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Synchronisation effects on the behavioural performance and information
dynamics of a ssimulated minimally cognitive robotic agent

Renan C. Moioli, Patricia A. Vargas, Phil Husbands

Abstract Oscillatory activity is ubiquitous in nervous sys- More specifically, it has been claimed that the flexible syn-
tems, with solid evidence that synchronisation mechanismeshronisation of firing neurons is a fundamental brain mecha-
underpin cognitive processes. Nevertheless, its infaonat  nism (von der Malsburg, 1981; Singer, 1993, 1999; Womels-
content and relationship with behaviour are still to beyfull dorf et al., 2007). Synchronisation may mediate the interac
understood. Additionally, cognitive systems cannot bgpro tions between neurons and be an active mechanism of large-
erly appreciated without taking into account brain - bodyscale integration of neuronal assemblies, impacting on mo-
- environment interactions. In this paper, we developed #&or control and cognitive performance (Hatsopoulos et al.,
model based on the Kuramoto Model of coupled phase 0st998; Varela et al., 2001; Jackson et al., 2003). Moreover,
cillators to explore the role of neural synchronisationiia t a range of pathological states are related to abnormal neu-
performance of a simulated robotic agent in two differentronal synchronisation regimes (Glass, 2001; Brown, 2003;
minimally cognitive tasks. We show that there is a statisti-Arthuis et al., 2009).
cally significant difference in performance and evolvapili Whereas increasingly sophisticated computational and
depending on the synchronisation regime of the network. liimaging techniques help us to observe and record from dif-
both tasks, a combination of information flow and dynami-ferent physiological aspects of the nervous system, a great
cal analyses show that networks with a definite, but not togart of the challenge lies in the comprehension of this ava-
strong, propensity for synchronisation are more able to relanche of data and its relationship with behaviour (Chialvo
configure, to organise themselves functionally and to adag010). In addition, the brain presents spontaneous electro
to different behavioural conditions. The results hightitite ~ chemical activity that is constantly shaped by the body’s
asymmetry of information flow and its behavioural corre-constraints and time-varying environmental stimuli (Katz
spondence. Importantly it also shows that neural synchronit999). The brain, therefore, not only processes informatio
sation dynamics, when suitably flexible and reconfigurablebut also produces it, and cognitive phenomena are a prod-
can generate minimally cognitive embodied behaviour.  uct of brain-body-environment interactions (Stewart et al
2010). Situated artificial agents, in this sense, providamn
propriate experimental scenario to study the principles-of
telligent behaviour (Boden, 2006).

There is a rich literature exploring the relationship be-
tween neural synchronisation and complex motor control
in embodied (robotic) rhythmical behaviours (Taga, 1994;

Oscillatory neural activity is closely related to cognétipro- lispeert et al., 2005; Pitti et al., 2009), where synchroni-

cesses and behaviour (Engel et al., 2001; Buzsaki, 2006‘7?t'0n appears as a more intuitive und_erlylng mechanism;
however, to date there has been very little research on the
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two different minimally cognitive tasks: the first, a catego ability in Biology and Robotics studies (Rieke et al., 1997;
ical perception task (Beer, 2003; Izquierdo, 2008; Dale &Rolls & Treves, 1998; Lungarella & Sporns, 2006). In this
Husbands, 2010), in which the robot has to discriminate becontext, agent-environment systems pose extra challenges
tween moving circles and squares; the second, an orientation devising and interpreting a sensible measurement of in-
task, where the robotic agent has to approach moving ciformation flow, for they normally have noisy and limited
cles with both normal and inverted vision, adapting to bothdata samples, asymmetrical relationships among elements
conditions. These tasks were chosen for being currently resf the system and temporal variance (i.e. sensory and mo-
garded as benchmarks in the evolutionary robotics and adafsr patterns may vary over time). Transfer Entropy, in this
tive behaviour communities, with categorical perceptionh u scenario, is suggested as a suitable and robust information
derpinning cognitive systems (Harnad, 1987). theoretic tool (Lungarella et al., 2007b,a), and has alembe
The work reported here is intended to shed some ligh@pplied to investigate real neural assemblies and other neu
on the role of neural synchronisation in simple embodiedoscience problems (Borst & Theunissen, 1999; Gourévitch
cognitive behaviours. More specifically it aims 19 test & Eggermont, 2007; Buehlmann & Deco, 2010; McDonnell
whether different degrees of coupling in the agent’s ascill €tal., 2011; Vicente et al., 2011); it will, thus, be usedim o
tory neural network, which will encourage more or less syn-analysis.
chrony in the network dynamics, have an effect on the per- The paper is organised as follows: the next section pres-
formance of the agent arit) determine if there are circum- €nts some theoretical background to the main concepts ex-
stances in which more (or less) synchrony is better suiteglored in this work: oscillators and synchronisation, fecu

to the generation of adaptive behaviour in the context of théng on the Kuramoto Model, evolutionary robotics (ER) and
tasks studied. the two minimally cognitive tasks studied, and Information

The neuronal model employed is based on the KuramotdNeory in an agent-environment context, describing Trans-
Model of coupled phase oscillators (Kuramoto, 1984), whicHEr Entropy. We then present the methods adopted to develop
has been extensively studied in the Statistical Physies lit (e €xperiments and analysis, covering the ER framework,
ature, with recent applications in a biological context dug€ details of the active categorical perception and caient
to its relatively simple and abstract mathematical formulation under normal and inverted vision tasks, a description
tion yet complex activity that can be exploited to clarify Of the genetic algorithm used to optimize the parameters of
fundamental mechanisms of neuro-oscillatory phenomen@® System, and concluding with details of the time-series
without making too many a priori assumptions (Ermentrouflysis using Transfer Entropy. Following this, we présen
& Kleinfeld, 2001: Cumin & Unsworth, 2007; Kitzbichler the results, which show a difference in performance and be-
et al., 2009; Breakspear et al., 2010). The model explicithy@viour depending on the synchronisation regime of the net-
captures the phase dynamics of units that alone have spoffrk: refating the observed sensorimotor strategies wigh t
taneous oscillatory activity and once connected can geneflynamics and the information flow of the system. The paper
ate emergent rhythmic patterns. Its synchronisation regimcloses with a discussion on the results obtained and future
can be adjusted by one parameter (Strogatz, 2000), suitifte" Proposals.
our study, whilst also avoiding any problems in obtaining
phase information (an issue in other models which consideé
frequency and amplitude dynamics (Pikovsky et al., 2001)).

Phase relationships contain a great deal of information op Oscillators, Synchronisation and The Kuramoto Model
the temporal structure of neural signals, are associatéd wi

cognition and relate to memory formation and retrieval (Lij g study pioneered by Winfree (Winfree, 1980), the dy-

& Hopfield, 1989; Izhikevich, 1999; Varela et al., 2001; Kun-namics of a population of interacting limit-cycle oscides

yosi & Monteiro, 2009). Furthermore, it has been shown thah ve been approximated by a population of interacting phase

firing and bursting neurons can be modelled as oscillatorgsci”ators, leading to a mean-field approximation model ex

(Murray, 1989). Hence the Kuramoto model is highly rel-tensijvely explored by Kuramoto (Kuramoto, 1984). In his

evant, at a certain level of abstraction, to modelling nburaapproach, the phase of each oscillator is determined by its

mechanisms underlying adaptive and cognitive behavioursy gy ral frequency (drawn from some distribution) modidate
Analysis of results is centred on how the information dy-according to a function that represents its sensitivityhe t

namics between the nodes of the network, the agent’s bogyhase in every other node (see Equation 1)

and the environment vary depending on the current synchro-

nisation status of the system and how this is reflected in the

behaviour being displayed. Information Theory provides ap, N

framework for quantifying and emphasizing the non-linear_- = wi + Z (0 —0;),i=1,...,N, (1)

relationships between variables of the system, henceitts su J=1

Theoretical Background
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where:#; is the phase of thih oscillatorw; is the natural In this paper, the probability densities of the discrete fre
frequency of theth oscillator,/;; represents the interaction quency distributions are estimated using a smoothing kerne
between nodes andl is the total number of oscillators. approach with automatic choice of window width, but other

If one considers the interaction function to be periodic.techniques may be used (Silverman, 1998).
i.e. Ij(z + 2m) = I};(x), it can then be expanded into a  The details of how the Kuramoto Model is incorporated
Fourier series. Considering only the first term of this serie into the framework developed here will be presented in Sec-
and specifying that the network is symmetrically coupledtion 3. The next subsection introduces the informationtheo
the previous model reduces to Equation 2, which is knownetic tool that is used to support the analysis of experiaent

as the Kuramoto Model: results.

db; K &

d_; =w; + ~ Z sin(0; —6;),i=1,...,N. (2) 2.2 Information Theory and Transfer Entropy
7=1

Previous work has explored the relationship between infor-
mation dynamics and behaviour in real and simulated sys-
tems, supporting our approach. Using a chaotic oscillator

