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ABSTRACT

This paper argues that evolu-
tionary robotics (ER) techniques
can act as useful and potentially
wide ranging tools in the scien-
tific investigation of adaptive be-
haviour. After discussing the kinds
of investigations ER can play a cen-
tral role in, a concrete example
is presented. We conclude that
these kinds of studies are not only
scientifically useful, but are nec-
essary for the field to develop as
an engineering methodology for au-
tonomous robotics.

1 Introduction
Evolutionary robotics (ER) involves evaluating, over a
number of generations, whole populations of autonomous
robot control systems specified by artificial genotypes.
These are interbred using a Darwinian scheme in which
the fittest individuals are most likely to produce off-
spring. Fitness is measured in terms of how good a
robot’s behaviour is according to some task-based eval-
uation criterion. This particular flavour of new-wave
autonomous robotics was originally proposed as an au-
tomatic alternative to hand design of control systems
e.g. [12]. The field has largely proceeded by throwing
up many individual instances of evolved controllers for
fairly simple behaviours. These examples have usually
been contrived to fit in with the sensorimotor constraints
of a particular robot and have been based on individual
researchers’ favourite style of control system.

We argue that the field has now built up enough ex-
perience, tools and methods to engage in more princi-
pled exploratory work. This paper describes a number
of types of investigations that can be undertaken and
gives a concrete example that we are currently engaged
in. ER can be used to address, for instance, questions
about necessary and sufficient mechanism underlying the
generation of adaptive behaviour. We believe that such
investigations can make real contributions to the science

of adaptive behaviour, and that they are also crucially
important to the development of ER as an engineering
methodology. Without them the field will die.

2 What Types Of Questions?
Since Artificial Evolution (AE) is most commonly
thought of as an optimization technique, it is difficult
at first glance to appreciate how it may be used to ask
questions about search spaces beyond the simple ‘what
is the optimal solution?’. In this section we look at three
different questions AE can be profitably used to explore.
In the next section we look at several classes of spaces
underlying adaptive behaviour that we would like to ask
such questions about.

The first type of question that AE can be used to ex-
plore concerns large unconstrained search spaces which
we would like to get some general feel for. In this case
AE can be used as a principled sampling technique that
can provide information as to the nature of the solutions
that may be easily found in the space. If we hypothesise
that these will be solutions of a certain type, then this
is confirmed if at least some of a series of runs of a GA
find solutions of this type, and disconfirmed if none of
them do. Note that this is not the same as saying that
AE can be used to test whether solutions of a particu-
lar type exist at all within a space; the fallible nature
of stochastic search in large unconstrained fitness land-
scapes means that a negative result implies no more than
that solutions of a particular type are hard to find (pos-
sibly because they don’t exist).

The second type of question that AE can be used to
explore concerns more constrained search spaces in which
we can be fairly confident that AE will always converge
on solutions that are near-optimal. In this case AE can
be used as a principled sampling technique that can pro-
vide information about what the ‘better’ solutions within
a particular space might look like. If we hypothesise that
these solutions will be of a certain type, then this is con-
firmed if at least some of a series of runs of a GA find
solutions of this type, and disconfirmed if none of them
do. Note that this is not the same as trying to use AE
to find the optimal solution within a particular search
space, which it may or may not do during this sort of
exploration. The optimization properties of AE, in these
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circumstances, are just being used to get a general idea
of the sort of solutions that a particular space is capable
of.

The third type of questions that AE can be used to ex-
plore concern the shape and nature of the space itself. As
such, this sort of question can be asked about both large
unconstrained search spaces and smaller search spaces we
have a greater knowledge of. For example, if we hypoth-
esise that a search space contains many good solutions,
all of similar fitness, then this is confirmed if each of a
series of runs of a GA quickly converges on a different
good solution, all of similar fitness. If all of the solu-
tions that the GA converges on are of different fitnesses,
or if it always converges on the same solution, then the
hypothesis is false.

3 What Types of Spaces?
Having examined the sort of questions that AE can be
used to investigate, this section looks at some of the dif-
ferent types of search space underlying systems capable
of adaptive behaviour that we would like to ask such
questions about. In each of the subsections below, a dif-
ferent search space is examined, and examples of how
each of the three types of questions listed above can be
applied to that search space are discussed. As we shall
see in section 5, some of these examples refer to pieces
of work that have already been performed or are in the
process of being actively researched. The others should
be seen as directions for future research.

