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Abstract This paper explores current developments in evolutionary and bio-
inspired approaches to autonomous robotics, concentrating on research from our
group at the University of Sussex. These developments are discussed in the context
of advances in the wider fields of adaptive and evolutionary approaches to AI and
robotics, focusing on the exploitation of embodied dynamics to create behaviour.
Four case studies highlight various aspects of such exploitation. The first exploits
the dynamical properties of a physical electronic substrate, demonstrating for the
first time how component-level analog electronic circuits can be evolved directly
in hardware to act as robot controllers. The second develops novel, effective and
highly parsimonious navigation methods inspired by the way insects exploit the
embodied dynamics of innate behaviours. Combining biological experiments with
robotic modeling, it is shown how rapid route learning can be achieved with the
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aid of navigation-specific visual information that is provided and exploited by the
innate behaviours. The third study focuses on the exploitation of neuromechan-
ical chaos in the generation of robust motor behaviours. It is demonstrated how
chaotic dynamics can be exploited to power a goal-driven search for desired mo-
tor behaviours in embodied systems using a particular control architecture based
around neural oscillators. The dynamics are shown to be chaotic at all levels in the
system, from the neural to the embodied mechanical. The final study explores the
exploitation of the dynamics of brain-body-environment interactions for efficient,
agile flapping winged flight. It is shown how a multi-objective evolutionary algo-
rithm can be used to evolved dynamical neural controllers for a simulated flapping
wing robot with feathered wings. Results demonstrate robust, stable, agile flight
is achieved in the face of random wind gusts by exploiting complex asymmetric
dynamics partly enabled by continually changing wing and tail morphologies.

Keywords Evolutionary robotics · biorobotics · visual navigation · neural
dynamics · chaotic dynamics · evolvable hardware

1 Introduction

The dynamics inherent in biological systems are varied, multi-levelled, and often
complex. They range from the dynamics of individual cells, to those of neural and
bodily structures, to individual animal behaviours, to the ecological and evolution-
ary dynamics of populations. All of these are growing sources of inspiration for the
development of new techniques and approaches in AI and autonomous robotics.

The inherent spatiotemporal dynamics of the nervous system are much richer
than those of most artificial systems. Complex electro-chemical processes interact
over many different spatial and temporal scales creating multiple layers of adaptive
mechanisms that are at the heart of the nervous system’s incredible versatility and
power [80,1,97,109]. Recent empirical work in neurophysiology provides evidence
that the complex information processing that these processes enable is an intrinsic
property of various classes of neurons, such that it will arise even in extremely
sparse reconstituted networks [100]. The inherent properties of neurons and the
structures they build are therefore a very rich source of inspiration for artificial
nervous systems intended to generate adaptive behaviour in autonomous mobile
robots.

At a slightly higher level, the ability of evolution to create, shape and exploit
the complex dynamics of neural systems is in itself a powerful inspiration for how
to develop control systems for robots. Artificial evolutionary approaches can be
employed to design neural controllers [90], or to exploit the inherent properties of
some re-configurable physical medium, in which control circuits can be defined.

In nature embodied behaviours do not arise due to the power of neural dy-
namics alone. They are generated by the interacting dynamics of the whole brain-
body-environment system making up a behaving organism in its environment [93,
33]. The overall morphology of the body, including the layout and properties of the
sensors, plays an important role in generating these dynamics. The ways in which
these various elements interact, resonate and co-evolve, are what generate, shape –
and ultimately enable the exploitation of – the rich dynamics that underpin robust
adaptive embodied behaviour.
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In this paper we present four case studies of current work from our group where
various of these elements are explored in the development of novel biomimetic
autonomous robotic systems. The binding theme in these studies is the exploitation
of dynamics. Between them, these interrelated strands of work demonstrate a
range of ways in which this can be profitably achieved. They cover: exploiting the
dynamical properties of a physical electronic substrate in the development of robot
controllers; navigation methods inspired by the way insects exploit the embodied
dynamics of innate behaviours; the exploitation of neuromechanical chaos in the
generation of locomotor behaviours; and the exploitation of the dynamics of brain-
body-environment interactions for efficient, agile flapping winged flight.

The very first work on truly autonomous robots, the development of Grey
Walter’s tortoises [125,126], was intended as an exploration of how the dynamics
of a simple, yet richly interconnected, electronic nervous system could generate
adaptive behaviour in an ‘artificial creature’. It was meant primarily as a new
kind of synthetic method for neurophysiology, but was hugely influential in future
developments in robotics and AI. The research described in this paper is motivated
by Walter’s pioneering approach insofar as it takes inspiration from biology in the
development of autonomous robotic systems, but some of the studies also shed
new light on aspects of the biological mechanisms that are the source of their
inspiration.

The structure of the paper is as follows. The next section reviews recent rele-
vant literature in areas related to the research described in the main body of the
paper. Following that, Sections 3-6 present the four case studies outlined above.
All make use of bio-inspired adaptive approaches to AI and robotics, focusing on
the exploitation of embodied dynamics to create behaviour. Finally, a conclusions
section summarizes and discusses the main findings, pointing out limitations and
possible future directions.

2 Literature Review

Over the last few years there has been a growing number of examples of using
evolutionary and adaptive methods to exploit the dynamics of physical materials
to create behaviour generating and/or information processing systems.

