
Towards the Evolution of an Artificial Homeostatic System

Renan C. Moioli, Patricia A. Vargas, Fernando J. Von Zuben and Phil Husbands

Abstract— This paper presents an artificial homeostatic sys-
tem (AHS) devoted to the autonomous navigation of mobile
robots, with emphasis on neuro-endocrine interactions. The
AHS is composed of two modules, each one associated with
a particular reactive task and both implemented using an
extended version of the GasNet neural model, denoted spatially
unconstrained GasNet model or simply non-spatial GasNet (NS-
GasNet). There is a coordination system, which is responsible
for the specific role of each NSGasNet at a given operational
condition. The switching among the NSGasNets is implemented
as an artificial endocrine system (AES), which is based on a sys-
tem of coupled nonlinear difference equations. The NSGasNets
are synthesized by means of an evolutionary algorithm. The
obtained neuro-endocrine controller is adopted in simulated
and real benchmark applications, and the additional flexibility
provided by the use of NSGasNet, together with the existence of
an automatic coordination system, guides to convincing levels
of performance.

I. I NTRODUCTION

Learning and evolution are considered fundamental steps
towards the synthesis of complex adaptive systems and the
computational modelling of cognitive processes. Due to in-
trinsic properties of biological systems found in nature, such
as decentralization, adaptability, scalability, self-organization
and robustness, bio-inspired computational tools have been
developed in an attempt to succeed where and when classical
problem solving tools produce unacceptable performance.
Artificial neural networks [1] and artificial endocrine systems
[2][3] are examples of bio-inspired computational tools that
have been applied successfully to complex problems.

There is evidence that the immune, nervous and endocrine
systems have an intrinsic relation, with coupled stimulations
and interdependence, fundamental for cognition and the
maintenance of the internal state of an organism [4]. This
latter property, known as homeostasis, is considered to be
fundamental for the successful adaptation of the individual
to dynamic environments, hence, essential for survival. Ac-
cording to Levine [5], the term homeostasis first appeared on
the work of Cannon in 1929 [6]. Nonetheless, for Pfeifer &
Scheier [7], homeostasis was completely defined by Ashby
in 1960 [8]. For Ashby, the ability to adapt to a continuously
changing and unpredictable environment, i.e. adaptivity,has
a direct relation to intelligence. During the adaptive process,
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some variables need to be kept within pre-determined bound-
aries, either by evolutionary changes, physiological reactions,
sensory adjustment or by simply learning novel behaviours.
Therefore, being within the specified boundaries, a regulatory
task that is attributed to the homeostatic system, the organism
or the artificial agent can operate and stay alive in aviability
zone.

The biological inspiration combined with the theory pre-
sented by Ashby have motivated applications of homeostasis
in the synthesis of autonomous systems in mobile robotics
[3][9][10].

Harvey [10] investigated homeostatic adaptation in a sim-
plified model, called Daisyworld model, used to explain the
adaptation of daisies to different weather conditions. It is
shown that homeostasis can be achieved by the combination
of a ”Hat Function” (a function that has a shape similar to a
hat) and the use of ”Rein Control”. These ideas were applied
to obtain active perception in a simulated robot.

Exploring particular homeostatic properties, Di Paolo [9]
evolved a plastic neural controller, where the connections
between the neurons were subjected to some plastic rules.
The homeostatic processes were implemented by allowing
the cells to develop local plasticity, i.e. allowing them to
change their connections weights whenever their activity
went out of bounds. As the computational power of a
neuron is related to its saturation status, this homeostatic
approach aimed at avoiding this saturation, thus providing
to the system alternatives for maintaining its internal state
when confronted by disruptions. In order to study this
homeostatic adaptation, the author proposes an experiment
related to radical sensory-motor distortions, in particular the
problem of adaptation to inversion of the visual field, a
neuro-psychological problem investigated both in human and
animals [11][12]. It was shown that the controller was able
to adapt to this disruption, and the robots maintained certain
degree of stability. However, as emphasized by the author,
further investigations are necessary to explain why does this
happen.