3.1 Nervous-system Mechanisms

One area that Artificial Evolution can profitably be used
to explore is the space of what we shall here refer to as
‘nervous-system’ mechanisms. Loosely speaking, these
are the mechanisms that are responsible for generating
output signals to the actuators in response to input sig-
nals from the sensors. In mobile robots many differ-
ent paradigms, from artificial neural networks to hand-
designed rule-based controllers have been employed. Be-
low we look at examples of how the three questions of
section 2 may be asked about these sorts of mechanisms.

Recent results in neuroscience suggest that the simple
picture of a neuron as an electrical processing unit may
be manifestly insufficient [21]. This leads to the hypothe-
sis that there may be important dynamics present in real
neural networks for the generation of adaptive behaviour
which the simple neuron models that are currently be-
ing used for the control of mobile robots are incapable
of instantiating. One way of approaching the question
of what these dynamics might look like is to examine
the sort of networks that can be produced by neural
models with very different functionalities to those based
on the integrate-and-fire paradigm. Artificial Evolution
provides a principled way of doing this. Different neuron
functionalities may be tested by allowing AE to evolve

a series of networks of such units for a given task and
analysing the resulting range of fitnesses and behaviours.
This allows us to test hypotheses about the sort of net-
works that can easily be found within the space, and
thus to get a feel for the ways in which the dynamics
of the neurons may be combined to solve the problem.
As such, evolution is being used as an exploratory tool
to assist in answering questions of the first type talked
about in section 2. An example of this sort of research
is the work of Husbands et al on the possible dynamics
of networks that use diffusing gases along with electrical
impulses to effect interactions between neurons. This is
discussed more fully in section 5.

A form of the second type of trial and error exploration
mentioned in section 2 is performed all the time by a wide
range of researchers in adaptive robotics. It occurs when
a new architecture has been designed and the parame-
ters are then tuned by trial and error until an optimal or
near optimal parameter set is reached. Only then can the
designer’s hypotheses about the full functionality of the
new system be confirmed or disconfirmed. In this case,
applying AE involves no more than a principled method
of automating this trial and error process. Consider an
example in which we want to know what happens when
three layers of neurons, each of a different type, are con-
nected together. The three layers might be a winner-
takes-all layer connected to a Hebbian Layer connected
to a Kohonen map layer for example. Now although we
may have a good idea of what such an architecture is
capable of, and the sort of tasks it will be able to allow
a robot to perform, there will be so many parameters
involved that setting them manually may be too time-
consuming a task to be practical. By applying Artificial
Evolution according to the methodology discussed below
in section 4, however, we may automatically evolve the
parameters to achieve settings that are at least as good,
and probably much better, than those that could have
been obtained by hand. We may then proceed to ex-
amine whether our original hypotheses about the tasks
that such a three-layered architecture is capable of were
in fact well-founded. Examples of this kind of work can
be found in [4, 18].

The third type of exploration discussed in section 2
concerning the shape and nature of the fitness landscape,
can have particular relevance to the search of a space
of nervous-system mechanisms. Whether the landscape
is rugged or smooth, for instance, can have a profound
effect on the efficacy of other adaptive processes apart
from evolution, such as life-time learning.

3.2 Sensori-Motor Morphologies
As well as the dynamics of the nervous-system, the phys-
ical dynamics of the embodied agent within its environ-
ment also play a major role in determining the overall
behaviour of the system [23, 1]. For instance, the type
and number of the sensors, and the way in which their



geometry resonates with that of their environment, has a
direct bearing on the modalities by which features of the
environment can affect nervous-system input. On the
output side, the physical dynamics of the actuators de-
termine the ways in which the agent may interact with
the environment to generate behaviour. As has been
shown by several experimenters, the dynamics of such
interactions may often be complicated and subtle enough
to provide much of the ‘processing’ underlying adaptive
behaviour that is all too commonly assumed to be gen-
eratable only by nervous-systems [24, 25]. There is, as
yet, no principled technique for predicting the outcome
of such interactions, or choosing the sensor or body mor-
phology most suited to a given robot task. Artificial Evo-
lution, however, provides a method of exploring spaces
of sensori-motor morphologies that may provide insights
other wise unobtainable. Below, we examine how the
three types of exploration discussed in section 2 may be
applied to sensori-motor morphology space.

An example of the first type of exploration is provided
by the continuing work on evolving visual morphologies
for the Sussex gantry robot first described in [11]. In
this work, neural network controllers and the visual mor-
phologies of their inputs are evolved simultaneously to
make a visually guided robot perform a simple shape
discrimination task. Artificial Evolution is here being
used to explore how the geometries of evolving visual
morphologies may causally interact with the geometries
present in the environment to perform the task. Many
novel mechanisms have been discovered through an ex-
tensive series of runs, and it is now becoming possible
to say some general things about the possible solutions
that exist in this rich space. Further details of the ex-
periments are provided in section 5.