A very recent, exciting development was the creation in 2019 of simple organic
robots using a process of artificial evolution [66]. Dubbed xenobots by their creators
at the University of Vermont and Tufts University, these tiny biological machines
were first designed in computer simulations using the techniques of evolutionary
robotics. The xenobots were assemblies of passive and contractile biological cells
(the latter can spontaneously contract and relax, that is pulse) which were evolved
to perform some simple behaviour (e.g. move forward: the pulsing contractile cells
could be exploited to power locomotion). The best designs evolved in simulation
were then created in a biology lab from real cells – passive skin cells and contractile
heart cells – developed from frog stem cells. The newly assembled organic robots
were able to perform the desired behaviours when placed in a petri dish. In the
words of the scientists who developed them, the creations are novel living machines,
programmable organisms, entirely new lifeforms. It is quite plausible that this kind
of technique could be used to develop useful nano robots in the future, maybe to
deliver drugs after being injected into the bloodstream. Scaling to larger, more
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complex creatures will be very challenging, but might be possible in the long-
term. As with the evolutionary robotics work described in Section 3, the xenobot
simulations were refined using feedback from reality. Even in complex cases such
as these, evolved solutions can be made to cross the reality gap. The inherently
plastic and degenerate nature of biological material may have been advantageous
in that regard.

Howard et al [52] used a model of a variable resistive memory based novel hard-
ware substrate to evolve spiking neural networks capable of controlling a simulated
robot engaged in a T-maze task. While not quite an example of true EHW, this
work provides another example of how evolution exploits the dynamics afforded
by unconventional media. Recently there has also been renewed interest in analog
EHW in other application areas besides robotics. These include the evolution of
circuit repair strategies, which require no specific information of the nature or
location of faults, in a special very fine-grained FPGA architecture [122]. There
have also been more general investigations of other evolvable (continuous) physical
substrates, such as liquid crystal, chemical reaction-diffusion systems and carbon
nanotubes, as unconventional mediums for computation and information process-
ing (including for controlling simulated robots) [85,84,2,29]. For such systems,
their success was again rooted in the exploitation of rich dynamics.

The research described in the next section demonstrates how another type
of physical medium, built from re-configurable analog electronics, can act as a
highly evolvable substrate for developing controllers for a physical robot engaged
in visually guided behaviours. The rich dynamics afforded by the medium was
exploited to develop very concise, unorthodox, yet highly robust, controllers.

Visually guided navigation is a popular topic within robotics (see [17] for a
review), as it holds the possibility of reliable homing over a range of spatial scales,
using cameras as cheap and reliable sensors. It is important to note, however, that
this topic encompasses a number of problems – e.g. route-following and visual place
recognition (VPR; for a review see [77]) – which are subtly distinct. For example,
for a robot tasked with following a previously memorised route, VPR may not be
much use in the case where it is displaced to an unfamiliar position away from
the route, whereas an algorithm such as the visual compass, where memorised
views can be used to recall the direction an agent was facing when the view was
stored (see Section 4), can be robust to such occurrences: the robot is not required
to know where it is in order to know what to do. This is in contrast to map-
building-type approaches (e.g. Simultaneous Localisation and Mapping – SLAM
[23]) where a metric map is incrementally constructed based on the estimated
positions of landmarks: a process which is often computationally expensive, in
particular in large-scale outdoor environments. Even among mapless approaches,
input images are often preprocessed to extract visual features which are then used
as landmarks, e.g. FAB-MAP [28] uses a so-called bag-of-words algorithm, where
places are defined based on the presence (or not) of a predefined vocabulary of
features. In Section 4 we describe our alternative approach, which eschewing these
kinds of abstraction and instead uses direct comparison of raw images – taking
inspiration from ants. We show that robust behaviour emerges from this embodied
approach, requiring much less computation.

In Section 5 we explore how certain types of complex neural dynamics can be
exploited in the generation of embodied behaviour, and how they must work in
concert with bodily dynamics. Oscillatory neural dynamics are prevalent in many
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brain areas and appear to underlie numerous mechanisms involved in information
processing and the generation of behaviour [22,121,18]. This observation led to
the development of various artificial neural network architectures based on cou-
pled oscillators that have been successfully employed as robust control systems
for various kinds of robots [11,55,86,102]. Complex, often chaotic, dynamics are
observed in biological nervous systems. Hence some researchers began to explore
the properties of chaotic neural oscillators in the generation of behaviour [6]. This
work showed the potential adaptive properties of such systems and led to a more
active and radical exploitation of chaos as an adaptive force, where the chaotic dy-
namics arise in a whole embodied neuro-physical system [68,67]. Such research was
generalised and extended by our group to allow the robust development of goal-
directed motor behaviours [105]. Section 5 further extends this work, developing
a general class of coupled-oscillator neural controllers which are able to generate
highly robust, resilient behaviours in a wide range of robots without the need for a
priori knowledge of the robot or environment. The nature of the chaotic dynamics
within the whole brain-body-environment system is explored in some detail.

As we shall see in several of the case studies described in this paper, par-
ticularly those covered in Sections 4 and 6, animal body morphologies play an
important part in the generation of behaviour, as do the properties of materials
and structures making up the body.The development of a ‘PigeonBot’ at Stanford
University [82,26] potentially opens up many interesting directions in the devel-
opment of hybrid systems where robots exploit the properties of natural biological
structures (in this case bird feathers), including the complex dynamics such struc-
tures can enable. The primary aim of this research was to understand more about
the mechanisms of flapping wing flight in birds, in particular how the wing surfaces
dynamically change shape during flight. The team developed a cleverly conceived
bio-mechanical hybrid robot — the PigeonBot -– by incorporating real pigeon
feathers into the wing of the flying machine. The study revealed a lot about how
birds fly, particularly how feathers and the ways they are connected enable the
powerful mechanisms of continuous wing morphing, and how these dynamics are
used. It also points the way to new forms of biomimetic flying robots that could
have a lot of useful applications. Wing morphing considerably improves efficiency
and manoeuvrability in nature, so further developments of such robots might lead
to a new class of agile flying robots that are superior to standard drones. As with
much work on the interfaces of robotics and biology, such as that described in Sec-
tions 4,5 and 6, advances were made in AI and engineering while at the same time
gaining biological insights. The research described in Section 6 explores the evolu-
tion of neural controllers that are able to exploit complex aerodynamics enabled
by morphing feathered wings and tail in a simulated flapping wing robot.