Following some of the ideas of the work of Di Paolo [9],
Hoinville & Hnaff [13] presented a preliminary study on the
advantages of two bio-inspired homeostatic mechanisms in
neural controllers of legged robots. It was shown that the
evolvability, stability and ability to reject perturbation of
the plastic neural controllers are improved when homeostatic
mechanisms are incorporated to them.

The ideas presented by Di Paolo [9] and Hoinville & Hnaff
[13] encompass homeostasis within one unique structure, i.e.
an artificial neural network capable of dynamically changing
their connection plasticity rules. on the other hand, our
present work is concerned with the coherent coordination of



modules of predetermined behaviours, that is, we will employ
a behaviour-based approach, and provide the system with the
ability to dynamically switch among behaviours, given the
current status of the navigation system.

This work is organized as follows: section II presents
the inspirations and adaptations towards the development
of an artificial homeostatic system, including the approach
adopted in this work. In section III the evolutionary robotics
paradigm is explored, and the GasNet model is presented
as an alternative to the synthesis of the necessary reactive
modules. Section IV contains the details of the new artificial
homeostatic system developed. Section V illustrates the
suggested tasks and its implementation details. Section VI
contains the results of the artificial homeostatic system in
simulated and real experiments. Finally, section VII presents
final remarks and suggests directions for future investigation.

II. A RTIFICIAL HOMEOSTASIS- PREVIOUS WORK

Apart from the origin of the term, it is a consensus that
the homeostatic process is strictly connected to the balance
of the system or organism and requires some special sensory
receptors skilled in detecting changes. In the human body,
these receptors trigger specific responses in the nervous,
immune and endocrine systems, which are the main systems
directly related with the process of homeostasis. This work
is concerned specifically with neuro-endocrine interactions.

The nervous system, among many other functions, has a
sensory role in the body, receiving and transmitting nerve
impulses as the result of internal or external stimulation [14].

The endocrine system is composed of glands, specialized
cells, body tissues and organs [15]. They can produce, secrete
and interact with chemical substances, called hormones,
which are responsible for the performance of the endocrine
system in tasks such as the maintenance of homeostasis,
metabolism and reproduction.

The release of hormones can also affect the nervous
system, which in turn can transmit nerve impulses affecting
the production and secretion of hormones, thus establishing
a control loop mechanism.

Timmis & Neal [16] suggested a mathematical mod-
elling for an artificial endocrine system applied to robot
autonomous navigation. According to the authors, the idea
was to develop a system that could provide the capacity
of maintenance of the internal equilibrium of an agent
while it interacts with an external environment [2]. In their
work, the artificial endocrine system consisted of equations
that represented an aggregate of glandular cells that secret
hormones in response to external stimuli.

Aiming at designing a more biologically plausible system,
Vargas et al. [3] suggested an extension to the model of
Timmis & Neal [16]. The hormones, which were previously
stored in a sort of pool, are designed to be produced and
released on demand through artificial glands. There is a
positive and negative feedback mechanism (represented by
coupled difference equations), which are reminiscent of the
biological endocrine system internal regulation.

The artificial homeostatic system proposed by Vargaset al.
[3] was composed of an artificial endocrine system (AES)
and two multi-layer perceptron artificial neural networks.
The AES consisted of three main modules: hormone level
repository (HL), hormone production controller (HPC), and
endocrine gland (G). The hormone level repository has a
record of the level of hormone in the organism; the hor-
mone production controller is responsible for controlling
the production of hormones in response to variations in the
internal state of the organism and external stimulation; and
the endocrine gland receives inputs from the HPC, being
responsible for producing and secreting hormones when
required.

