9]

[10]

Fig. 8. Complete trajectory of the real robot controlled bg trew AHS
[11]

VII. [12]

This work is a first step towards the evolution of a previougl3]
version of an artificial homeostatic system (AHS), emplgyin
an artificial endocrine system (AES) and a more biologically
plausible artificial neural network (ANN). The adopted ANN[14]
is an extended version of the original GasNet model, nam 95]
NSGasNet, which has no spatial constraints in its design.
The new AHS was applied to solve distinct robot tasks thate]
require coordination of basic reactive behaviours.

The new system explored neuro-endocrine interactions aﬂe}]
it was shown that multiple coordination of behaviours could
be successfully achieved by the new robot controller. It i
important to stress that the coordination is not fully pre-
designed, the neuro-endocrine interactions dynamicdiyt [19]
itself to the environment condition, given the internaltsta
of the robot. The obtained autonomous controller present%]
good performance both in simulated and real environments
and robustness when crossing the frontier between simulati[21]
and real application (reality gap) is a mostly desired fesatu

The NSGasNet was designed to be evolved. Relatezb)
works have suggested that the evolution of these networks
is considerably faster and more robust than conventiongh;
supervised training of recurrent or feedforward multilaye
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