Basically, if the frequency of all possible pairs of nodes
iandj (i, = 1,2..n) are equal, i.edd; — df; = 0 or
0; — 0; = constant, the model is said to be globally syn- : ) ) <
chronised. Itis possible to calculate a synchronisatidesy ~ couPled to different robotic architectures, Pitti and abH
which gives a good idea of how synchronised the set of oorators (Pitti et al., 2009, 2010) explored the mechanisms

cillators are (Kuramoto, 1984). Consider Equation 3, wherinderlying the control of motor syne_rgies and showed a cor-
r is the synchronisation index (neaning high synchronisa- respondence between synchronisation and robust behaviour

tion, 0 meaning incoherent oscillatory behaviour) ands Lungarella & Sporns (2006) used different information the-
the mean phase of the system oretic tools to analyse the information flow in sensorimo-

tor networks of various robotics systems, stressing the re-
lationship between body, environment and information pro-
1 i0; 3) cessing. In the same sense, Williams & Beer (2010) used an
evolved agent in a relational categorization task to iniaed

a new information-theoretic approach to study the dynamics

On(_a of the most mterestmg properties of the KuramotQy¢ information flow in embodied systems, complementing
Model is that by varying the value of the coupling betweeny . .\ e established dynamical systems analysis.
units the network can be tuned in subcritical, critical or su According to the definition, information is not an abso-

percritical reQiO”S- In the subcritical reg?on, the intians lute value obtained from a measurement but rather a rela-
between oscnlator_s are very weak, leading to an_almosit_totqive estimation of how much you can still improve in your
lack of any collective behaviour. In the supercritical i current knowledge about a variable. Commonly, transmitter

the coupling is so strong that the whole system synChronlser%ceiver modelling involves random variables and the inher

gnd behave§ like a single giant oscillator. The crlt!galoag . ent uncertainty in trying to describe them is termed entropy
is characterized by a second-order phase transition region . .
0. . ) . Transfer Entropy (TE) (Schreiber, 2000) is based on
between the subcritical and the supercritical regionsnitis . . S
- . . hannon’s work and allows one to estimate the directional
to exhibit complex, unstable dynamics. It has been claime . . .
. T .~ exchange of information between two given systems. The
in recent years that systems operating in this criticalaegi . S :
. . - .choice of TE in this work is based on a study conducted by
- and there is some evidence to suggest this includes big-
. ungarella et al. (2007a), who compared the performance
logical neuronal networks - have better performance on a

. . . : ~ . of different IT tools in bivariate time-series analysis,iafh
variety of tasks and process information in a highly efficien will be the case here. and concluded that TE is in aeneral
way (Beggs, 2008; Kitzbichler et al., 2009). ’ 9

. . . more stable and robust than the other tools explored. The
In the Kuramoto Model, the critical coupling value i.e. . .
next paragraphs describe the technique.

the value of the coupling between units that will induce the . . .
A S . Let I be a stationary higher-order Markov process (with
network to remain in this critical region is given by Equatio . . .
memory) with transition probability from one state to an-

4 otheri.ep(iys1lie, .- tt—kt1) =
p(iry1lie, - .., 9:—) Wherei is a state fronT at a given time
.= 2 (4) tandkis the order of the process. Using Shannon Entropy,
mg(0) the optimal number of bits necessary to encode one more

where ¢(0) is the value of the distribution of natural fre- observation in the above time series is given/hyk) =
quencieg/(w) formed by each oscillator’s natural frequency — > p(is1 1, i) log p(i¢11]i¥). If, instead of the optimal prob-
w calculated atv = 0. ability functionp(¢), we had a different functiog(i), using
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the Kullback Entropy (Kullback, 1959) one can obtain the& Keller, 2010). Originally devised as an engineering ap-
number of bits in excess when encoding one more observ@roach to automatically generate efficient robot contrslle
tion, given byK; (k) = — > p(irt1,i¥) log M)_ in challenging scenarios, where traditional control téghas

(it iy P ;
Consider now two time serieX = z, andt{/l:' y:, and have limited performance, ER is now well regarded among

assume they can be represented as a stationary higher-or@ig/0gists, cognitive scientists and neuroscientists, p-

Markov process. Transfer Entropy calculates the deviatiolfid€S means to simulate and investigate brain-body- envi-
from the generalised Markov propemyy.1|y?, ") = ronmentinteractions that underlie the generation of bielayv

P(yera|yl) wherez? = (x4, 2e—1, .-, Ttomi1)? in a relatively unconstrained way, thus penetrating aress t
Y = (Ye,Ye—1, - - Ye—n+1)T andm andn are the orders of disembodied studies cannot reach (Noe, 2004; Pfeifer,et al.

the higher-order Markov process (note that the above prop2007: Engel, 2010). _
erty holds only if there is no causal link between the time se- ~ Consider a real or simulated robot, with sensors and ac-
ries). Based on the concepts described in the previous parréj_ators, situated in a scenario with a certain task to accom-

graph, Schreiber (Schreiber, 2000) defines Transfer EptroPlish- Each solution candidate (individual) is represetig
as: a genotype, which contains the basic information of the ggen

body and/or its controller’s parameters (e.g. the number of
wheels the robot has and/or the values of the weights of an

TE(X —»Y)= artificial neural network acting as its controller). Acciorgl
Z Z Z ( 2y lo p(Yri1lyf, ) (5) to some criteria, normally the previous performance of that
P41, 25 Yy ) 108 p(yealyl) individual in solving the task (fitness), parents are seléct

Yt+1 T Yy . . .
' o and undergo a process of mutation and recombination, gen-

Therefore, from Equation 5 one can estimate the inforerating new individuals which are then evaluated in the.task
mation about a future observatigp,, given the available This process is repeated through the generations, evintual
observationg}* andy; that goes beyond the information of obtaining individuals with a higher performance in the give
the future statey,; provided byy}* alone. It is thus a di- task.
rectional, non-symmetrical estimate of the influence of one In this sense, ER is a reasonable approach to studying
time series on another. embodied and situated behaviour generation, because it can

The original formulation of Transfer Entropy suffers frombe used as a powerful model synthesis technique (Beer, 2003;
finite sample effects when the available data is limited, andHusbands, 2009). Relatively simple, tractable models can
the results obtained may not be correctly estimated. To ate produced and studied in the context of what have been
tenuate these limitations, Marschinski & Kantz (2002)antr called Minimally Cognitive Tasks (Beer, 2003), which are
duced an improved estimator, “Effective Transfer Entropy“tasks that are simple enough to allow detailed analysis and
(ETE), which is calculated as the difference between thejet are complex enough to motivate some kind of cognitive
usual Transfer Entropy (Equation 5) and the Transfer Eninterest.
tropy calculated after shuffling the elements of the time se- In this paper, the agent is submitted to a minimally cog-
ries X, resulting in the following equation: nitive task related to active categorical perception. I$ ha

been chosen, among other tasks, for being considered funda-
mental to cognition (Harnad, 1987) and encapsulating basic
aspects of cognitive systems.
ETE(X -Y)=TE(X —»Y)—TE(Xshuffiea — Y) The next section presents the implementation details of
(6) thistask, the evolutionary robotics framework and therinfo

mation theoretic tool adopted.
The ET E formulation is the one used in this paper.

Section 3 will provide the implementation detailsiol” &
in this work. The next subsection presents the key concepfMethods

of Evolutionary Robotics, which underpins the experiments
conducted. 3.1 Framework for application in evolutionary robotics

The model studied here is inspired by the Kuramoto Model,
2.3 Evolutionary Robotics and Minimally Cognitive Tasks adapted so that it could be applied to control a simulated
robotic agent.
Evolutionary Robotics (ER) is a relatively new field of inter The framework, illustrated in Figure 1, is composed of
disciplinary research grounded in concepts from Computet5 fully connected oscillators, with even-numbered nodes
Science and Evolutionary Biology (Harvey et al., 2005; Flo-connected to the robot’s sensolisgensor per node). The
reano et al.,, 2008; Floreano & Mattiussi, 2008; Floreandrequency of each node is the sum of its natural frequency
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Fig. 1 Framework for application in evolutionary robotics. Theibs
latory network is composed @b fully connected oscillators, with even 0
nodes connected to the robot’'s sensdrsgnsor per node). A phase-
sensitivity functionf(¢) is applied to each of the phase differences Fig. 2 Experimentsl and 2 scenario. The agent (grey circle at the
¢ii—1,1 = 2...15, then linearly combined by an output weight ma- bottom) has to catch falling circles and avoid squares irk Taand
trix, W, resulting in two signals that will command the left and tigh catch falling circles with normal and inverted vision in Ka& The
motors of the agent. robotic agent hag ray sensors, symmetrically displaced with relation
to the central ray in intervals efpi/12 radians, and two motors that
can move it horizontally.