The system dynamics is inspired by some of the main
biological mechanisms of homeostasis, particularly positive
and negative feedback mechanisms of the endocrine system.
The HPC module sends excitatory signals, which work as
a positive feedback to the gland G, which in turn starts to
produce and release hormone 1, thus increasing the hormone
level. The level of hormone will in turn alter the internal state
2 by driving neural network actions upon the environment.
By sensing inhibitory signals that promote negative feedback
from the internal state, the HPC module ceases the produc-
tion of excitatory signals (positive feedback) until once again
it senses specific changes in the internal state.

If IS ≥ θ
then (HP (t + 1) = (100 − %ES) × α(Max(HL) − HL(t))
else HP = 0

(1)
whereθ is the target threshold of the internal state IS; HP
is the hormone production; ES is the external stimulus;α

is the scaling factor; HL is the hormone level; andt is the
time index. If the internal state IS is greater than or equal
to a target thresholdθ, then hormone will be produced at a
rate that will depend upon the level of the external stimulus
received and the level of hormone already present within
the artificial organism. Otherwise, if the internal state ISis
less than a target thresholdθ, then hormone production will
cease.

If (ES ≥ λ) and (HL ≥ ω) then IS = 0
else IS(t + 1) = IS(t) + β(Max(IS) − IS(t))

(2)

whereλ andω are pre-determined thresholds associated with
ES and HL, respectively;β is the increasing rate of the
internal state.

The hormone level represents the amount of hormone stim-
ulating the artificial neural network (ANN). It is submitted
to constant updating in its value due to its internal half-life
measure (parameterT ) and the amount of hormone produced
(Equation 3):

HL(t + 1) = HL(t) × e
−1/T + HP (t) (3)

It is important to stress that any variation in the internal
and external states may promote or suppress the activity
of the nervous (ANN) and endocrine (AES) systems. For
instance, the variation of the internal state of the organism



as a result of hormone production may act as a feedback
mechanism to the hormone production itself, resulting in the
release of inhibitory hormones or in the cessation of hormone
production.

III. E VOLUTIONARY ROBOTICS AND GASNETS

Evolutionary Robotics is a particularly novel field of
research, which aims to apply evolutionary computation tech-
niques to evolve the physical structure of the robot (its body)
and/or the controller, for both real and simulated autonomous
robots. In spite of being a well-established research area
with many achievements reported in the literature [17], it
has some intrinsic difficulties, mainly associated with the
time spent while evaluating an individual and the so called
” reality gap”, which is related to the transfer of a simulated
evolved controller to the real robot [18].

The synaptic plasticity is considered fundamental to most
of the artificial models of the nervous system, from neural
networks [1][19][20] to other computational models based on
neuroscience [21][22][23]. Inspired by this synaptical plas-
ticity, traditional models of artificial neural networks were
extended. An architecture known as GasNet, was developed
by Husbands [24] with the aim at reproducing the production
and release of nitric oxide (NO) by real neurons, modulating
the behaviour of the neurons in its vicinity. This neuro-
modulation acts in the neuron transfer function, modifying
its behaviour. The GasNet is modelled as a recurrent neural
network with a variable number of nodes, which are spatially
embedded in a 2D Euclidean space. Each node can produce
synaptical stimuli, excitatory or inhibitory, to other neurons
to which it is connected, and also chemical stimuli, through
artificial gases, to other spatially related nodes.

The output of the network is given by Equation 4. At each
time stept, the output is a function of both the electric inputs
and the gaseous modulation, determined by the amount of
gases at the neuron site.
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whereCi is the set of nodes with connections to nodei, wji

is the connection weight value (ranging from -1 to 1),Ot−1
j

is the previous output of neuronj, It
i is the external input to

neuroni at time t, if the node has external inputs,bi is the
bias of the neuron, andKt

i represents the modulation of the
transfer function caused by the gases.