The next four sections look in detail at case studies which explore how biomimetic
systems can use the various kinds of exploitation of dynamics outlined above.

3 Evolving Robot Controllers directly in analog electronics: exploiting
the dynamics of an evolvable physical medium

An interesting area that uses evolutionary methods to exploit unconventional dy-
namics is that of evolvable hardware for robot control. Evolvable hardware (EHW),
or evolutionary electronics [117], is the application of evolutionary search algo-



6 Husbands et al.

rithms to the design of electronic circuits [75,24,76,96,25,41]. This is a field in
which our group has made recent advances, namely, the first demonstration of
transistor level analog electronic controllers evolved directly in hardware for non-
trivial visually guided robot behaviours [40]. This section describes this work and
puts it in the context of recent developments in evolutionary robotics (ER) [90,
123]. In particular, it highlights how unconventional dynamics can be exploited for
sensorimotor control by evolving controllers in a physical medium, thus tapping
directly into its spatiotemporal properties, and how new kinds of fast simulations
can be used to evolve behaviours off-line that seamlessly transfer to reality.

EHW has spawned many highly unconventional circuit designs that operated in
very different - often superior - ways to conventional hand designed systems [118,
65]. One of the very earliest works in EHW was the evolution of a hardware control
system for a physical robot [116]. Evolved digital circuits for controlling similar, or
slightly more complex, robot behaviours soon followed [61,89,46,101]. These later
systems were all based around bespoke or proprietary (digital) reconfigurable gate-
level circuitry (e.g. FPGAs).

However, a crucial aspect of the original work [116] was the fact that it pointed
towards the potential power of evolved analog processing in the robotic context
[118]. The point was that the potentially rich dynamics of such a system was
exploited by the evolutionary process to mesh with the dynamics of the robot-
environment interactions arising as the robot behaved in the world. Thus tight,
efficient sensorimotor loops, running through the environment and the hardware,
were evolved, illustrating the power of unconventional electronics created by the
EHW approach, as well as feeding into dynamical systems understandings of em-
bodied behaviour [9,53,42].

The potential dynamics of unconventional evolved analog circuits is partic-
ularly rich. This, combined with the insight from evolutionary robotics [90,123]
that dynamically complex neural networks are highly evolvable [54,10], suggested
that analog EHW might be very well suited to evolving compact controllers op-
erating with small numbers of components, even for visually guided behaviours
which traditionally employed high levels of processing [12]. The technical difficulty
of evolving component level analog robot controllers has meant that, until now,
this possibility has been left unexplored. An important property of dynamically
complex evolved neural networks is their ability to cope with noisy, poor quality
sensory data, even when the networks have very few nodes [54]. This suggests
that analog EHW might also be a useful approach for low cost realtime hardware
applications requiring cheap sensors and simple circuits. In order to explore this
hypothesis further, we have conducted a series of experiments where controllers
for an autonomous robot were evolved directly in analog hardware. This was done
in such a way (mainly through the deliberate use of low grade sensors) that the
study has some relevance to the kinds of applications mentioned above.

3.1 Experimental setup

In order to allow the best chance of creating and exploiting rich unconventional
dynamics, an attempt was made to evolve circuits at the analog component level.
That is at the level of basic electronic components such as transistors and resis-
tors (in our case primarily transistors). Previously there had been success using
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field programmable analog arrays (FPAAs) as a substrate for the evolution, in
hardware, of artificial neural networks (ANNs) for robot control [14]. That work
focused on evolving at the higher level of an analog implementation of an ANN,
rather than the lower, component level of analog circuits. Because of the inherent
technical challenges, there had been no investigation of component-level analog
EHW applied to robotic control prior to the work described here.

To allow an exploration of transistor-based analog circuits, all experiments used
the Heidelberg field programmable transistor array (FPTA) [71], a non-commercial
research chip specifically developed for EHW applications. This FPTA is a 16x16
array of virtual transistors with configurable local routing. Each virtual transistor
has a configurable channel width and length. Routing is such that cells can be
bypassed. All edges of the FPTA contain I/O blocks (IOBs) which can be con-
figured for buffered/direct input/output. In buffered I/O mode, DACs and ADCs
are used to generate and read voltages from the chip and transfer them through
a host FPGA board. The aim was to evolve transistor circuits on the chip to con-
trol a mobile robot by feeding robot sensor readings into the chip as inputs and
using chip outputs as robot actuator signals (both via wireless connections). The
configurable chip allows us to evolve the individual transistor properties (width
and length, which determine the current-voltage characteristics), and the way in
which the transistors are connected together on the array. Sensor inputs and motor
outputs were mapped to/from the native chip IO range [0,5V].

An incremental approach to evolution [47] was used. Task difficulty increased
from stage to stage; the initial population was seeded randomly and then each new
stage was seeded with the population from the previous stage’s final generation.
Preliminary experiments indicated that this was the most efficient way to proceed,
in keeping with previous explorations of this issue [90,123]. The following series of
behaviours was evolved: obstacle avoidance, visual target approach in an empty
environment, visual target approach in a complex cluttered environment. The
environment and the fitness function were changed at each new stage to develop
the desired new behaviour.

Sheet1

Page 1

0 1 2

3 4 5 6 7

Fig. 1 Left: the K-Junior robot with the SmartEvo turret having a conical 360◦ mirror
mounted above the upward facing camera; Middle: Haar-like filters available as visual sen-
sors; Right: example of filter ID 6 overlayed on the conical mirror 360◦ view. White regions
are additive and black regions subtractive – see text for details.