20 40 60 80 100 120 140 160 180 200

of oscillation,w;, and the value of the sensory inplytt)
(calculated according to Equation 9 in the following set}io
related to that nodé)(if there is no input), scaled by a factor
z; (Equation 7).

important to stress that nodes that receive no input partici

pate in the overall dynamics of the network, hence their nat-

ural activity can modulate the global activity of the netior
The experiments reported later explore the relationship

d6; J between the network synchronisation state and the agent'’s
= = Wit zli(t) + & > sin(6; — 6;) (7)  behaviour. Different synchronisation regimes in the nekwo
J=1 are obtained by varying the coupling strength between units

The natural frequency; can be associated with the nat- .(K)' During a given simulation, the value of the coupling

ural firing rate of a neuron or a group of neurons, and th ls set by _multiplying the v_alue ok (calculated according
sensory inputs mediated byalters its oscillatory behaviour 0 qu_ahon 4) by a scaling f:.;ctor o tune the no_dgs na
. . . . . subcritical ( < K.), supercritical { > K_.) or critical

according to environmental interactions, thus improving t zone (K — K.). The next section describes the minimall
flexibility of the model to study neuronal synchronisationCO nitive:askcs'tudied y
(Cumin & Unsworth, 2007) within a behavioural context. 9 '

At each iteration the phase differences from a notie
nodeg’_— li=2... 15_, are calculatgd foI_Iowmg quanon 7 39 Active Categorical Perception
(modified from Equation 2 as described in the previous para-

graph). The rationale for a network witth nodes relates The active categorical perception task studied here dsnsis
to richer dynamical behaviour in the Kuramoto Model with of 3 circular robotic agent, able to move horizontally along
this number of nodes (Maistrenko et al., 2005). A phasethe pottom of &250 x 200 rectangular environment (Figure
sensitivity functionf (¢) is then applied to each of the phase 2 which has to discriminate between circles and squares
differencesp; ;1 in order to reduce instabilities in the phase 53¢ they move from the top of the arena to the bottom (only
differences caused by the resetting of the phase of each ogne object on each trial) (Beer, 2003; Izquierdo, 2008). The
cillator when it exceed8x. In this work thesin functionis  gpotic agent's body has ray sensors, symmetrically dis-
used. The modified phase differences are then linearly COMylaced in relation to the central ray in intervals-ofi/12
bined by an output weight matriX}, resulting in two sig-  radians, and two motors to move it left and right along a
nals that will command the left and right motors of the agenkyraight line. Sensory inputs(t) for each distance sensor
(Equation 8). at a given time are calculated following Equation 9:

M =W sin(e) (®)

whereM = [M;y, M,]" is the motor state space, wift;

L) .
Lmz{m“ s, if Lift) < 200 o

0, otherwise.

corresponding to the left motor command ahft} to the

right motor command.

In this way, the phase dynamics and the environmental

wherel; is the length of théth ray between the robot’s body
and the object; = 1,...,7.
The diagonal of the square, and the radii of both the

input to the robotic agent will determine its behaviourslti robotic agent and the circle all measuibeunits. Each sensor
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is attached to an even-numbered node of the network (Figgutput), resulting in a genotype of lendib for a network
ure 1). The velocity adjustmemt (Equation 10) is obtained with N = 15.

subtracting the left from the right motor command value (a  The network’s genotype consists of an array of integer

positive value drives the robot to the right, a negative ®alu variables lying in the rang@®, 999] (each variable occupies

to the left). a gene locus), which are mapped to values determined by

the range of their respective parameters. For all the experi

ments in this paper, the population size wésarranged in

a7 x 7 toroidal grid. A generation is defined &80 breeding

events and the evolutionary algorithm runs for a maximum

mand and\/; is the right motor command (Equation 8). qf 100 genera_tions. There are two mutation operators: the
first operator is applied t80% of the genes and produces

At the beginning of each trial, a circle or a square is o
dropped from the top of the environment at a random hord change at each locus by an amount within[th0, +10]

izontal position within a maximum 080 units from the range according to a normal distribution. The second mu-

robotic agent, and moves vertically with a velocity3ainits tation operator has a probapility 0% and is applied to

) . . 40% of the genotype, replacing a randomly chosen gene lo-
per timestep. The robotic agent has to approach the circles ™ . h | ithin thi®. 9991 ranae in an uniform
and avoid the squares, adjusting its horizontal velocity acg?ssér\i/\tl)llztignn?rvzg?euis ;']Vc') clross%/er Jrange i
cordingly (limited to5 units per timestep). o o )

A variation on this experiment consists of an orientation, Ina bfeed'”g eYe”t' a matlng pool '_S formgd by choos-

task. In the same environmental set-up, the robotic agent hd'9 _a random po!nt in the grid together with éiseighbours.
to adjust its horizontal position and catch circles withmat ~ # Single parent is then chosen through rank-based roulette

and inverted vision (catching is considered to occur autoS€/€Ction, and the mutation operators are applied, praguci

matically when the object is within the agent's body radius) a new individual, which is evaluated and placed back in the

A task, comprised of many trials, is composed of an equarlnating pool in a position determined by inverse rank-based

number of trials under normal and inverted vision. WhenrOUIGtte selection. For further details about the gendgic-a

submitted to visual inversion, sensory readings from an obthm. the reader should refer to Husbands et al. (1998).
ject on the right side of the agent are perceived by the agent’ 1N the active categorical perception task, fitness is eval-
left set of sensors, and vice-versa. Therefore, to suadissf Uated from a set ad4 trials with randomly chosen objects
execute this task the agent has to devise a context-dependéfircles or squares), starting at an uniformly distributed-
strategy to cope with the ambiguity of having equal stimuliizontal offset in the interval of=50 units from the robotic
in different scenario and vision configurations. agent. Fitness is defined as the robotic agent’s abilitytichca
Taken together, the two tasks present challenging angircles and avoid squares, and iscalculat?vd accordingeto th
important scenarios for a cognitive agent (Di Paolo, 2000following equation:fitness = 37—, ifi/ >2;_, i, wheref;
Izquierdo, 2008), justifying their choice as an experinagnt 1S theith value in a descending ordered vectary, and is
scenario: the first task requires the engagement of, and digiven byl — d;, in the case of a circle, or by; in the case
crimination between, two different objects whereas in the®f @ squared; is the horizontal distance from the robotic
second task the robotic agent has to develop a strategy @9€nt to the object at the end of thté trial (when the ob-
overcome the disruption caused by the inversion of the vilct reaches the bottom of the environment), limitecsto

V= S(]\/[g - Ml) (10)

wheres is a motor output weight}/; is the left motor com-

sual field. and normalized betwedhand1. Therefore, a robotic agent
The next section presents the details of the evolutionary/ith good fitness maximizes its distance from squares and
process. minimizes its distance from circles. Notice that the form of

the fitness function creates pressure for good performance i
all trials in a given fitness evaluation, instead of just averag-
3.3 Genetic Algorithm ing the performance across the trials, which could bias the
mean fitness of a given robotic agent leading to poor gener-
A geographically distributed genetic algorithm with local alisation behaviour.
selection and replacement (Husbands et al., 1998) is used In the orientation task under normal and inverted vision,
to determine the parameters of the system: the frequenditness is evaluated from7 trials with the normal vision
of each of thel5 nodes,w; € [0,10], the7 input weights scheme followed by 7 trials with inverted vision. The cir-
z; € [—5,5] to odd nodes(( otherwise), the matri¥¥y_1,  clesare dropped at an uniformly distributed horizontaseif
with 14 x 2 = 28 elements in the intervgl1, 1], a mo-  in the interval of+50 units from the robotic agent. Fitness
tor output weights € [0, 100] and the network update time for each part of the evaluation is defined as in the previous
t, € [0,50] (the number of time steps Equation 7 is updatedbaragraph, but considering just the circle catching séenar
before the phase-differences are used to calculate thermotéherefore, a robotic agent with good fitness minimizes its
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distance from circles, in both normal and inverted visidn si Two ET E analyses are conducted across the experiments:
uations. one considering the information flow between the agent’s
The next section describes the methods for Transfer Ersensors and motors, and another considering the informatio
tropy analysis, the information theoretic tool used to stire ~ flow between the nodes of the network (represented by the
gate information transfer dynamics between variablesef thphase dynamics). We are mainly interested in studying how
system. ETE between these variables vary as the task progresses,
given that the agent continually engages with the object dur
ing the discrimination and orientation processes. For this
purpose, a sliding window technique is used (Staniek & Lehn-
ertz, 2008; Szczepanski et al., 2011), with a window size of
200 data points. Therefore, at every time step of the task, the