The Kt
i parameter has its value determined from the set

of Equations 5 to 8:

K
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P = {-4.0, -2.0, -1.0, -0.5, -0.25, -0.125,
0.0, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0} (6)
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f(x) =


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0, x ≤ 0
⌊x⌋ , 0 < x < N
N − 1, else

(8)

where P [i] is the set of valuesKt
i can assume in theN

positions array,D0
i is the genetically defined value ofDt

i ,
Ct

1 and Ct
2 are the concentrations of gases 1 and 2 at time

t, respectively.C0 andK are global constants.
There are two gases, gas 1 and gas 2. The transfer function

K is increased by the presence of gas 1 and decreased by
the presence of gas 2.

It is believed that all GasNet’s combined features, in
particular, the spatial relation, provide to the network highly-
desired adaptation properties. Nonetheless, recent workshave
been investigating the effective relevance of this spatial
relationship among neurons. For instance, Vargaset al. [25]
proposed a novel, spatially unconstrained GasNet model,
named non-spatial GasNet (NSGasNet). In this model, there
is absence of the notion of space, thus any neuron is able
to reach any other node of the network, performing the
modulation via gases. The degree of stimulation between
the neurons is determined by a genetically specified term
called Mbias (modulator bias), ranging from 0 to 1. A ”0”
value means that the neuron is not affected by the specified
emitting neuron. A value above ”0” means that the neuron
will be affected by the specified emitting neuron, at a rate
proportional to the stimulation level. Equation 9 defines the
concentration of gas at the neuron.

C(t) = Mbias × T (t) (9)

FunctionsT (t) andH(x) (Equations 10 and 11) model the
spread of the gases;te and ts are the last time the neuron
started and ceased the emission of gas, respectively;s is a
constant related to the build up and decay of the gas emission
at each time stept.

T (t) =

{

H( t−te

s
) emitting

H(H( ts−te

s
) − H( t−ts

s
) not emitting

(10)

H(x) =







0 x ≤ 0
x 0 < x < 1
1 else

(11)

The network genotype consists of an array of integer
variables lying in the range [0, 99] (each variable occupies
a gene locus). The decoding from genotype to phenotype
adopted is the same as the original model [24]. The NS-
GasNet model has 6 variables associated with each node
plus 1 modulator bias for each node, plus task-dependent
parameters (not specified in the genotype below).

< genotype >::< rec >< TE >< CE >< D0
i >

< bias >< s >< Mbiasi1 > ... < Mbias(ij) >

The rec parameter determines if the recurrent connection
is excitatory, inhibitory, or inexistent;TE stands for the
circumstances under which the neuron will emit a gas: if its



electrical activity exceeds a predetermined threshold, ifthe
concentration of gas 1 exceeds a predetermined threshold, if
the concentration of gas 2 exceeds a predetermined threshold,
or if the neuron does not emit gases under any circumstance;
CE specifies which gas the neuron emits, gas 1 or gas 2;D0

i ,
bias ands are referred in Equations 7, 4 and 10, respectively,
and theMbias parameter is the modulation bias of the node.

For a more detailed explanation of the mechanisms of the
GasNets and NSGasNets, the reader should refer to [24] and
[25].

As it will be further described in the next section, the
NSGasNet model will be adopted in this work, thus replac-
ing the multi-layer perceptron neural networks used in the
original model of the artificial homeostatic system.
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Fig. 1. Artificial Homeostatic System overview

IV. TOWARDS THEEVOLUTION OF AN ARTIFICIAL

HOMEOSTATIC SYSTEM

There is a consensus that the homeostatic process is strictly
connected to the balance of the system or organism and
requires some specific sensory receptors specially evolvedto
detect changes. In the human body, these receptors trigger
specific responses in the nervous, immune and endocrine
systems, which are the main systems directly linked to the
process of homeostasis. It is important to highlight that
our work is concerned specifically with neuro-endocrine
interactions. For interactions with the immune system, the
reader should refer to [16].

In the homeostatic system developed here, an artificial en-
docrine system is employed as a control system to coordinate
two evolved artificial neural networks in a robot autonomous
navigation task.