All experiments used a K-Team K-Junior wheeled mobile robot [70] with a
SmartEvo vision turret having a conical mirror mounted above its upward facing
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camera to provide 360◦ vision (Fig.1). The camera lens, focus and orientation were
fixed such that the full panoramic image occupied as much of the camera field of
view as possible (Fig.1). The robot is circular with a 6.5cm radius. Five of its six
IR proximity sensors are distributed within a forward facing 180◦ arc at the front,
and the sixth faces backwards at centre rear.

Instead of using the whole camera image as visual input to the controllers,
five Haar-like feature detectors (or filters) [124] (whose position, size and type
were genetically set) were used to effectively evolve visual sensors which use only
part of the image and pre-process it into a low dimensional input for the FPTA.
Each of the five filters is genetically set to be one of the eight types illustrated
in Fig. 1. This approach, where visual sensors are co-evolved with the controller,
builds on [48,54] but uses more sophisticated filters than in previous work. It is a
powerful approach to automatically achieve dimensionality reduction and feature
extraction and selection in an integrated way. Haar-like feature detectors calculate
the sums and differences of average intensities over adjacent rectangular regions
(the black and white regions shown in Fig. 1). They can act as simple edge and
line detectors, as well as responding to more complex visual features and picking
out areas of high contrast. A number of these feature detectors acting in concert
have been shown to work well in robot navigation, providing an efficient, low
dimensional representation of visual data [8]. The output, s (in the range [0, 1]),
of a Haar-like feature was calculated by overlaying the filter on the 360◦ conical
mirror view as in Fig. 1 (right) and applying the following equation:

s =
∑
p∈W

vp +
∑
p∈B

(255− vp)255× (|W |+ |B|) + Γ (1)

where W and B are white and black filter regions respectively, as in Fig. 1, vp
(in the range [0, 255]) is the value for pixel p and Γ is uniform random noise in
the range [0, 0.1]. Areas of the visual sensors falling outside of the visual field are
ignored.

A generational evolutionary search algorithm was used with a binary genotype,
linear rank selection, single point cross-over, mutation and elitism. After prelim-
inary investigations, a population size of 30 was used. With only a single FPTA,
which had to be used for each (expensive) evaluation, this population size proved
a good compromise. Each member of the population was evaluated in turn by
using the FPTA circuit it described to control the robot. Preliminary experiments
indicated a cross-over probability of 0.6 and a per bit mutation rate of 0.0016 as
the best values to use. Each genotype was a fixed length binary string which en-
coded a FPTA configuration using 6144 bits describing transistor properties and
connections for the array, as defined by the chip configuration protocol [71]. This
binary encoded protocol is hardwired into the chip design and must be used to
configure the FPTA. Hence it made sense to use it directly as the genetic encoding
as intended by the chip designers [71]. An extra 120 bits were appended for visual
sensor configurations (24 bits each for 5 evolved visual Haar-like filters) determin-
ing their sizes, positions and other properties. Numerical values were represented
using a Gray code [44] so that single bit mutations cause incremental changes in
values resulting in a smoother fitness landscape. Each filter effectively acted as a
separate visual sensor, feeding into its own FPTA input.

All robot behaviours were evolved to take place in a 85 × 114cm rectangular
arena with bounding walls. Various obstacles were introduced for some experiments
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and visual features (such as geometric patterns) were stuck on the walls in some
places.

Robotics is inherently noisy. Sensor and actuator noise and natural variations
in environmental conditions (e.g. lighting) are always present. In our case the phys-
ical medium used for the controller (unconventional FPTA circuits) can provide
another source of inherent noise (e.g. parasitic capacitance build-up). Because of
this, nominally identical fitness evaluations will result in different fitness values.
Since we require the controllers to be robust to such variation, as well as to differ-
ent initial conditions, the evaluation method must be carefully designed. Multiple
trials must be used and these should be appropriately weighted in order to produce
a selection pressure towards general and robust behaviours.

A set of N fitness evaluations, fi, were integrated into a final overall fitness
value F for each individual in the experiments described below. By giving a heavier
weighting to lower fitness values as per [54], robustness is encouraged - the robot
must behave well on all trials. To achieve this, fitness function F (Equation 2) was
used in all experiments. The scores, fi, were ranked (i is the rank, rank 1 is best
(highest), rank N worst (lowest)). Thus F weights the evaluations scores inversely
proportionally to fitness.

F =
2

N(N + 1)

N∑
i=1

ifi (2)

Obstacle avoidance was the basic first level behaviour on which the others were
built. The aim of this task was for the robot to cover as much ground as possible
without colliding with obstacles. 6 FPTA I/O pins were allocated as inputs from
the six robot IR sensors, with values normalized to the [0,5]V range. Values are
high when the sensor is close to an obstacle. Vision was not used in this experiment.
2 pins were allocated as outputs to the robot motor. An S shaped obstacle was
present in the arena during evolution. Fitness was calculated over 6 trials starting
from random positions and orientations. Each trial was scored as in [37,57], using
Equation 3.

fa =
t=trialEnd∑

t=0

V (1−
√
∆v)(1− i) (3)

where V is the sum of the instantaneous rotation speed of the wheels (stimulating
high speeds), ∆v the absolute value of the algebraic difference between the speeds
of the wheels (stimulating straight line forward movement), and i is the normalised
value (in range [0,1]) of the IR sensor of highest activation (stimulating obstacle
avoidance). This simple behaviour has been achieved many times with various
ER/EHW approaches and is not in itself particularly interesting. However, it is a
good basic test of the FPTA approach and is necessary as an initial bootstrapping
behaviour in our incremental methodology.