The second type of exploration discussed in section
2 may be applied to the space of sensori-motor mor-
phologies in much the same way as for nervous-system
mechanisms. For example, we may hypothesise that
the emergent properties of superimposing arrays of Re-
ichardt (movement) detectors [5] on top of each other,
each with different spatial and temporal characteristics,
may provide a mobile robot with the necessary optic flow
information to perform a certain task. Again, the num-
ber of parameters involved may make setting them by
hand impractical. Artificial evolution can thus be used
to search parameter space for settings that are at least as
good as those that could be derived by hand, and prob-
ably a whole lot better. We may then test the resultant
visual morphology to see if our hypotheses were correct.

The third type of exploration discussed in section
2 concerns the shape and nature of the fitness land-
scape. Whether the landscape associated with a space
of sensori-motor morphologies is rugged or smooth will
again have consequences for the efficacy of adaptive pro-
cesses other than evolution. If we want to use self-

organising processes to fine tune evolved sensor mor-
phologies, for instance, then we may need to know
whether the areas around optima in the fitness landscape
are smooth or rugged as far as the self organising opera-
tors are concerned. This can be explored through a series
of runs of an evolutionary algorithm by sampling around
the good solutions found using operators relevant to the
self organising mechanisms.

3.3 Biological Models
As well as exploring mechanisms that may be used to un-
derly adaptive behaviour in robots, Artificial Evolution
may also be used to explore and test questions about
adaptive behaviour in real animals. The sorts of ques-
tions that can be asked will be for the most part about
specific behaviours and mechanisms, i.e. those of the real
animal. Due to the fallible nature of AE, therefore, this
sort of exploration will not always provide answers. If
we are lucky, however, then we may be provided with
insights into biological issues that would not have arisen
otherwise. Below we look at examples of the three types
of questions of section 2 as applied to spaces formed from
biological models.

One of the reasons why we might want to do explo-
ration of the first type discussed in section 2 is to see
whether a behaviour that a particular space of mecha-
nisms is not supposed to be able to generate does, in fact,
lie within the space of behaviours generated by those
mechanisms. This may then highlight the shaky foun-
dations of some commonly held belief or dogma about
how animals perform such behaviours. In [3], for ex-
ample, the authors argue that the lack of internal rep-
resentations within simple evolved visual machines im-
plies that simple animals do not necessarily use inter-
nal representations to perform similar behaviours, as is
commonly assumed. Further examples of using AE in
this way to search spaces for counterexamples of com-
monly held beliefs, include showing how evolved robot
controllers that select between actions do not necessar-
ily employ the mechanisms that are commonly assumed
to be present [22], and much of the work of Beer and
colleagues [26, 2].

Exploration of the second type introduced in section 2
is more obviously applied to spaces generated by biologi-
cal models. For example, a complex theoretical model
might be hypothesised to explain a particular animal
behaviour. If a simulation corresponding to the model
could be made to exhibit appropriate behaviour then this
would add considerable weight to the hypothesis. A sim-
ulation of this type, however, may again involve so many
parameters that it is impractical to try setting them by
hand. In this scenario, Artificial Evolution may be used
to explore the parameter space and see whether the sim-
ulation can, in fact, be made to exhibit the behaviour in
question. An example of this sort of hypothesis testing
is provided in [14]. General hypotheses about the prin-



ciples of biological nervous systems can also be explored
in this way.

The shape and nature of the fitness landscape associ-
ated with a biological model, and how this relates to the
model’s ‘evolvability’, can be of obvious interest to the bi-
ologist since evolution is itself a biological phenomenon.
Indeed, certain classes of biological model, such as those
used to model secondary structure formation in RNA,
have been invented precisely to study the performance
of evolution within certain realistic fitness landscapes.
Apart from analytic results pertaining to these models,
one of the most important and obvious tools that can be
used to study their dynamics is AE.

4 How ?
In this section we outline practical techniques and meth-
ods for exploring robot space using Artificial Evolution.
There have been several recent innovations in this area
which make the whole enterprise more feasible and these
are discussed below. There is not room in this paper to
explain any of these techniques in detail, however, and
the reader should therefore regard this section as a guide
to further reading rather than an instruction manual for
applying AE to the exploration of robot space.

In general, the spaces we want to explore assume the
role of phenotype space for the purposes of AE. In order
to search these spaces therefore, we need a way of eval-
uating phenotypes, an encoding scheme by which phe-
notypes can be decoded from genotypes, and suitable
genetic machinery (genetic algorithm, genetic operators
and so on). Each of these three major constituents are
examined in turn below.