Evolutionary theory proposes that the brain has evolved
to control behaviour in order to ensure our survival [17].
Additionally, it is agreed that intelligence manifests itself in
behaviour. Thus we must understand behaviour before we
can completely understand intelligence [17].

(a) (b)

Fig. 2. (a) Displacement of the eight infrared sensors of the Khepera II
robot. Six sensors in the front and two sensors in the back; (b) Real Khepera
II Robot

The use of evolution in the design of an AHS justi-
fies itself for the advantages of evolving artificial neural
networks against previous training, as stated by Yao [26]
and others [27][28][29]. The NSGasNet uses evolutionary
computation techniques for the adjustment of size, topology
and parameters of the network. Moreover, in applications of
control of autonomous robotics agents, the original GasNet
presents evolution time and performance superior to tech-
niques that employ the classical models of neural networks
[24][30][31][32]. It is important to stress that this work
presents the first application of the NSGasnet model in robot
autonomous navigation. Nonetheless, this model showed to
be superior than the original GasNet model in other tasks as
stated in the work of Vargaset al. [25].

Figure 1 gives the system overview illustrates the inter-
action of the artificial endocrine system (AES) with the
artificial neural networks (N1 and N2), the interactions of
both of them with the environment (external stimulus) and
the artificial agent. The environment is perceived by the
artificial neural system, here represented by two NSGasNets,
previously evolved to accomplish specific tasks. The output
of the networks are then modulated by the presence or
absence of hormones, which are influenced by internal and
external stimulus to the AES. The responsibility of the hor-
mones are to coherently coordinate, through its concentration
levels, the outputs of the networks by choosing how much
influence each of them should have in determining the action
performed by the system (here the outputs of the networks
are directly connected to the motors of the robot, establishing
their velocities), aiming at preserving the internal stateof
the system. This action may cause the external stimulus to
change, hence triggering the whole cycle again.

V. M ETHODS

The first set of experiments consisted of a simulated
robotic agent that should learn previously two different
tasks: explore the scenario while avoiding collisions and
chase a light source (related here to a power source). Both
tasks were learned through the evolution of the NSGasNets,
independently. These two experiments are designed to assess
the competency of the NSGasNet model in the autonomous
robotics domain, and will also be used as modules of
behaviour within the artificial homeostatic system.



(a) (b)

Fig. 3. Evolving scenarios: (a) obstacle avoidance arena and (b) phototaxis
arena

A. Khepera Robot and Simulator

The Khepera II is a mini-robot, shown in Figure 2. It
has a diameter of 70 mm and is 30 mm high, weighting
around 80g. A robot with this reduced size allows the
implementation of experiments in a small-size platform and
with a low consumption of energy. The robot gets its energy
by wire or by its internal batteries, which have an autonomy
of 1 hour, approximately; it is sustained by two wheels,
responsible for its motion. The wheels have independent
electric motors and, by applying different speeds in the
wheel, direction adjustments are obtained. The maximum
speed of the robot is 1 m/s, and the minimum is 0.08m/s.

The robot has in its basic structure 8 infrared sensors that
incorporate emitters and receptors. The sensors measure the
environment luminosity (ranging from 50 to 500, 50 being
the highest luminosity that can be sensed) and the obstacle
distance (ranging from 0 to 1023, the latter being the closest
distance to an object). The range of the sensors, related to
obstacles, is 10cm, maximum. The time of data acquisition of
each sensor is 2.5ms and, at each 20ms, a complete measure
is done. The output of each measure is an analogic value
converted to a 10-bit number.