Following the notation and the theoretical background pre ’ ; ' _ ;
sented in Section 2.2, the analysis will focus on the inforZ1E s estimated (according to Equations 5 and 6) consid-

mation transfer between pairs of variables of the systeme.rlng the time series contained in that window.
For all experiments, we adopt the orders of the higher-order
Markov processes as = n = 1 (Equation 5), but see the 4 Results
Discussion section for further comments. The conditional
probabilities are calculated by rewriting them as jointlpro In the first experiment, individuals are evolved to perform
abilities which are then estimated using histograms. categorical perception under different coupling configura
To collect the data, the evolved agent under analysis wagons, calculated by re-scaling the current valugof (see
evaluated on a single trial, from a predetermined initial po the Methods section for details). Figure 3(a) presents the
sition (equal for every test), having its sensory informati ~ fitness statistics for the best evolved agents obtainaéin
its motor commands and the phase dynamics of each nodwolutionary runs at different coupling configurations.-No
recorded. Details of agent selection are presented in tkte netice that the agent’s overall performance is poor in the no
section. Each data point interval (obtained according to agoupling case (K.), smoothly increases as the coupling
Euler integration time-step dbms) is then linearly interpo-  strengthens (peaking & = K.) and then sharply falls for
lated (in1.5ms time intervals) resulting in a coarse grained strong coupling3 k. onwards).
time-series, which facilitates a more robusT’ E analysis. These results indicate that tuning the oscillatory network
If the data were collected in shorter time intervals insteadin a certain region of their synchronisation regime may have
the computational time needed for the evolutionary procesa direct impact on the performance and evolvability of the
to complete would be prohibitive. Moreover, given the struc agent, but would this result hold had we had a different
ture of the data observed in the experiments, the changesiask? We therefore performed a second set of experiments
the qualitative aspects of the original time series afterin by changing from categorical perception to the circle catch
polation were minimal. ing (orientation) task under normal and inverted vision, as
The time series for the seven sensors (one time series fdescribed in Section 3. Figure 3(b) presents the fitness-stat
each sensor), obtained as described above, are submittedtits for the best evolved agents obtained 0 evolutionary
a dimension reduction using a principal component analysisuns at different coupling configurations. Notice that tee-p
(PCA) (Jolliffe, 2002). First, the mean of each sensor'sidat formance increases with the coupling and reaches its peak
vector is subtracted from its correspondent data set to emvith values of K around2K ., whilst in the previous ex-
sure that the dynamics of the first component describes thgeriments we observed a decrease in fitness with coupling
direction of maximum variance in the data. We then calcuvalues larger thai...
late the principal components and project the originalseve It is clear from these two figures that the synchronisa-
time series data onto the first principal component, reducintion regime the network is tuned to influences the behav-
the original data to a single time series that captures ttet moioural performance of the agent. In order to clarifying why
significant features of the multidimensional input spade T this happens and to explore the underlying mechanisms, we
motor commands are also combined to generate a singievestigate the performance, system dynamics and informa-
time series by subtracting the value of the left wheel comtion flow properties of three evolved agents with different
mand from the right wheel command. The phase dynamicsouplings strengths, which encourage different degrees of
are recorded directly from the nodes. Finally, the time sesynchronisation, within each of the above experimentséthe
ries used in the calculations of Effective Transfer Entropyis no parameter change after the evolutionary processi}.ove
are obtained from the first derivative of each of the abové@ hese were chosen to bd(., K. and5K. for Analysis1
described time series, discretisedGirequiprobable states, (categorical perception) arid<,., 2K . and10K, for Anal-
which improves the robustness of the statistics (Marséhins ysis2 (orientation), to represent weak, ‘optimal’ and strong
& Kantz, 2002; Lungarella et al., 2005). coupling for those behaviours. All experiments are carried

3.4 Transfer Entropy
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Fig. 3 Fitness statistics for the best evolved agent obtainéd@@revolutionary runs at different coupling configurationsdarategorical perception
task (a) and an orientation under normal and inverted vitish (b). The boxes represent the lower, median and uppetilgu@ihe central mark
is the median and whiskers (dashed lines emerging from thesp@xtend to the most extreme data points not consideriérsy(outliers are

shown as red crosses).

out with agents chosen to have simitar(network update work, producing the different motor outputs that determine
time, see Section 3.3) and with final fitness values as closthe agent’s position and hence its performance on the task.
as possible to the median of the fitnesses obtained in the For the 0k, agent, the frequency plot shows that the
evolutionary process for the given coupling scenario. oscillatory behaviour of each node is only influenced by
its natural frequency and the sensory input. For this rea-
son, nodes without sensory connections don’t change their
4.1 Analysis 1: Categorical Perception Task frequency as the task progresses and the network does not
present any kind of internal coupled dynamics. The syn-

Figures 4(a), 4(b) and 4(c) present the generalisatiomperf chronisation index remains low, belda, and its amplitude
mance (performance in00 aleatory trials after evolution) Variation can be explained by observing Equation 3: the in-
of three agents evolved in g, K. and5K, conditions, dex reflects a sum of vectors, each representing the phase
respectively. The plots illustrate the agent-object hmrtal ~ Of an oscillator; with different evolved natural phase sisee
separation. (frequencies), the total sum varies over time, unless these
Notice that all agents present some level of discriminafréquencies maintain a constant relation, reflecting syoch
tion between circles and squares, characterized by thardiff nisation.
ent trajectories adopted by the agent as the task progresses Inthe K. coupling condition, the frequency of each node
however, their accuracies differ which seems to be the maiaresents a rich dynamics due to the critical internal cowgpli
factor responsible for the variations in fitness scores.iAdd and the external sensory stimulus. With the agent approach-
tionally, both0 K. and5 K. agents present a high proportion ing the object, the sensory inputs cause a large variation in
of trajectories similar to the ones observed with intrirsie  the nodes’ frequencies and as a consequence different node
tonomous network dynamics (i.e. sensory inputs fixe@)at clusters emerge (see the black arrow in the circle catching
whilst in the K. agent this is only observed when the objectrow of plots). Conversely, moving away from the squares
is a square and has its initial positioning far from the agent diminishes the external stimulus, and most of the network’s
the general strategy elsewhere is to initially move to @#ntr  nodes synchronise. This can be further observed by the syn-
ize the object and then, approximately half way through the&hronisation index plot, which approaches the dynamics ob-
task, orient with the circles and move away from the squareserved in the autonomous condition in the square avoidance
Figure 5 presents, for each of the three agents, the timgcenario (see the black arrow in the corresponding plot) but
course of various system variables from a particular séenar diverges from it in the circle catching sequence. Yet, the dy
where the agent (object) starts at the horizontal cooreinatnamics of both indexes reflect a higher synchronisatior leve
100 (60). The agent-object trajectory, the frequency of eacaround0.7 throughout the task).
node and the synchronisation index are shown. Recall that The last figure of the set shows the results for ili&.
in our model the sensory inputs, proportional to the agentretwork. The agent’s behaviour is practically the same for
object distance, impact on the natural frequency of soméoth circle and square scenarios: the agent moves away from
nodes. That, in turn, affects the phase dynamics of the nethe object towards one side of the environment at constant
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Fig. 4 Top plots: generalisation performance of the agent @@éraleatory runs. The red colour is related to the circle cagtiehaviour and
the blue colour to the square avoidance behaviour. Green I&flect the behaviour under autonomous network dynaifiesplots illustrate the
value of the horizontal separation of the agent and the aliettom plots: difference between Effective TransferrBpy from sensors to motors,
ETEspm, and from motors to sensorBT" Ey, s, for each of thel 7 different initial horizontal displacements50, 50]) that the agent is evaluated
during evolution (Section 3TE is calculated according to Equation 6. Figures refer tafa)., (b)(e)k. and (c)(f)5 K.

speed, failing to discriminate. Inspecting the frequerloy,p emphasize that the behaviour being displayed by the agent is
we notice that the network rapidly entrains with the syn-not simply a response to its sensory readings or to the ongo-
chronisation index remaining high throughout the task (inng network dynamics alone, but a more intricate interplay
contrast to the<. coupling condition). The small variations between the two. The actions taken by the robot at the be-
in the frequency dynamics (marked by a black arrow on theinning of the task, when the sensory readings are small, are
plot) relate to the phase resetting phenomena, where somaainly a result of the intrinsic network dynamics, but they
nodes, although synchronised, reset at slightly diffeierds, will modulate and affect the sensory readings that the robot
perturbing the ongoing synchronisation status. With theswill face in the future, which will also affect and shape the
plots in mind, the agent’s behaviour can thus be explained bgequence of actions.

a specific property of the model (Figure 1), where the syn-  The previous results stress the relationship between the
chronised phase dynamics resultin stable phase diffesenceensory inputs (environmental context) and the internal dy
which culminate in constant motor speeds that cause a linegamics of the network. From these plots alone, however, it
movement of the agent. Therefore, looking back at Figuregs not easy to determine to what extent the behaviour dis-
4(b) and 4(c), one can speculate why #f€. network does played by the robot is influenced by the network’s internal
not achieve a high fitness: the tendency to fully synchronisgynamics or a response to the sensory readings. The Trans-
reduces the sensitivity of the system in discriminating obfer Entropy analysis, as described in Section 2.2, may offer
jects when the stimulus is not strong enough to modulatgome insights into the temporal flow of information within
the ongoing phase dynamics, whereas Kenetwork, al-  the prain-body-environment system.