The aim of the second task in the sequence was for the robot to approach a
target which it can only recognize by using vision (a red 29cm x 21cm rectangle
next to a black 29cm x 21cm rectangle on one of the walls, see Figure 3). Other
visual features (patches of colour or patterns) were stuck to the arena walls and
could potentially be used for orientation, but also had to be discriminated from
the target. At this stage the evolution of visual sensors was switched on as outlined
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earlier. A further 5 FPTA pins were allocated to the evolved visual sensors. The
robot was to approach the target from a random starting position and orientation
in an otherwise empty arena without crashing into the walls (i.e. maintaining the
obstacle avoidance behaviour alongside the visual target finding).

Behaviour was evaluated over 6 trials, each starting from a random location
and orientation in the arena. The score for an individual trial was calculated as
follows:

fg =

∑
∀t,dt≥10.5

(1− dt
d1

) +
∑

∀t,dt<10.5
2

tend
(4)

where dt is the robot’s distance to the target at time-step t, and t increases from
1 until the trial ends at tend due to robot collision or timeout, whichever comes
sooner. Double scores were awarded on every time-step the robot spent near the
target without colliding with it. Maximum trial length was 80 time-steps. Versions
of this behaviour have been achieved before [48] but here it is used as an incre-
mental step towards the next stage of more complex behaviour. It is also a good
validation of the coevolution of visual sensors approach and is the first time an
EHW approach has been used for a visual behaviour (of course evolved FPTAs
have never previously been used for robotics tasks).

The third task in the incremental sequence was the same as the second but
in a complex, cluttered, maze like environment such that from many locations
- more than 50% of the arena - the target was hidden (see Fig. 3). This was
considerably harder than the empty arena task as a more general visual searching
strategy had to be evolved in order to robustly find the target from any starting
position in the environment. The evaluation procedure was exactly the same as
in the previous task, except the maximum trial length was 200 time-steps. This
task is more difficult than most previous ER visual behaviours and has not been
attempted before [90]. For further details of the experimental setup see [40].

3.2 Simulating the robot and its environment

The evolutionary robotics approach requires large numbers of candidate controllers
to be evaluated. In our case this creates the challenge of either evaluating be-
haviours on the physical robot within a reasonable timeframe, or developing sophis-
ticated enough simulations to allow general visually guided behaviours to evolve
that transfer into the real world without loss in performance. While a number
of approaches to this latter problem have been developed over the years [56,90],
general vision simulation techniques that cross the reality gap [57] for any but the
most low resolution cameras have proven elusive [90,123]. We tackled the problem
by developing new methods for accurately simulating the robot acting in its en-
vironment. This allowed us to evolve behaviours using a robot simulation which
successfully transferred to the real robot. During evolution the simulated robot
was connected to the (real) FPTA in the same way as the physical robot is when
evolved controllers are used in the real world.

An efficient physics-based simulator was written in the style of [57] to model
the kinematics, assuming a flat floor. Careful empirical measurements were used to
model motor responses and sensor readings. Motor and sensor noise was introduced
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at a level empirically determined to match the real behaviour [40]. The simulator
operated at a configurable discrete time step.

The method used to simulate vision employs an empirical sampling technique
made feasible by the use of a 360◦ field of view. The technique builds on a method
previously utilized in [8], but with significant extensions and improvements. As far
as we know it is the first time such a technique has been used in an evolutionary
robotics context. The basic idea was to divide the whole world (the robot arena)
into a set of equally sized cells. The image seen by the robot was then sampled in
each grid cell to build up a database representing the robot’s visual world. Because
the robot has 360◦ vision, the panoramic image at a given location is essentially
the same for any orientation of the robot, it has just been rotated. Hence, instead
of having to sample at each location for many orientations, a small number of
samples is sufficient. The retrieved image can be easily mathematically rotated to
match the actual robot orientation. It is this trick – which relies on the rotational
symmetry of the 360◦ image – that makes the technique feasible, otherwise the
number of samples needed would become too large.

The arena was sampled by capturing the world as seen by a north and a
south facing robot at every location on a grid of 5 × 5cm cells. At any given
moment during simulation, a north or south orientation is chosen at random. The
image sampled in that direction is picked from the sampling cell closest to the
current position of the simulated camera. The chosen 360◦ image is then rotated
according to the simulated robot orientation. The simulator also added noise to
the sampled image (at empirically determined levels). The addition of noise and
use of randomly chosen samples (north or south orientation), as well as variations
in obstacle positions, forces the evolved controllers to be robust to a range of visual
conditions rather than relying on a fixed set of values. Such robustness is essential
for transferring to the real world and operating in realistic conditions. The discrete
nature of the sampling, and the use of the nearest sample to the actual position of
the simulated robot, adds further noise and coarseness which increases the pressure
to produce general, robust solutions [40]. In some of the experiments using vision,
additional features and obstacles were introduced into the modelled arena through
Computer Generated Imagery (CGI) injection into the sampled images. Hence the
original sampled world can become the basis of new, more complex environments.

3.3 Evolved FPTA Results

Figure 2 summarizes the results of a number of incremental evolutionary experi-
ments using the FPTA as an evolvable medium. The bar chart on the left shows
the results of ten incremental experiments on the sequence of robot behaviours
described in Section 3.1. The height of the bars shows the mean numbers of gener-
ation to a robust, successful solution at each stage (that is a high scoring solution
that remains the best in the population for 30 generations with re-evaluations on
each generation, thus eliminating ’lucky’ individuals that scored well once; a high
score for obstacle avoidance is 500, for both the visual tasks it is 1). The error bars
show the standard error of the mean. All runs were successful at each stage, with
moderate standard errors, indicating that the methodology is highly robust.