4.1 Evaluation
The artificial evolution of control architectures for simple
behaviours typically involves thousands of fitness evalu-
ations and this can be a very time-consuming process.
If these evaluations are performed on robots in the real
world then they must be done in real time. If they are
performed in simulation, then evolved controllers may
not transfer into reality unless the simulation is so com-
plex that all speed advantages are lost. Recently, Jakobi
has proposed new ways of thinking about and building
fast-running easy-to-design minimal simulations for the
evaluation of robot controllers. This methodology is de-
scribed in detail elsewhere [16], but below we offer a brief
sketch here:

1. A small base set of robot-environment interactions
that are sufficient to underly the behaviour we want
to evolve must be identified and made explicit. A
simulation should then be constructed that includes
a model of these interactions. Since the base set will
not contain all of the robot-environment interactions
that can affect evolving controllers, some features of
the simulation will have a basis in reality (the base

set aspects), and some features will derive from the
simulations implementation (the implementation as-
pects).

2. Every implementation aspect of the simulation must
be randomly varied from trial to trial so that con-
trollers are unable to rely on them to perform the
behaviour. In particular, enough variation must be
included so that the only practicable evolutionary
strategy is to actively ignore each implementation
aspect entirely.

3. Every base set aspect of the simulation must be ran-
domly varied from trial to trial. The extent and
character of this random variation must be sufficient
to ensure that reliably fit controllers are able to cope
with the inevitable differences between the robot-
environment interaction model and reality, but not
so large that they fail to evolve at all.

The power behind these ideas derives from the fact
that we only have to model a sufficient number of real-
world features, and these do not even have to be mod-
elled particularly accurately. This means that such sim-
ulations can be easily constructed and made to run ex-
tremely fast. As long as the right amount of variation is
included according to the methodology outlined above,
controllers that evolve to be reliably fit will almost cer-
tainly transfer into reality.

4.2 Encoding-schemes
The choice of encoding scheme has a fundamental effect
on the way in which AE searches phenotype space. If
the wrong choice is made, AE can quickly be reduced to
blind search. Below we adopt an engineering approach in
our recommendations of which scheme to use to explore
which types of space: the aim is to use a scheme that
will find interesting phenotypes as quickly as possible.

The type of encoding scheme most suited to a par-
ticular problem depends fundamentally on whether the
dimensionality of the search space to be searched is fixed
or variable. If it is fixed, then a so-called direct encod-
ing scheme is usually sufficient where each dimension of
the search space corresponds to a specific location on
the genotype. For phenotypes with a topology, such as
neural networks, fixed amounts of phenotypic symmetry
or repeated structure may be easily imposed by encoding
more than one dimension of the search space at the same
location on the genotype.

If we want to explore search spaces whose dimension-
ality is not fixed then life can become more difficult. If
a direct encoding scheme is used then the nature of the
phenotype may be dependent on the ordering of elements
of the genotype. If so, small changes in genotype length
may result in massive changes in phenotypes, rendering
the fitness landscape so rugged that the efficacy of AE is



vastly reduced. The choice of encoding scheme we rec-
ommend in this situation depends on the nature of the
space that is being explored, but the key point is that the
encoding scheme must be robust to the operators used
by the genetic algorithm.

For phenotypes with a topology, we would recommend
one of two types of encoding scheme. The choice of which
of the two depends on whether the amount of pheno-
typic symmetry or repeated structure within the search
space is fixed, or whether the amount of symmetry and
repeated structure is one of the phenotypic aspects we
want to use AE to explore. In the case of the former we
would recommend a version of the simple spatially dis-
tributed encoding scheme described in [17]. Along with
several previous encoding schemes [19, 13], this scheme
uses the idea of a developmental space to make the shape
of the phenotype invariant to the ordering of ‘genes’ on
the genotype. It is, however, much simpler than previous
schemes of this type, designed purely with engineering
efficiency in mind. If the amount of phenotypic symme-
try and repeated structure is one of the features of the
space that we want to explore, on the other hand, then
we would recommend using a version of Gruau’s cellular
encoding [8].

4.3 Genetics
For many who use genetic algorithms on more traditional
optimization problems, the process of artificial evolution
occurs as an initially random population converges upon
a solution, gradually decreasing the genetic diversity un-
til an equilibrium is reached. At this point, it is assumed
that no significant change will occur and the process for
all practical purposes is finished. If the search space to
be explored is of fixed dimensionality then the same can
be assumed: at some point the population will converge,
the rate at which fitness increases will level off, and the
run is over. In this sort of scenario, robot space explo-
ration may be treated as a noisy optimization problem,
and mutation, crossover and other operators may be ap-
plied using conventional genetic algorithm techniques [7].