though synchronisir_wg at some stages, is.still flexible ehOl_Jg . Consider Figures 4(d), 4(e) and 4(f). For each of the
to escape the entrained state ‘de adaptits phase dynam'cﬁl?ndifferent initial positions that the agent is evaluated on
order to generate the appropriate motor commands. during evolution (Section 3), we calculate the flow of in-

In the above paragraphs and in the analyses to follow, thiermation from sensors to motor& T E,,,, and from mo-
behaviour being displayed by the agent is compared to thirs to sensorslyT E,,,s. The first corresponds to the influ-
one observed in the absence of sensory readings (behaviance of the sensors in determining the behaviour of the agent
under autonomous network dynamics - henceforth often revhereas the latter corresponds to the changes in sensory in-
ferred to as the autonomous trajectory for short). This is t@uts brought about by the agent’s motion. Notice that we are
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Fig. 5 Detailed behaviour of the agent’s internal and externabdyn
ics for a given starting position. The top three graphics axdhefig-
ure refer to the circle catching behaviour and the bottonsdoethe
square avoidance behaviour. The leftmost column illussréte hori-
zontal coordinate of the agent and the object (straightzbatal lines),
the middle one shows the frequency of each node of the netattke
task progresses (colour lines for nodes with inputs, dakhes other-
wise) and the rightmost ones present the synchronisataexirGreen
lines reflect the autonomous behaviour dynamics (clampesoss).
(@) 0K, (b) K. and (C)5K.

not primarily concerned with the magnitudes of the informa-
tion flows but rather on their form of interaction (causal in-
fluence); therefore, we depict the difference betwB&ns,,,

and ETE,,, (positive values indicate a higher information
flow from sensors to motors than from motors to sensors,
negative values indicate the opposite). The plots show the
difference between the results obtained for the circletzatc
ing and the square avoidance scenarios, and, together with
the respective Figures 4(a), 4(b) and 4(c), allow for a wider
perspective on how the information flow develops given dif-
ferent scenario configurations.

Figure 4(d) presents theT E for the0 K. coupling con-
dition. Notice the widespread (wide deviations from zero)
flow of information in both circle and square scenarios, with
measurements being recorded in both directions (motors to
sensors and sensors to motors) at all times, which may relate
to a constant interaction between the agent and the object -
indeed, the lack of internal coupling between nodes would
promote a highly reactive agent resulting in a constant mu-
tual interaction with the environment to perform the catego
rization. The performance, however, is poor.

Figure 4(e) presents the corresponding analysis for the
K. agent. The first observation, contrasting with the uncou-
pled network, is the higher magnitude of the difference be-
tween theE'T'E from sensors to motors and ti#&" F from
motors to sensors during diverse moments of the task exe-
cution for both objects. Following the argument in the pre-
vious paragraph, we would therefore expect that in the cur-
rent coupling condition the agent is more able than with the
uncoupled architecture to convey sensory information into
motor responses, adjusting the agent’s position in order to
maximize its performance. In the circle catching sequence,
there are mainly two intervals of high difference Hi'E,
coinciding with major adjustments in the agent’s trajegtor
when compared with the autonomous trajectory. Between it-
eration20 and40, the flow from sensors to motors is more
noticeable for most initial conditions, which may relate to
the scanning behaviour and identification that the object is
a circle and should be captured. At the end of the task, af-
ter iteration60, however, the difference in the flow increases
towards a greateE'T'E’ from motors to sensors for many
initial conditions, while at a behavioural level we observe
that the agent is centred on the circle and stays relatively
still keeping the horizontal separation n@ain the square
scenario, thé&ZT E from sensors to motors is higher than the
ETFE from motors to sensors through most of the task for
most initial conditions, while we observe the agent moving
away from the object. At the end of the task, when the ob-
ject is out of sensory reach, tHel'F,,, and consequently
the ETE,,, tend to0, which explain the lack of information
flow after iteration70.

Turning to theb K. plot (Figure 4(f)), the immediate ob-
servation is the sparse and reduced amouhtiof through-
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out the task when compared to the condition. Although  of the nodes and its natural frequency. Also, notice that the
some significant values occur, there is no consistency in theensory inputs not only increase the information flow within
flow with many null values recorded. Observing the behavihe network but also decrease it, reflecting a modulation of
ioural strategy, this is easily explained: the agent sutsee the spontaneous network phase activity (the activity thie ne
in discriminating between the objects in just a few situa-work would have without sensory inputs). Although Trans-
tions, which have a corresponding reading in HiEE plot,  fer Entropy always results in a positive measurement, recal
whereas from most of the initial displacements the agentrom Section 3 that to highlight the sensory influence the
moves to a far side of the environment, where all sensorgbove results are obtained by subtracting #i#EFE calcu-
readings are absent. In this sense, the poor performance ciaed for the autonomous condition, hence the negative read
be associated with a lack of sensitivity to sensory readingsngs in the plots.
explained by the high synchronisation level of the network  Compare the previous analysis with th& . condition
despite the external perturbation to its nodes’ frequencie (Figure 6(a), third row). As the network is strongly coupled
The external perturbations are not able to modulate thethighand acts as a single giant oscillator, weak sensory stimuli
synchronised network dynamics. of one or more nodes cannot promote a significant pertur-
The analysis of the flow of sensorimotor information bation or change in the ongoing dynamics; in other words,
provides insights into how the brain-body-environmentsysthe sensory readings do not contribute to the discriminatio
tem interacts over time and engages in determining the olyf the object given that different incoming stimuli through
served behaviour of the agent for different objects; intsigh other nodes would have little impact on the entrained net-
which may not be evident solely from the system variableswork. Even though the system is able to detect the object
time series. In order to add further depth, the next set of reand generate a motor response to it, the categorization per-
sults explore the information flow between the nodes of théormance is impaired.
network, as described in Section 3. This diversity of information flow between the different

Consider Figure 6(a), which presents in its first row thegqpling configurations follows the variation in the syrhr
average over time of the information flow between the oscily,isation index between nodes of the network portrayed in

latory nodes of the uncoupled network for the circle catghin Figure 6(b). The small level of synchronisation in th&,
(first column) and square avoidance (second column) SC&etwork has a corresponding small flow of information be-

narios, respectively, according to Equation 11: tween nodes, and the large level of synchronisation in the
5K . network is accompanied by a reduced flowil' FE
- 1 L between its nodes. The intermediate point, Khenetwork,
T(n,n") = T > [ETEw(n,n') — ETEj(n,n)] (11)  has both a synchronisation regime and diverse and highly
Y w=1 asymmetric information dynamics.

whereT(n,n’) is the average Effective Transfer Entropy  In summary, although all configurations are fully con-
ETE between the pair of nodds, n’), estimated accord- nected, the(. network is able to use a great variety of flexi-
ing to Equation 6w is the time window andl’,, is total  ble, reconfigurable functional connections. Figure 6(asH
number of windows. The superscrigtstands for the?TE  trate this fact by redrawing the connection scheme accgrdin
calculated in the autonomous case. to the magnitude of th&T E between nodes - only nodes

As expected, the uncoupled network has almogtidz ~ with mean information flows0% above the global average
between nodes during most of the task, except when seare connected. Notice the much richer connectivity in the
sory readings modulate the ongoing phase activity, whichs. condition than in the other two. The higher performance
explains why the few deviations from zero that occur areand evolvability achieved by this configuration can thus be
with relation to nodes that have sensory inputs (recall thaattributed to its nodes’ superior ability to communicate an
only even nodes receive sensory inputs, see Figure 3.1 forganise themselves functionally, resulting in a more effi-
details). Observe that the flow between any two given nodegient information flow between the ongoing network activ-
is not necessarily symmetric (e.g. there is a flow from noddty, the agent’s body and the environmental context.
14 to 12 but the opposite is not true), as explained in Section  Figure 7 shows the temporal evolution of the net Trans-
2.2. fer Entropy from a given node to all remaining nodes of the

In the K. condition (Figure 6(a), second row), however, network in50 equally spaced time windows, defined as the
the coupling elicits a much broader modulation of the nodespreferred direction of information flow (Staniek & Lehnertz
phase activity by the sensory inputs, stressing the intern2008):
communication between oscillators. The network is fully 1
connected but nodes do not interact in the same way: th€(n,n’, w) = —— Z [ETE, »(w) — ETEy (w))

. : N-1

ETFE values between pairs of nodes vary according to the ne#n/
corresponding sensory stimulus, the previous phase tyctivi (12)
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Fig. 6 (a) Averaged information flow between the oscillatory nodigthe network (Equation 11). The autonomous flow is subéhat all plots to
highlight the task-specific activity. (b) Same as (a) buttfa synchronisation index. (c) functional network - a dieelcarrow is drawn whenever
the Transfer Entropy between two given nodes excé6ds of the maximumETE value obtained in the whole task. The rows correspond to the
0K., K. and5 K. agents, the left side of each column corresponds to cir¢tdairay and the right side to square avoidance.