Some external factors, like the presence of incandescent
lamps, can cause interference in the measurements of the
distance sensors. This is due to the fact that the same sensor
is used for both tasks (distance and luminosity detection).
For example, the distance sensor emits an infrared ray and
calculates the distance to the obstacle based on the time this
ray took to left the emitter and return to the receptor. How-
ever, if there is an incandescent lamp nearby, its luminosity
will cause interference on the received rays, changing the
sensorial reading. Though, as the luminosity sensors use the
infrared range, we must apply lamps that are on the infrared
zone. So, it is important to take care when developing an
experiment. This fact appears to have been noted by the
manufacturer, and the new Khepera series, Khepera III, have
distance sensors based on ultrasound, being immune to light
interference [33].

The simulations were carried out using a software named
KIKS [34]. It is a robot simulator that reproduces the sensory
behaviour of the real robot, which facilitates the migration
from the virtual environment to the real environment. It
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Fig. 4. Obstacle Avoidance: Mean and Best Fitness

was developed to cope with the KMatLab interface, which
was created to control the Khepera Robot from the MatLab
environment [33].

B. NSGasNet Evolution

The evolution of the networks used a distributed genetic
algorithm [35][36]. Individuals of the population, with ran-
dom genomes at the beginning, are arranged in a 4x4 toroidal
grid, with all fitnesses evaluated. In a breeding event, a
random point in the grid is chosen, and a mating pool
together with its 8 neighbours is formed. A single parent
is then chosen through rank-based roulette selection, and the
mutation operators are applied, producing a new individual,
which is evaluated and placed back in the mating pool in a
position determined by inverse rank-based roulette selection.
No crossover is used. A generation is defined as sixteen
breeding events, and the evolutionary algorithm runs for a
maximum of 50 generations.

There were two mutation operators, each applied in 10%
of the gene locus. In the first operator, only for continuous
variables, each locus was altered by an amount in a[−10, 10]
range. In the second operator, the randomly chosen gene
locus is altered to a new value that can be anything belonging
to the whole range ([0,99]), in a uniform distribution.

For further details about the genetic algorithm and the
mutation operators, the reader should refer to [24].

C. Evolution of an Obstacle Avoidance Behaviuor

For the straight motion with obstacle avoidance behaviour,
the network had 4 inputs: the most stimulated left distance
sensor, the most stimulated frontal distance sensor, the most
stimulated right distance sensor and the most stimulated
backward distance sensor. Two different neurons were con-
sidered to be output neurons, so the network consisted of 6
neurons. The output neurons corresponded to the motor neu-
rons, responsible for driving the robot. The fitness function
(Equation 12) and the training scenario (Figure 3(a)) were
inspired by the work of [17]:

φ = V (1 −
√

∆v)(1 − i) (12)
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where V is the sum of the rotation speed of the wheels
(stimulating high speeds),∆v the absolute value of the
algebraic difference between the value of the speeds of
the wheels (stimulating forward movement), andi is the
normalized value of the distance sensor of highest activation
(stimulating obstacle avoidance).

Figure 3(a) illustrates the behaviour of a higher fitness
individual in the training scenario, and Figure 4 shows the
evolution of population fitness. Note that, as the robot is
always close to an obstacle, and consequently always a
distance sensor is stimulated, the fitness value is not closeto
its maximum. A trial is considered to be 2000 iterations of
the control algorithm. At the end of each trial, the robot is
randomly replaced in the scenario.

D. Evolution of a Phototaxis Behaviour

The network structure for the phototaxis behaviour was
similar to the obstacle avoidance network. Only the distance
sensors were replaced by the luminosity sensors. The training
scenario consisted of a squared arena, where the robot had
an initial, fixed position at the beginning of each trial. The
light was randomly positioned relatively far from the robot,
but it could perceive it anywhere in the scenario. A trial
is restricted to the robot exploring the scenario chasing the
light. Whenever it was “captured”, the robot is placed back
at the starting point and the light is randomly repositioned.
Each trial corresponds to 2000 simulation steps. The fitness
function is presented in Equation 13. Thei parameter,
referred to sensory activation, is maximized when the robot
is near to the light (due to the sensory structure of the robot,
described in Section V-A). Note that the function is quite
similar to the previous one. However, the component that
stimulated forward movement is now omitted. This means
that the robot could stay turning around the light and yet
have a higher fitness. Figure 3(b) illustrates the behaviour
of an individual which presents a high fitness in the training
scenario, and Figure 5 shows the evolution of population
fitness.