As with encoding schemes (see above), the situation
is made more complex if the space to be searched is not
of a fixed dimensionality. This is because there is always
the possibility that significant change can occur after the
rate of genetic convergence has stabilized. Harvey has
suggested that it is only after this initial convergence
phase that the real business of open-ended artificial evo-
lution may begin [10]. In the natural world, after all,
evolution occurs as a dynamic equilibrium that adapts
to environmental pressures in an open-ended way rather
than a limited and finite search process with a start and
a finish. If we want to do open-ended evolution of arbi-
trary complexity with variable length genotypes, Harvey
suggests [9], then we should allow the evolutionary pro-
cess to continue running long after the rate of genotypic
convergence has stabilized.

There are a variety of ways in which genotypes can
be allowed to change in length under evolutionary con-
trol. Probably the simplest is to employ operators that
just add or delete genetic material with a small chance
at each offspring event. Another method might be to al-
low crossover to occur at different points on each parent
genotypes, thus producing two offspring genotypes of dif-
ferent lengths. Whichever method is used, however, no
more than a slight change in length should be allowed
to occur at each offspring event. Although it is impor-
tant that there is sufficient generation and evaluation of
new genetic material after the rate of convergence has
stabilized, too much will overpower the selection pres-
sure and reduce the adaptive abilities of the evolutionary
processes to those of random search.

5 A Concrete Example
This section describes a series of experiments in which
many of the kinds of questions introduced previously
have been explored. All the experiments involve the
evolution of a particular visual shape discrimination be-
haviour for the same robot. In each a control network
and visual morphology (layout of visual sensors) have
been concurrently evolved. Four different styles of con-
trol network have been used in the experiments. We
have asked such questions as: are there commonalities
between the evolved behaviours for the same task using
different types of network? Are there commonalities in
the underlying behaviour generating mechanisms? Are
controllers for the task easier to evolve with some styles
of network than with others? The robot and task will
now be described before detailing the other aspects of
the investigation and the results found.

5.1 The Robot

This series of investigations made use of the Sussex
Gantry Robot. In each case controllers were evolved us-
ing a minimal simulation. As explained earlier, such rad-
ical simulations run much faster than real time and have
played a crucial role in allowing us to repeat the evolu-
tionary experiments a sufficient number of times to be
able to start answering some of the questions outlined in
the previous paragraph. Controllers evolved in minimal
simulation work perfectly on the real robot. For details
see [15, 16].

The gantry-robot is shown in figure 1. The robot
body is cylindrical, some 150mm in diameter. It is sus-
pended from the gantry-frame with stepper motors that
allow translational movement in the X and Y directions,
relative to a co-ordinate frame fixed to the gantry. Such
movements, together with appropriate rotation of the
sensory apparatus, correspond to those which would be
produced by left and right wheels. The visual sensory
apparatus consists of a ccd camera pointing down at
a mirror inclined at 45o to the vertical (see figure 2).



The mirror can be rotated about a vertical axis so that
its orientation always corresponds to the direction the
‘robot’ is facing. For full details see [11]. The gantry is a
very useful apparatus for controlled experiments in the
evolution of visually guided behaviours, but is probably
best thought of as if it were a two wheeled mobile robot
with a fixed video camera mounted on top.

Figure 1 The Gantry viewed
from above. The horizontal girder
moves along the side rails, and the
robot is suspended from a platform
which moves along this girder.

Figure 2 The gantry-robot. The
camera inside the top box points
down at the inclined mirror, which
can be turned by the stepper-motor
beneath. The lower plastic disk is
suspended from a joystick, to detect
collisions with obstacles.

5.2 The Task
Control networks and visual morphologies were evolved
for a target discrimination task. Two white paper tar-
gets were fixed to one of the gantry walls; a rectangle
and an isosceles triangle with the same base width and
height as the rectangle. Starting from a random posi-
tion and orientation, the robot was required to move to
the triangle while ignoring the rectangle. This was to be
achieved under extremely variable and noisy lighting con-
ditions in which the illumination intensity at any point
in the gantry arena can vary by up to 100%. This was
achieved by fixing a rig of spotlights above the gantry

— the lights were randomly turned on and off at widely
varying frequencies.

5.3 The Networks Investigated
The network size and topology, as well as various other
properties detailed below, were under unconstrained evo-
lutionary control in every experiment (i.e. arbitrarily re-
current networks were possible). So was the robot visual
morphology, i.e. the way in which the camera image was
sampled. This was achieved by genetically specifying the
number and position of single pixels from the camera im-
age to use as visual inputs. The grey scale intensity value
of these pixels (normalised into range [0.0,1.0]) were fed
into the network, one for each genetically specified vi-
sual input node in the net. This is illustrated in figure
3. Note this means that the evolved control systems
were operating with extremely minimal vision systems,
just a few single pixel values. Given the very noisy light-
ing conditions and the minimal visual input, this was a
non-trivial task.
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Figure 3 Evolved visual morphology. Visual input is
taken only from the genetically specified single pixels.
The rest of the camera image is thrown away.