Nodes' ETE Average N Observing Figure 4(b), this iteration interval correspend
s s exactly to major adjustments in the agent’s trajectory when
compared with the autonomous trajectory. This could help
e L explain the more widespread activity observed in the circle
£ T ""'=_'|' "-. iy R TR _,!'. catching scenario, as the agent constantly adjusts iexctraj
Y I Ot ] g tory in order to capture the approaching object. The net-
cor ot e work (bottom row), as with the K., presents a reduced flow
i I §:3 AR R in both scenarios, with few exceptions which correspond to
e | N | the phase resetting behaviour of the model described earlie
N N B “ ti?;e window N N B “ B

Fig. 7 Net Transfer Entropy from a given node to all remaining nodes, The expenmgnts analy§ed "? this Sea,'on show that t-un—
of the network in50 equally spaced time windows (Equation 12). The ing the networks in a certain region of their synchronisatio
autonomous flow is subtracted in all plots to highlight trektapecific ~ regime appears to have a direct impact on the performance
activity. Top row:0K. agent, middlex, bottom:5 K. and evolvability of the agent. The information flow analysis
together with that of the system variables’ dynamics inidica
that extreme scenarios, e.g. no coupling or strong coupling
where ET'E is the Effective Transfer Entropy between the gre not suitable for the categorical perception task. Impor
pair of nodes(n, n') estimated according to Equation®,  iantly it also shows that neural synchronisation dynamics,
is the time window andV is the total number of nodes in \yhen suitably flexible and reconfigurable, can generate min-
the network. imally cognitive embodied behaviour.
The first configuration (top row), tH#x . network, shows
almost no information flow between nodes, whereas in the In order to test the generality of these results, following
K. network (middle row) there is a widespread activity, with the same methodology as above, the next set of experiments
driving nodes (nodes with higher information flow) alternat explores the performance of different coupling configura-
ing in time. Notice, however, the increased activity in thetions on a different minimally cognitive task where the agen
square avoidance scenario between time windiad35.  has to orient itself to an approaching object (circle) under
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Fig. 8 Top plots: generalisation performance of the agent @veraleatory runs. The red colour is related to circle catchindewn normal vision
and the blue colour to the inverted vision scenario. Grewslreflect the behaviour under autonomous network dyngeiamaped sensors). The
plots illustrate the value of the horizontal separatiorhefagent and the object. Bottom plots: difference betwetsttife Transfer Entropy from
sensors to motord;T Es.,,, and from motors to sensor8,I E ., for each of thel 7 different initial horizontal displacements(50, 50]) that the
agent is evaluated on during evolution (SectionBJ.E is calculated according to Equation 6. Figures refer tajaK., (b)(eRK. and (c)(f)
10K..

normal and inverted vision (see Section 3 for experimentahas good performance in both sensory modes, centring on
procedures). the object in slightly different ways as the task progresses
depending on whether it has normal or inverted vision, mak-
ing fine adjustments to the trajectory towards the end. A sim-
4.2_ Analysis 2: Orientation under Normal and Inverted ilar strategy is employed by the very strongly coupled agent
Vision (10K.), however the accuracy with which the agent centres
) ) ] o on the object towards the end of the task is poor and this
Recall Figure 3(b), which presents the fitness statistics foyj,ergence explains the lower fitnesses obtained. Neverthe
the best evolved agents obtainedlib) evolutionary runs |e5q hottp ¢, and10K, agents display different behaviours
at different coupling configurations for task 2 (circle ¢&{C o their autonomous trajectories, in contrast with the un

ing with normal and inverted vision). The performance in'coupled network, indicating that they make use of the sen-
creases with the coupling and peak#&at 2K ., presenting sory information to solve the task.

a noticeable fall in performance for couplings greater than
5K.. The following analysis will therefore consider three
individuals: one drawn from th@XK . scenario, one from the
2K, and one from thd 0K, scenario, all with fitness val-

An inspection of the dynamics of some of the system
variables reveals that, as expected, the uncoupled network
has some node activity varying directly with the sensory
ues close to the fitness median obtained on each respectitAdings, with nodes without inputs keeping their natural
coupling scenario set of results. freque_nc;_/ thr_oughout th_e task (see Figure _9(a?). The syn-

Observe Figures 8(a), 8(b) and 8(c), which present th&hronisation |nde>§ remains Iow but has a significant vari-
generalisation performance of the agents (performance fA"Ce: The lack of internal coupling results in the absence of
100 aleatory trials after evolution). The agent controlled by@" intermnal communication or flow of information as well
the uncoupled network(,) cannot succeed in catching as any |.nflluer.1ce. caused py acting on the environment. As
circles with either normal or inverted vision and all trajec "€ t@skis intrinsically ambiguous, the agent cannot perfo
ries seem to be a variation of the autonomous trajectory (“\_/vell.
lustrated by the green line in the plot) - thereisalmost rRoin The2 K. network (Figure 9(b)), in contrast, remains syn-
fluence from the sensory readings. &€, agent, however, chronised for most of the time and the nodes can only “es-
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cape” this state when sensory readings rapidly change the:
natural frequency. The agent’s trajectories in both visiom-
ditions are similar, but the synchronisation index ploeas
a diverse phase dynamics. Therefore, even though the ne

work has a fixed, all-to-all pre-established coupling config 0 o

uration, with no explicit plasticity mechanisms, it can re- ~ ° % 0 %0 80 0 A0 A onime
spond and adapt to conflicting sensory conditions and ob g 140 40
tain a good performance in the task. This behaviour is alsc g 120 20 q
observed in thé 0 K. network (Figure 9(c)), but as the task §100 *ﬂ”::
approaches its end and the magnitude of the sensory readc% 80/\\MW\ / =
ings increase, the frequency behaviour changes drayticallé B0y WVAV
partly because of the high inputs, partly because of som< *6 2 20 e s ™% 20 40 60 80
instabilities inherent in the model (high coupling values, Taskiteration time
sociated with properties of the nodes’ frequencies distrib

tion, may lead to unstable behaviour in the Kuramoto Model

(Acebron et al., 2005)). Taken together, these results sug

gest that more synchronised networks are more flexible ir g 100 20
adapting to sensory ambiguity, but the variables’ dynamicsg g
alone cannot provide a broader insight into the processes urg o
derlying this adaptation. In order to do that, we conduct an;% 0
information flow analysis of different parts of the system.
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ble starting positions used during evolution for th€,. net- € g 3 %E ]
work (Figure 8(d)) reveals almost no information flow be- & g ow £

tween the agent’'s body and the environment. As noted be;% %0 % il 2 0.9

fore, the lack of internal coupling prevents the agent from% 20 § e l‘ éoss

proper!y resppndmg to the ambiguity of the task. The same2 R Tt R 80@ P |
analysis, carried out on the more strongly coupled networks Task iteration time

(Figures 8(e) and 8(f)), shows that the normal and inverted

vision conditions elicit different information flows at spe (b)

cific points of the agent’s trajectory, reflecting its alilib
successfully catch circles in both scenarios. FoRthig net-
work, especially, starting positions that require a veffedi
ent behaviour from that observed in the autonomous trajec:
tory (e.g. agent-object separation betwees0, 0], where
the agent has to move against the straight autonomous tri 55— 20 e 8 % 20 40 60 80 04
. . Task iteration time
jectory) correspond to a higher (smaller) flow from sensors _
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to motors in the normal (inverted) vision scenario in some % > g o
parts of the task (between iteratioB8 and 40), with the ;flso § 0 §os

opposite happening from iteratidi® onwards. The same § & 50 8

happens for tha 0K, network, although in this case there ;f“”) £ 100 £oo

is a higher flow from motors to sensors in the inverted vi- & e %0_4

sion case between iterationg and60 (again, correspond- O A e eration e 0 X0 80 %
ing to points where the agent has to actively move against

its autonomous trajectory), and a higher flow from sensors (c)

to motors towards the end in both vision Conﬂguratlons |rF|g 9 Detailed behaviour of the internal and external dynamicﬂ‘fe

. . - orientation task agents. The top (bottom) three graphiesaoh figure
summary, the point to stress here is the asymmetry of mfo_rrefer to the circle catching under normal (inverted) visi@haviour.