φ = V (1 − i) (13)
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VI. RESULTS

A. Experiments with a Simulated Robotic Agent

In the experiment, the robot begins to explore the arena,
controlled by the obstacle avoidance network, while its need
for recharging its battery remains low. The AES was designed
to manage the internal state “desire to recharge” of the
robot. As this necessity grows, the production of the hormone
related to the decrease of energy causes the switching of the
artificial neural network to be employed, gradually replacing
the behaviour of exploration by the behaviour of searching
the light (phototaxis). After recharging its battery (symbol-
ised by staying closer to the light), and the consequente
decrease in the related hormone level, the robot returns to
its original behaviour of exploration.

Figure 6 shows the hormone and the internal state levels
and Figure 7 shows the external stimuli of the frontal sensor
during 4000 iterations or navigation steps. The hormone and
internal state values range from 0 to 100 units at most. Note
that when the hormone level increases above a predetermined
threshold, the robot stops exploring the scenario and starts
chasing the light (illustrated by the inferior peaks of light
readings in Figure 7). This confirms the influence of the
hormone level over the robot’s autonomous behaviour. The
parameter values adopted in this simulation are:β = 0.001;
α = 0.005;T = 70.0;λ = 100;ω = 65.0; andθ = 75.0, and
were defined empirically.



B. Experiments with a Real Robotic Agent

The main idea of this experiment is to use the same control
system developed for the simulated robotic agent in a real
robotic agent. Due to the robustness of the evolved networks
no adjustments were required to cross the reality gap.

Figure 8 shows a complete trajectory in an environment
surrounded by walls, with a light source in the corner. The
robot starts exploring the scenario while avoiding collisions.
When its internal state level exceeds a predetermined limit,
the artificial endocrine system stimulates the production of
hormone, thus increasing the hormone level. This will cause
the robot to follow the light (to recharge its battery). As
soon as the robot reaches the light, the hormone level starts
to decrease and the robot switches back to the exploration
behaviour. The partially evolved AHS was able to keep the
internal state of the robot within limits, thus proving its
homeostasis.

Fig. 8. Complete trajectory of the real robot controlled by the new AHS

VII. D ISCUSSION ANDFUTURE WORKS

This work is a first step towards the evolution of a previous
version of an artificial homeostatic system (AHS), employing
an artificial endocrine system (AES) and a more biologically
plausible artificial neural network (ANN). The adopted ANN
is an extended version of the original GasNet model, named
NSGasNet, which has no spatial constraints in its design.
The new AHS was applied to solve distinct robot tasks that
require coordination of basic reactive behaviours.

The new system explored neuro-endocrine interactions and
it was shown that multiple coordination of behaviours could
be successfully achieved by the new robot controller. It is
important to stress that the coordination is not fully pre-
designed, the neuro-endocrine interactions dynamically adapt
itself to the environment condition, given the internal state
of the robot. The obtained autonomous controller presented
good performance both in simulated and real environments
and robustness when crossing the frontier between simulation
and real application (reality gap) is a mostly desired feature.

The NSGasNet was designed to be evolved. Related
works have suggested that the evolution of these networks
is considerably faster and more robust than conventional
supervised training of recurrent or feedforward multilayer

architectures of artificial neural networks. As one of the
main difficulties confronted when evolving robot controllers
is the time needed to evaluate the individual performance,
NSGasNets should be considered in future works within the
evolutionary robotics domain.

To achieve higher levels of automation, the parameters of
the artificial endocrine system should also be evolved, allow-
ing the agent to self-determine its internal thresholds when
interacting with the environment. Moreover, it is believed
that this could enable the system to deal with internal and
external disruptions. Future work will include this approach.
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