Veto Nets. These nets have been used at Sussex for
various ER experiments over the past few years, includ-
ing the original gantry work [11]. The nodes in this style
of network use separate channels for excitation and in-
hibition. Real values in the range [0,1] propagate along
excitatory links. The inhibitory (or veto) channel mecha-
nism works as follows. If the sum of excitatory inputs ex-
ceeds a threshold, Tv = 0.75, the value 1.0 is propagated
along any inhibitory output links the unit may have, oth-
erwise a value of 0.0 is propagated. Any unit that re-
ceives a non zero inhibitory input has its excitatory out-
put reduced to zero (i.e. is vetoed). In the absence of in-
hibitory input, excitatory outputs are produced by sum-
ming all excitatory inputs, adding a quantity of noise,
and passing the resulting sum through a simple linear
threshold function, F (x), given below. Noise was added
to provide further potentially interesting and useful dy-
namics. The noise was uniformly distributed in the real
range [-0.1,0.1]. Each network had four motor neurons
(left/right forward/backward).



F (x) =


0, if x ≤ T1
x−T1
T2−T1

, if T1 < x < T2

1, if x ≥ T2.

(1)

Where T1=0.0 and T2=2.0.
Binary Nets. This style of network consists of nodes

connected together by weighted links. Each unit used the
transfer function given in equation 2. Oj is the output of
the jth node and Tj is its threshold. The size and topol-
ogy of the network was under evolutionary control, as
were the connection weights, node thresholds and visaul
morphology. As with the veto nets, four motor units
were used. Thresholds were real numbers in the range
[0.0,1.0], the weights, wij , were real numbers in the range
[-2.0,2.0].

Oj =
{

0,
∑

i Ojwij < Tj

1,
∑

i Ojwij ≥ Tj .
(2)

GasNets. The third class of networks used is com-
pletely new and inspired by the recent discovery that
freely diffusing gases (in particular nitric oxide – NO)
have important modulatory affects in nervous systems.
Many nerve cells emit NO, under certain conditions,
which then diffuses over relatively long distances. The
presence of NO can trigger various cascades of chemical
reactions that can have a wide range of affects on neu-
ronal networks: changing intrinsic properties of nerve
cells, changing synaptic transfer functions, turning heb-
bian style associative learning on and off, and many
more [6]. These changes can occur at many different
timescales. The Gas Nets described here are an abstrac-
tion of some of these interacting dynamical processes
that give rise to forms of plasticity very different from
those normally considered in ANNs. Two forms of Gas
Net were used in this study. They are briefly described
below. For fuller details see [20].

The 4 Gas Model. This style of networks consist
of units connected together by excitatory links, with a
weight of +1, and inhibitory links, with a weight of -
1. The output , Oj , of a node j is a function of the
normalised sum of its inputs, Sj , as described by equa-
tion 3. In addition to this underlying network in which
positive and negative ’signals’ flow between units, an
abstract process loosely analogous to the diffusion of
gaseous modulators is at play. Some units can emit
’gases’ which diffuse and are capable of modulating the
behaviour of other units by changing their transfer func-
tions in ways described below. This form of modulation
allows a kind of plasticity in the network in which the
intrinsic properties of units are changing as the network
operates. The networks function in a 2D plane; their ge-
ometric layout is a crucial element in the way in which
the ’gases’ diffuse and affect the properties of network
nodes.

Oj = f(Sj) (3)

Where,

Sj =
(
∑

p∈Pj
Op −

∑
n∈Nj

On +
∑

k∈SENj
Ik)

(npj + nnj + nsj)
+ R (4)

In equation 4, Pj is the set of network elements with
excitatory connections to element j. Likewise, Nj is the
set of elements with inhibitory link to j, and SENj is
the set of sensors connected to j. npj , nnj and nsj are ,
respectively, the number of positive, negative and sensor
connections to element j. R is the default activation of a
node (= 0.05). Normalizing by dividing by the number of
inputs keeps the summed input in the range [-1,1]. The
transfer function, f , is defined in equation 5, its output
range is [-1,1] given the restriction on the input range.

f(x) =
{

0, if x < 0 and (a < 0 or b < 0)
(xa + xb)/2, otherwise

(5)
Where,

a, b ∈ PP = {0.1, 0.2, 0.3 ... 0.8, 1, 2, 3 ... 9, 10} (6)