mation flow and its behavioural correspondence obtained ifihe |eftmost column illustrates the horizontal coordinai¢he agent
fully connected oscillatory networks only by changing thei and the object (straight horizontal lines), the middle dmenss the fre-
level of synchronisation. quency of each node of the network as the task progressesi(divles
. . . for nodes with inputs, dashed lines otherwise) and the mgkt ones
Looking at the average node activity for these couplingyresent the synchronisation index. Green lines reflect utenamous
configurations (Figure 10(a)), one can see that the informarajectory. (a0K., (b) 2K, and (c)10K..
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Fig. 10 (a) Averaged information flow between the oscillatory nodethe network (Equation 11). The autonomous flow is subticat all plots

to highlight the task-specific activity. (b) Same as (a) butfie synchronisation index. (c) functional network - a&dted arrow is drawn whenever
the Transfer Entropy between two given nodes excé6s of the maximumET E value obtained in the whole task. The rows correspond (top to
bottom) to theD K., 2K. and10K. agents. The left side of each column refers to orientatidh marmal vision, the right to inverted vision.

tion flow under normal and inverted vision is similar, with denser set of functional connections than normal vision).
very little activity for the uncoupled network, whereas theThis higher performing network is more able to reconfig-
more strongly coupled agent8K. and 10K.), although ure its internal functional architecture than its counaetp,
having a nearly identical trajectory when catching the cir-allowing it to cope well with both conditions.

cles with normal and inverted vision in each corresponding Figure 11 shows the temporal evolution of the net Trans-
scenario, show variation in their internal nodes’ inforioat ¢, Entropy between nodes (Equation 12). It reveals the ab-
flow. Having only the environmental feedback to shape it§gnce of significant readings in the uncoupled network but
behaviour, the® K. network fails to detect and respond prop- gnows much higher levels in tHd<, network as the task
erly to this conflicting situation because the phase dy_”am'cprogresses, with the0 K. network having alternating mo-

of each node can only be altered by the external stimulugyents of high and low readings. This plot provides a differ-
vyh|ch in this case is made amb|gu0us., while the internal acg angle of analysis on our system by making evident the
tivity of the 2K and thel 0K networks is modulated by the gifferences in the flow of information within the different
environmental context - the conflicting readingsresultiin d etyorks and hence in the relationships between the nodes
ferent phase dynamics that are exploited to generate fit bg; ihe various contexts. Given that the phase difference dy-
haviour. The synchronisation index adds to that perspectivyamics captures all the effective dynamics of the Kuramoto
by showing that although highly synchronised, #i€. net-  y1odel (Maistrenko et al., 2005), it's possible to see how dif
work is still flexible enough to escape the nearly entraineqerent functional networks emerge from the interactiorhwit
state of thel 0K network or the incoherent behaviour of the {14 environment within the same coupling condition, stress
uncoupled framework, producing the fittest agent. ing adaptability, or across different coupling conditipres

With these two plots in mind, observe the picture ofvealing aspects of functional structure dependent on éegre

the equivalent functional network for the chosen agents iff coupPling.

this task (Figure 10(c)). There are richer functional con- Comparing Figures 8(e) and 8(f) with Figure 11, notice
nections between nodes in tA& . network not only when how the magnitude of th&TFE,,, and ETE,,, flows are
comparing across different coupling configurations but als high at particular moments of the task in th& . agent,
between the two vision conditions (inverted vision uses avhilst the ET E between nodes has noticeable deviations
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from zero across the trial. There is, therefore, no clear sim Nodes' ETE Average NN

ilarity between the sensorimotor and the network’s node s 5
phase activity information flow. In the0 K. network, how- 1"
ever, the higher variability of the flow between nodes have : [ R
correspondence in theT F,,, and ET E,,,; flow. This cor- ;
respondence can be explained by the higher value of col
pling between nodes in the sense that the sensorimotor a _
tivity perturbs a much more rigid framework, driving all : e li'

Nodes
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1 . .
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nodes’ behaviour. Th2K . network is more loosely coupled , e e S =k

10 20 30 40 50 10 20 30 40 50

so that the perturbations modulate and influence the node time window

behaviour, but do not ultimately determine it. Fig. 11 Net Transfer Entropy from a given node to all remaining nodes
In summary, the previous experiments with categoricabf the network in50 equally spaced time windows (Equation 12). The

perception revealed a limitation of both weakly and strgngl autonomous flow is subtracted in all plots to highlight trektapecific

coupled networks in achieving good performance in discrim2CtVity: The rows correspond (top to bottom) &g, 2. and 10K

Co . ) i agents. The left column is for normal vision and the rightifmerted

inating objects with different shapes. The second experime \;gjon.

with orientation in normal and inverted vision conditions

shows that the weakly coupled network continues to fail in

a conflicting scenario, but the more strongly coupled netthe dynamics and the information transfer properties withi

works succeed. The conclusion is that, for our frameworkand between the agent and the environment.

networks with high synchronisation levels are able to de- The design of the experimental framework attempted to

tect and respond to visual stimuli but struggle to exploitcapture relevant properties of its biological counterptrat

the environmental context. In other words, the highly synwould suit the aims of our study. The network model is in-

chronised structures evolved here can detect (even with apired by the Kuramoto Model of coupled phase oscilla-

tered vision) but not discriminate among different extérnators whilst the robotics approach explores the enactive na-

stimuli. In both tasks, networks with ’intermediate’ lesel ture of sensory and cognitive processes. Our focus is on

of coupling (and hence propensity for synchronisation) perthree aspects: the information flow between sensors and mo-

form best as this provides a more fluid, flexible network ableors, capturing the body/environment interaction; therave

to reconfigure and adapt to different behavioural cond#tion age flow between nodes of the network, stressing the inter-

However, as we have seen, this optimal 'intermediate’ levehal communication; and the evolution in time of the average

is significantly different for the two tasks. net flow from a given node to all its counterparts, revealing
at various moments of the task a higher/lower participation
5 Discussion in the overall information dynamics.

The first experiment explored the fitness variation of

Currentresearch on neurophysiological processes shaivs tievolved individuals under different network couplingsor
oscillatory neural activity is closely related to cognitiand ~ a categorical perception task. The results showed that ther
behaviour, with synchronisation mechanisms playing a keys a statistically significant difference in performancedi-
role in the integration and functional organization of éiff ~ ferent strengths of coupling, with the best fitness evotutio
ent cortical areas (Varela et al., 2001; Engel et al., 2001performance obtained wheR = K., the critical value.
Womelsdorfetal., 2007). Nevertheless, its informatiaoal-  Although the term “critical” here is not directly related to
tent and relationship with behaviour - and hence cognition its meaning for self-organised criticality (Beggs, 2048%-
are still to be fully understood (Rieke et al., 1997; Mazzonivious work (Kitzbichler et al., 2009) showed that the Ku-
et al., 2008; Deco et al., 2011; Flanders, 2011). ramoto Model presents properties of critical systems (e.g.

In this context, following an Evolutionary Robotics ap- greater information transmission, storage, sensitiatg:x-
proach, we evolved simulated robotic agents controlled byernal stimulus) when its coupling is tuned to the critical
a spontaneously rhythmic network of coupled phase oscilvalue (Equation 4). Our results confirm this for the categor-
lators, showing that their performances in variations of dcal perception task.
categorical perception task depend on the synchronisation For the agent with best performand€ & K.), the dy-
regime of the network. This was also shown to be the caspamical analysis shows that there is a very rich phase be-
for an orientation task under normal and inverted vision, buhaviour in the critical coupled network, with nodes ostilla
the dependence on the synchronisation regime was quite difig at a variety of frequencies, occasionally synchroigjisin
ferent from in the first task. The analysis focused both on @nd forming independent functionally connected clusters.
behavioural level description, investigating the agdsjdot  the Effective Transfer EntropyHT E) analysis, we notice
trajectories, and on a mechanism level description, ekmor a higher flow magnitude in the sensorimotor loop time se-



Title Suppressed Due to Excessive Length 17

ries (FTEs,, andET E,,,s), which has a behavioural corre- The network has initiallyl5 single-node “clusters”, each
spondence and relates to sharper adjustments in the agent&rresponding to an oscillator. A group (cluster) is merged
trajectory, suggesting that the agent is more able to convewhenever the phase difference between two given nodes is
sensory information into motor responses to maximize itdelow a certain threshold (chosen to beere) and the fre-
performance; we also observe a much broader internal conguencies are similar (less thdr/ > apart). Hence values
munication between oscillators, with a great variety ofcffun vary from 1 (single, giant cluster containing all the oscil-
tional connections in comparison with other coupling con-ators) to15 (single-node clusters).
figurations. Remarkably, even though the network is fully  In the first experiment, the uncoupled network is associ-
connected, the flow is not symmetric, and the higher perforated with a large number of single-node groups, whereas the
mance of the critical coupled network can be linked to itsstrongly coupled network has only one big group through
flexible ongoing dynamics which can be modulated by thenearly all of the task, indicating complete synchronigatio
environmental context. Curiously, the critically coupled network alternates begw

The second experiment studied orientation to falling cirthese two extremes. The same behaviour is observed for Ex-
cles under normal and inverted vision, particularly insgére periment2, with the exception that the very strong coupled
ing for presenting to the agent an ambiguous and conflictingetwork desynchronises at the end of the task, as revealed
scenario. by earlier analysis. These plots reinforce an important as-