The evolved successful controllers transferred very well to the real robot, pro-
ducing qualitatively very similar behaviour to the simulation. A trace of the live
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Fig. 2 Left : Results of ten incremental evolutionary runs. The bar heights show the mean
number of generation to a successful robust solution at each stage, error bars indicate standard
error of the means (SEMs).Middle: Full FPTA compared with FPTA used as a routing network
and with simple threshold units. An asterisk above a bar indicates all runs under that condition
timed-out before success was achieved. Right : FPTA compared on avoider behaviour with an
array of dynamical units and with a dynamical neural network with a pre-defined architecture.

robot engaged in the end stage behaviour (find target in complex cluttered envi-
ronment) can be seen in Fig. 3, directly compared with the behaviour in simula-
tion. The robot trace was extracted from an overhead video using motion tracking
algorithms. Even though the controllers were evolved to produce very efficient
behaviour in the environment shown in Fig. 3 (with variations during evaluation
trials as outlined earlier), and exploited robot-environment dynamics particular to
this environment, our methodology still made them general enough to be able to
successfully perform the task (find the target and stay at it) in unseen variations
of the environment where the target had been moved to a different location or the
shape of the environment has been altered [40] (see Figure 4). This demonstrates
that the successful controllers were processing sensory information to generate the
behaviour, rather than using some trick to blindly learn the shape of the environ-
ment and location of the target.

Fig. 3 Successful evolved FPTA controller navigating the maze environment Left : in simula-
tion and Right : when transferred to the physical robot and started from a similar position.

The results of incremental evolution suggest the FPTA is a suitably evolvable
medium for developing robust sensorimotor behaviours, even when the sensors
and motors are noisy and unreliable (there was also a 600ms camera latency). The
observed, rather subtle, dynamics of the evolved behaviours (especially the visually
guided behaviours) suggest the potentially rich dynamics of the FPTA medium
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Fig. 4 The evolved controller shown in Fig. 3 generalising to environments unseen during
evolution. The black cross in the behaviour plots indicates the location of the target on one of
the walls/barriers (dark filled areas). Left : target moved to lower barrier (during evolution it
had always been on the top wall), Middle: target moved to horizontal barrier, Right : target in
original position but part of the diagonal barrier removed to create variation in the shape of
environment.

are being exploited. Analysis of evolved circuits further supports the importance
of the exploitation of analog FPTA dynamics (see [40]).

The middle and rightmost bar charts in Figure 2 show the results of a series
of experiments aimed at probing the hypothesis that the FPTA’s evolvability is at
least in part due to the exploitation of rich dynamics.

It is possible to effectively bypass all the transistors in the FPTA by fixing all
routing to be ’pass through’ so that the chip becomes an evolvable routing network.
In this mode it is possible to evolve routing networks that can connect sensors and
actuators in potentially complex (or relatively simple) ways but which no longer
make any use of the transistors and the potential dynamics they can impart. The
middle bar chart shows results of ten comparative incremental evolutionary runs,
using the same series of behaviours, of the full FPTA, the FPTA used as a routing
network (transistors bypassed), and an array of simple threshold units. All the
full FPTA runs were successful at each stage. It is clear from the plots that none
of the runs of the FPTA as routing network or of the array of threshold devices
were successful at any stage. All of these runs timed out at 12,000 generations.
Multiple runs with the threshold devices using a fixed threshold of 0.5, or with
evolved weights (range: 0-2) on the outputs were equally unsuccessful, as were runs
with an array of different simple linear units (no longer resembling transistors, but
still without dynamics) [40].

To explore the dynamics issue further a new set of comparative runs was ex-
ecuted on the avoider behaviour. This time the FPTA was compared with units
with explicit dynamics. Results of these experiments (ten runs of each) are shown
in the rightmost bar chart. An array of dynamical units (DynA in the figure) was
created by replacing the threshold units in the simulated analog array, with units
described by the following (leaky integrator) differential equation:

τ
dy

dt
= −y + I (5)
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where τ is an (evolvable) time constant (range:[0.3, 10]), y is the unit’s ‘activation’
and I its total input. A unit’s output, O, is given by:

O =
1

1 + e−(y+θ)
(6)

where θ is an evolvable bias (similar to a threshold, range: [−5, 5] ). This form
of equation is widely used in neural modelling and in dynamical neural networks
employed in robotics [31,9]. The connectivity, biases and time constants for all
units in the array were evolved using the same machinery and encoding as in the
previous experiments. Out of 10 runs with the DynA setup, 5 were successful,
the rest timed out after 12000 generations. The DynA bar in the figure is a little
misleading as it uses 12000 generations for the unsuccessful runs to calculate the
overall averages and standard errors. This is overgenerous but allows some kind
of visual comparison with the other runs. Of the 5 successful runs, the mean
number of generations to success was 4056 ±1220. A fresh set of ten runs with the
FPTA were all successful. The mean and standard error, shown in the plot, were
similar to those found on the other earlier sets of runs, illustrating the reliability
of the FPTA as an evolvable medium for noisy sensorimotor tasks. The partial
success of the DynA experiments further suggested that dynamical capabilities
were an important factor in success at this task, which is made relatively tricky
by the noisy nature of the simulation (reflecting the noisy nature of the sensors
and motors on the physical robot, and used to enable robust transfer to reality as
explained earlier).