A wide range of output responses to a given input are
possible, depending on the values of the parameters a
and b. Default values of a and b for each node are set
genetically, but are changed by diffusing gases as the net-
work runs. It is genetically determined whether or not a
node will emit one of four gases, and under what circum-
stances emission will occur (either when the ’electrical’
activation of the node exceeds a threshold, or the con-
centration of one of the gases, genetically determined,
in the vicinity of the node exceeds a threshold). For
an emitting node, the concentration of gas at distance
d from the node is given by equation 7. Here r is the
genetically determined radius of influence of the node,
so that concentration falls to zero for d > r. TC(t) is a
linear function that models build up and decay of con-
centration after the node has started/stopped emitting.
The slope of this function is individually genetically de-
termined for each emitting node, see [20] for full details.
C0 is a global constant.

C(d, t) = C0 × e
−2d

r × TC(t) (7)

The gas concentrations modulate the intrinsic proper-
ties of nodes in the network by changing the values of a
and b. At every time step these values are updated as
follows: at each node the value of a is linearly increased
from its genetically set default by an amount propor-
tional to the concentration of chemical 1 at the node, a
is similarly decreased according to the concentration of
chemical 2, b is changed in the same way by chemicals
3 and 4. For full details see [20]. The number of nodes,



topology of connections and geometric layout of the nets
are evolved, as are the gas emitting properties of nodes
and the default values of a and b. Four motor nodes
are used as with the previously described nets, and, of
course, the visual morphology was concurrently evolved
along with networks.

The 2 Gas Model. This style of network is very
similar to the 4 gas model. This time there are only two
gases and the transfer function at each node is of the form
shown in equation 81. Again the weights are restricted
to be either +1 or -1. The value of b is genetically set
at each node as is the default value of k. The two gases
raise and lower the value of k in a similar manner to the
way a and b are changed in the 4 gas model.

Oj = tanh([k ×
∑

i

Oiwij ] + b) (8)

5.4 Results
As intimated earlier, the explorations described in this
section are ongoing. We do not yet claim to have enough
data to make strong and rigorous statements. However,
we have now done between 5 and 15 runs for each kind
of network and a number of interesting and suggestive
things have already emerged. Figures 4–8 show typical
evolved networks and visual morphologies for the differ-
ent styles of network investigated. The genetic encod-
ings used for the binary nets and the GasNets were very
similar (see [15] and [20] respectively for full details).
However, a simpler encoding, that was not suitable for
the other styles of net, was used for the veto nets [11].
Distributed GAs with local selection and populations of
size 100 were used for the GasNets. A slightly different
version of the GA was used, with the same population
size, for the binary networks. Our observations will now
be briefly outlined.

Probably the most striking thing to emerge from our
study is the fact that all of the successful2 evolved con-
trollers (more than 50 to date) employ one or both of
only two (closely related) behavioural strategies. This
even though a wide range of networks was used and the
encodings and other aspects of the evolutionary machin-
ery varied. The two strategies are illustrated in figure 9.
The first strategy, illustrated to the left of the figure, in-
volves moving until one of two strategically positioned
visual inputs gives a high signal while the other gives a
lower signal. The geometric layout of the sensors is such
that this will only be reliably achieved when the robot is
facing towards the triangle. The controllers illustrated
in figure 4, 5, 6 and 8 use this strategy. The other strat-
egy involves two vertically aligned visual sensors and is

1Thanks to Andy Philippides for suggesting this form.
2To count as successful a controller must move to the triangle

on many (at least 30) successive trials on the real robot under
full noisy lighting and with random relative positioning of the two
targets on the gantry wall.

illustrated to the right of the figure. As the robot swings
round towards a target, the bottom sensor will go high
significantly earlier than the top sensor in the case of a
triangle, but not for a rectangle. The controllers shown
in figure 7 use this strategy which is based on the or-
der in which sensors are excited. There is not enough
space to describe the workings of the controllers in de-
tail. However, it should be noted that many of them
used a small number of additional visual inputs and var-
ious subtle internal dynamics to generate highly robust
behaviours capable of coping with the extreme lighting
conditions. In each case the visual morphology played
a vital role. In each successful controller there was a
perfect balance between the sensor geometry and robot
motion resulting in active visual strategies. A traditional
cognitive science perspective would think of the sensori
capabilities as being passive and the sensor morphology
as almost incidental; it is the internal processing where
the real work is done. This is very clearly not the case in
any of our evolved robots. The number and position of
the visual inputs was under evolutionary control; it has
clearly been demonstrated that very simple extremely
low bandwidth sensors, when appropriately coupled to a
dynamic controller, are sufficient for this kind of task.
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Figure 4 Evolved network and visual morphology for
veto networks. Active part of network is shown. Solid
lines are excitatory, dashed are veto.