We found that the performance increases with the dePect raised in the Introduction and mentioned throughout
gree of coupling, but this time reaches its peak betwen the paper: synchronisation dynamics modulate the assembly
and 4K, decreasing for the very strong coupling valuescollapse and reconfiguration of functional sub-networks. |
greater than that. We compared three evolved individual€ur experiments, a higher diversity of such assemblies are
one with no coupling@X), one with strong couplin@¢c,) ~ Presentin the top performing agents, linking the adaptgbil
and the other with very strong couplint(s.) between os-  Of the agent to the flexibility of its functional connections
cillators. The first is unable to succeed on the task whilst ~The previous analysis is complemented by Figures 12(c)
the 2 and 10K, agents produce good performance in both@nd 12(d), which present the dynamics of a metastability in-
sensory modes, with tHe% . agent outperforming the very dex A and the Largest Lyapunov Exponedt/(£) for the
strongly coupled one. chosen scenarios. (Equation 13) is calculated as the esti-

Dynamical analysis shows that th&, network rapidly mated variance of the synchronisation inde§Eq. 3) over

synchronises, with some nodes escaping the entrained st ime pointst = 1...7" and reflect the diversity of syn-
only when the corresponding sensory input is large. HowChronisation states obtained for each coupling configumati
ever, there is a diverse phase dynamics, with conflicting val°f the network (Shanahan, 2010).

ues resulting in different phase dynamics that are exploite

to generate fit behaviour that can cope with the different vi- 1 & )
sual conditions. Therefore, even though the network has &= 7— > ()= <r>r) (13)
fixed, all-to-all pre-established coupling configuratiaith t=1

no explicit plasticity mechanisms, it can respond and adapt The Largest Lyapunov Exponent, calculated using the
to conflicting sensory conditions and obtain good perforphase variable8;, i = 1...N (Maistrenko et al., 2005),
mance on the task. This is further stressed by the Transndicate how chaotic the phase dynamics - and hence our
fer Entropy analysis which shows that the normal and insystem - are. To obtain theLF, we followed the method
verted vision conditions elicit a difference in the infortioa  described in Rosenstein et al. (1993) which is specially de-
flow at specific points of the agent's trajectory. The resultssigned to be robust and fast in small data sets.
highlight the asymmetry of information flow and its behav-  In both experiments, we notice that the metastability de-
ioural correspondence obtained in fully connected oscillacreases (as expected) as the coupling increases, showing th
tory networks only by changing their level of synchronisa-there is less variation in the synchronisation index. The dy
tion. Hence, the results suggest that synchronised nesworkamics of the number of groups relate to the metastability
with an ’intermediate’ level of coupling are more able to re-index, with the critically coupled network also appearing i
configure functional connections not only when comparingan intermediate position. An interesting point for theicat
across different coupling configurations but also betweent coupling condition is to notice how the agent/environment
two vision conditions, reflecting its superior performanoe  interaction in the categorical perception task reducesgbe-
the task. taneous chaoticity level of the network (calculated for the
Concluding our analysis for both experiments, consideautonomous network dynamics), whereas in the inverted vi-
Figures 12(a) and 12(b), which display the formation of gusion scenario, near the critical coupling, chaotic behavio
of oscillators during the execution of the task for the sieléc  is more prominent when the agent is engaged in the task
coupling conditions for Experimenfisand2, respectively. than when under the influence of the autonomous network
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Fig. 12 Clustering of oscillators and metastable states for d@iffecoupling conditions as the task progresses. (a) andgdgs that have similar
frequencies and a phase shift below a small threshold argpgdb Values vary from (single, giant cluster containing all the oscillators)it®
(single-node clusters). (c): metastability indeXEquation 13) superposed with the Largest Lyapunov Expo@iehE) for the circle CLE.),
square [LEs) and autonomous{L E,) configurations. Largei indicates a great diversity of synchronisation states enrthtwork as the
task progressed, LE greater tharD suggests chaotic dynamics. (d): same as (c), but for thealorision, inverted vision and autonomous
configurations. Figures (a) and (c) refer to Experimeahd Figures (b) and (d) refer to Experimeént

dynamics. Also, note that the Largest Lyapunov Exponent There are some limitations for the framework presented
is close to zero in the uncoupled autonomous scenario fdrere. Starting with the network model, the original formu-
both tasks {K.). This is anticipated and due to the lack of lation of the Kuramoto Model doesn'’t take into account im-
external stimulus, which makes each node of the networkortant properties of real nervous systems (e.g. spasal di
oscillate independently in a quasiperiodic way. The sensaribution of units, transmission delays, asymmetricagint
rimotor coupling changes this behaviour (even without conactions), therefore an important step towards a more bio-
nections between nodes, coupling can be seen as occurritagically plausible architectures would be to implement ex
“indirectly” through the environment), and the network ac-tended versions of the model which tackle some of these
tivity becomes more chaotic. Therefore, the above observaonstraints (Tass, 2006; Cumin & Unsworth, 2007; Break-
tions reflect the adaptability and modulation of the networkspear et al., 2010). These extensions may also unfold more
activity previously noticed in the information flow analgsi complex, metastable dynamics which are intrinsically con-
It also suggests that although neural synchronisatiomlglea nected to dynamic pattern formation in brain activity and
plays an important role in the generation of behaviour in thdhence are fundamental to adaptive behaviour (Omelchenko
fittest agents, other kinds of transient dynamics are also et al., 2008; Tognoli & Kelso, 2009; Chialvo, 2010; Shana-
ploited (Santos et al., 2011). han, 2010). As for the task scenarios, the experiments were
conducted following an evolutionary robotics approachakihi
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despite all the advantages mentioned throughout the pap@&eggs, J. (2008). The criticality hypothesis: how local-cor
suffers from high computational cost for fitness assesssnent tical networks might optimize information processing.
which can be a limitation in scaling up to more complex Phil. Trans. of the Royal Society, Series 366(1864),
tasks (see Bongard (2011) for an encouraging technique to 329-43.

tackle this problem). Also, simulated experiments have t@Boden, M. A. (2006) Mind as machine: a history of Cogni-
be carefully set-up to avoid undesirable gaps when transfer tive Science\ol. | and I, Oxford Univ. Press., UK.

ring to real world scenarios. In this sense, the addition oBongard, J. C. (2011). Innocent until proven guilty: Reduc-
noise during simulations is essential to obtain good cross- ing robot shaping from polynomial to linear timéEEE
platform performance (Jakobi et al., 1995). Another use- Trans. Evolutionary Computatioi5(4), 571-585.

ful approach would be to incorporate ontogenetic plasticit Borst, A. & Theunissen, F. E. (1999). Information theory
mechanisms to the robot’s controller, which are shown to and neural codingNature Neuroscj.2(11), 947-57.
greatly increase adaptability to sensory disruptions and d Breakspear, M., Heitmann, S., & Daffertshofer, A. (2010).
namic environments (Urzelai & Floreano, 2001). It is, nev- Generative models of cortical oscillations: neurobiolog-
ertheless, a promising approach to testing hypothesesiwhic ical implications of the Kuramoto modelFront. Hum.
have not been extensively explored yet in the context of the Neurosci, 4.

relationship between neural synchronisation and behaviouBrown, P. (2003). Oscillatory nature of human basal ganglia
Finally, the Transfer Entropy analysis, in common with othe  activity: relationship to the pathophysiology of Parkin-
information theoretic tools, relies on the proper choice of son’s diseaseMov. Disord, 18, 357—63.

parameters, on accurate probability density estimatiods a Buehlmann, A. & Deco, G. (2010). Optimal information
require large number of data points for robust estimations. transfer in the cortex through synchronizatiolPLoS
Using the extensions to the original Transfer Entropy mea- Comput. Biol, 6(9).

sure suggested in Marschinski & Kantz (2002), we reduce®@uzsaki, G. (2006) Rhythms of the BrainOxford Univer-
some of the undesirable effects caused by small data sets.sity Press.

Likewise, further work should consider varying the ordersChialvo, D. R. (2010). Emergent complex neural dynamics.
of the Markov processes (parametersandn in Eq. 5) for Nature Physics6(10), 744—750.

they influence the estimated value of transfer entropy an@€umin, D. & Unsworth, C. (2007). Generalising the Ku-
may be used to reveal time dependences since motor, sensorsamoto model for the study of neuronal synchronisation
and nodes may operate at different time scales (Lungarella in the brain.Physica Q) 226(2), 181-196.

& Sporns, 2006; Gourévitch & Eggermont, 2007). Dale, K. & Husbands, P. (2010). The evolution of reaction-
The Matlab source code for our numerical simulations diffusion controllers for minimally cognitive agent#r-

is available anttp://www.informatics.sussex.ac.uk/users/rm282 tificial Life, 16(1), 1-19.

from the authors on request. Deco, G., Buehlmann, A., Masquelier, T., & Hugues, E.
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