To examine this in more detail, a set of ten runs were performed which evolved
a widely used kind of dynamical neural network [10] with a pre-defined architecture
suitable for the task (labelled CTRNN in the bar plot). These runs moved away
from the 16x16 array setup, which is directly comparable to the FPTA and in
which control architectures have to be ‘carved out’ by evolving suitable circuits,
to the more constrained problem of setting the variables on a fixed neural network.
For this case the genotype was an array of reals encoding the network variable as
explained below. For comparability, the same form of evolutionary algorithm was
used as with all previous experiments, except now the mutation operator was a
random variation in a gene based on a normal distribution centred on the current
value with std 0.2 (a so-called creep operator). A fixed architecture three layer
6-3-2 network was used. Each layer was fully connected to the previous layer. The
six nodes of the input layer each took an input for one of the 6 IR sensors, the two
nodes of the output layer provided the motor signals. The 3 nodes in the middle
layer also had recurrent connections to themselves and each other. All connections
had evolvable weights (range: [−5, 5]). Nodes in the network operate according to
the following equations:

τi
dyi
dt

= −yi +
∑
j∈Φ

wjiσ(yj + θj) + Ii (7)

σ(x) =
1

1 + e−x
(8)

where τi is a genetically set time constant for the ith node (range: [0.3, 10]), yi
is the node’s activation, Φ is the set of all nodes connected to node i, wji is the
genetically set weight on the connection from node j to node i, θj is the genetically
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set bias for node j (range: [−5, 5]), and Ii is any external sensory input to node i.
The summation is the total weighted input to node i from all other nodes connected
to it (the output of a node is σ(y+ θ)). All ten CTRNN runs were successful. The
high performance of this more elaborate and targeted architecture adds weight to
our theory that the ability of evolution to manipulate internal controller dynamics
is very useful in finding good solutions in this context.

Although all of both the FPTA and CTRNN runs were successful (as defined
at the start of Section 3.3), it can be seen from Figure 2 that both the average and
standard error of the FPTA runs (617 ±264) is lower than that of the CTRNN runs
(1806 ±513). A non-parametric Mann-Whitney U test revealed that the FPTA
is significantly better than the CTRNN at the 95% confidence level (p=0.049).
Clearly the DynA runs were much worse, half of them not completing successfully.

4 Insect-inspired visual route navigation: exploiting the embodied
dynamics of innate behaviours

The previous section shows how navigating to a goal can be achieved using visual
information, which is referred to as visual homing. The use of visual information
for navigation is a universal strategy for sighted animals, amongst whom desert
ants are experts. Despite having brains of under 1 million neurons (100,000 times
fewer than in the human brain) and low-resolution vision equivalent to a 0.001
MPixel camera, desert ants learn long paths through complex terrain after only a
single exposure to the training data [62]. These features make ants a model species
for both biologists attempting to understand the minimal cognitive requirements
of spatial learning as well as engineers seeking to emulate their feats in autonomous
robots. But how is such rapid learning achieved with such small brains? At Sussex,
we have used an interdisciplinary methodology to answer this question, combining
biological experiments with computational and robotic modelling [95]. We have
in particular shown that learning is an active process scaffolded by specialised in-
nate behaviours which have co-evolved alongside bodies and brains to allow ants
to directly acquire and use task-specific information [131,132]. These behaviours
serve to structure the dynamic flow of information during both learning and re-
call, outsourcing computation to the body, and thus enabling complex behaviour
to emerge without complex processing. In this section we describe this ongoing
research. We show that morphological body constraints that may at first seem
limiting, have been exploited by evolution to produce minimal yet highly effective
mechanisms for visual navigation in ants – mechanisms that we demonstrated on
a mobile robot operating in dynamic outdoor environments.

4.1 Innate behaviours scaffold route navigation in ants

Ants have a suite of innate behaviours which allow robust navigation to emerge.
Principal among these is path integration (PI), a mechanism by which an ant
keeps a running tally of the distance and direction travelled, allowing it to sub-
sequently home directly back to the start point of a journey. As path integration
is subject to cumulative errors, ants learn the visual information needed to guide
later routes on the first PI-mediated route. This innate behaviour thus provides a



16 Husbands et al.
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Fig. 5 Visual navigation is scaffolded by innate behaviours. A: Innate scanning behaviour
embodies a visual compass. If an ant remembers a panoramic view (top panel) it can recall its
facing direction by comparing the stored view to views it perceives while rotating or scanning
(middle panels; images of an ant scanning are to the right of the panoramic views). The
minimum difference between the images will occur when it is facing a similar direction as
when it stored the first view. B: If views are stored as they appear to an agent travelling
a route (black line) the correct directions can be recalled when near the route by an agent
performing a visual compass style scan (blue arrows).

scaffold for learning, constraining the information to be learnt, turning a route into
a one-dimensional manifold through a two-dimensional space. However, the ant’s
embodiment further constrains the incoming information making it even easier to
learn and later recall. To understand how embodiment simplifies visual naviga-
tion, we first note that if an agent stores a view when facing a given direction, the
difference between this view and views from nearby locations will be minimised
when the agent is facing the same direction as when the original view was stored
[135]. This means a remembered view can be used as a so-called ‘visual compass’
to recall the direction the ant was facing when the view was stored. For ants, and
many wheeled robots, their embodiment constrains them to move in the direction
that they are facing and thus a view stored when travelling along a homeward
route implicitly defines the direction of movement and thus learning these views
as they appear means learning the directions home. This process is illustrated in
Figure 5A where we see a stored view (top panel) and the views perceived by an
ant while scanning (middle panels). The closest match occurs when the ant faces
in a similar direction to when the view was stored (bottom panel). If the ant was
sensitive to this difference, it could use this process to recall the direction it was
facing when last near to that position. What’s more, when the ant finds the best
matching direction, it is already facing the same way and so can simply move
forward. To navigate, the ant therefore needs to determine at what heading the
current view best matches its memory. However, mentally rotating the images is
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a computationally demanding task so the ant has outsourced this search to be-
haviour. The most obvious of these is a scanning behaviour, in which the ant will
periodically rotate on the spot (images of an ant during scanning are shown on the
right of the middle panels of Figure 5A). The frequency of these scans is higher
in unfamiliar environments, suggesting that they are active processes driving nav-
igation and essentially implementing an embodied visual compass [132]. However,
the kind of active sampling that scanning brings is also evident in the modulation
of the basic sinuosity of ant’s paths, where wiggling is upregulated when ants are
uncertain [133,20] and hence would benefit from increasing the sampling rate of
visual scenes. These innate behaviours allow the problem of learning and navigat-
ing a route to be simplified. During learning, PI constrains the ant’s experience
and actions so that they are implicitly correct in the sense of leading to the goal
(black path and arrow heads in Figure 5B). These actions are memorised as stored
views which can be recalled by physically scanning the world (cartoons and blue
arrows in Figure 5B). In this way, navigation is reframed in terms of an embodied
search for familiar views, as, when an agent is facing in a familiar direction, it
is likely facing a similar direction to when it was previously at that location so
should move in the direction it is facing.