Another very striking observation we have made from
the results available so far is to do with the speed of
evolution of successful controllers. Evolving in a mini-
mal simulation is in some sense harder than in reality
(because of the extreme use of noise). Hence it would
be expected that a greater number of evaluations would
be needed to evolve a behaviour in such a simulation
than in reality, although of course this is heavily offset
by the speed at which the simulations run. The success-
ful binary net and veto net controllers all took 6,000 or
more generations to evolve. The successful 4 gas GasNet
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camera image

neural network
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Figure 5 Evolved network and visual morphology for
binary networks. Solid lines are excitatory, dashed are
inhibitory.

Motor Nodes

Visual Input Nodes

Hidden Nodes

Neuron Grid

Visual Inputs

Figure 6 Evolved network and visual morphology for
4 gas GasNet. Solid lines are excitatory, dashed are
inhibitory.

based controllers all took between 1,000 and 3,000 gen-
erations. However, many of the successful 2 gas GasNet
based controllers took less than 500 generations (with a
few requiring up to 3,000 generations). We have data
from more than 15 runs for the 2 gas GasNets, but less
for the other styles. So what we can say at the moment
is that we have strong suggestive evidence that we can
evolve behaviours quicker (usually far quicker), in terms
of numbers of evaluations needed, with GasNets than
with the other styles tried. This is backed up by stud-
ies on different behaviours with another robot [20]. It
seems that the ’behaviour space’ that this class of nets

Left Motor Forward

Left Motor BackRight Motor Forward

Neuron 7

Neuron 6

Right Motor Back

Neuron 10

Neuron 4

Neuron Grid

Visual Input Neuron Visual Input

Motor Neuron (fixed position)

Hidden Neuron Gas Diffusion radius

Visual input positions in camera

Excitatory Link (+1)

Inhibitory Link (-1)
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Neuron 8

Neuron 9

Neuron 9

Neuron 8

Neuron 4

Figure 7 Closed-loop ‘tracking’ two-gas model tri-
angle finding network, see text for details. NB gas
radii are shown only where used.

Neuron Grid

Visual Input Neuron Visual Input
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Neuron 6

Neuron 4

Neuron 7

Motor Neuron (fixed position)

Hidden Neuron Gas Diffusion radius

Left Motor Forward

Right Motor Forward

Right Motor Back

Left Motor Back

Neuron 7

Neuron 6

Visual input positions in camera

Excitatory Link (+1)

Inhibitory Link (-1)

Figure 8 Closed-loop ‘tracking’ two-gas model tri-
angle finding network, see text for details. NB gas
radii are shown only where used.

generates is more dense. It is easier to find a route to
a successful controller. This suggests that networks in-
volving interacting, yet distinct, processes are a powerful
alternative to more conventional connectionist thinking.

Something that quickly becomes obvious after glancing
at figures 4– 8 is the difference in structural complexity
of the evolved networks. The binary nets were the most
structurally complex, while all successful evolved Gas-
Net controllers were amazingly minimal. The veto net
controllers were of intermediate complexity. Although
the GasNets were very minimal, the modulatory interac-
tion of the spreading and decaying gases and the sparse
’electrical’ networks gave rise to the most sophisticated
internal dynamics of any of the network classes.

camera field of view

visual inputs

Figure 9 The only two classes of successful be-
havioural strategy that we have observed to date.



Clearly it has been demonstrated that for each of the
network types it is possible to find a successful controller.
Importantly, we have learnt that a very unconventional
class of network, namely the GasNets, are capable of
generating adaptive behaviour and have many interest-
ing properties. They look like a very good avenue to
explore further.

There are many other aspects of these experiments
that need further investigation, such as the role of the
genetic encoding and the details of the GA. However,
we feel that we have already gained valuable knowledge
and insights that are feeding into current work in which
we are attempting to take evolutionary robotics onto a
higher plane of behavioural sophistication.

6 Conclusions
We have claimed that we now have enough tools and
methods to employ evolutionary robotics techniques in
a wider realm of exploration than has been practiced to
date. We feel this is necessary if we are to make signifi-
cant engineering advances in the field, but will also con-
tribute to the science of adaptive behaviour. We argue
that ER can act as a useful and potentially wide ranging
tool in the scientific investigation of adaptive behaviour
generating systems.

Acknowledgements: Thanks to Marco Dorigo, Em-
met Spier, Jon Bird, Mike Wheeler, John Anderson and
various members of CCNR for useful comments.
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