4.2 Route navigation in robots

Based on the above observations, we have developed a parsimonious insect-inspired
navigation algorithm in which a route, or routes, are learnt holistically and route
recapitulation is driven by a search for familiar views [7]. The algorithm proceeds
as follows: an agent equipped with a low-resolution 360o panoramic visual sensor
first travels a route. The views it experiences along this route are used to train
an artificial neural network (ANN) which learns a holistic representation of the
views encountered. Subsequently, the network is used to estimate the likelihood
of whether a given view – and thus a pose – has been experienced before. When
trying to repeat the route, the agent derives a direction of movement at a position
by visually scanning the environment (either by physically rotating or rotating the
view in silico). Each rotated version of the current view is applied as an input to
the network which outputs an estimate of its familiarity. The agent then moves in
the direction corresponding to the view most similar to those encountered during
learning.

To estimate view familiarity we follow [7] and use a neural network model that
was specifically designed to perform this task [78]: Infomax. We chose to use this
approach mainly because it only requires a single pass through the data, meaning
that each view is experienced just once and then discarded lending it biological
plausibility as the training data does not need to be memorised. Further as views
need only be judged familiar or not, rather than individually recognised as in place
recognition, the representation is sparse. The network consists of an input layer
and a novelty layer with tanh() activation functions. The number of input units is
equal to the dimensionality of the input which in our case is [120×25] = 3000, the
number of pixels in a down-sampled view of the world. The number of novelty units
is arbitrary and here we use the same number of novelty units as inputs, although
using fewer novelty units has worked in simulation and will be tested in future
work. The network is fully connected by feedforward connections wij . Weights are
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initialised randomly from a normal distribution, normalised so that the mean of
the weights feeding into each novelty unit is 0 and the standard deviation is 1.
The network is then trained using the Infomax learning rule [13], adjusting the
weights so as to maximise the information that the novelty units provide about the
input, by following the gradient of the mutual information using Equation 11 which
performs gradient ascent using the natural gradient [4] of the mutual information
over the weights [73]. During learning the activation of each of the M novelty units
hi is computed as:

hi =
N∑
j=1

wijxj (9)

where xj is a row vector assembled by concatenating the rows of C(~a, θ) and
N = p× q (the number of input units). The output yi of the novelty units is then:

yi = tanh(hi) (10)

and the weights are adjusted using:

∆wij =
η

N

(
wij − (yi + hi)

N∑
k=1

hkwkj
)

(11)

where η is the learning rate which is set as 0.0001 for this paper. Finally, the
response of the network to the presentation of an unseen N-dimensional input ~x
is computed as

d(C(~a, θ)) = d(~x) =
N∑
i=1

|hi|, (12)

where | · | denotes the absolute value. By applying C(~a, θ) to the ANN for a range
of θ, a Rotational Familiarity Function (RFF) can be calculated from d(~x) and
hence the most familiar direction can be found.

As a control condition, dubbed the Perfect Memory algorithm, we store all
memories seen during training rather than using them to train an ANN. This
provides a baseline performance for how well algorithms which navigate via a
visual-compass-style matching can perform if storage and computation are not
constrained. In the Perfect Memory algorithm, each rotated version of the current
view is sequentially compared to every one of the training views. The best matching
heading is then defined as the one corresponding to the smallest image difference,
across all training views and rotations, with image difference (IDF) calculated as
the mean absolute difference between each of the image pixels:

IDF(C(~a, θ), S(~b, φ)) =
1

p× q

p∑
i=1

q∑
j=1

|Ci,j − Si,j | (13)

where C(~a, θ) is a p×q pixel view captured at location ~a with heading θ, S(~b, φ) is
a p×q pixel snapshot stored in memory and Ci,j and Si,j refers to the intensity of
pixels in row i and column j of the captured view and stored snapshot respectively.

We first tested our algorithms using a training route of approx. 60 m through
Stanmer Park (50.8634175 deg, −0.093938 deg), a grassy area with some trees
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Fig. 6 Route navigation on an autonomous robot. A: Both perfect memory and Infomax
provide accurate directions over the ca. 60 m route illustrated in Figure 5B. The red and
green lines (the latter is largely obscured by the red) show two passes over the route used
for training, the blue shows performance for perfect memory and orange for Infomax. Note
that blue and orange routes start at the same starting position as red and green training
routes, but have been displaced as they would otherwise obscure each other; the axes are
purely for scale. The arrows show the estimated heading direction given at each test point
for the two algorithms. B: Closed-loop trials show that route following also works on a real
robot platform in a real-world environment. The robot has a panoramic camera and finds
its heading by performing periodic scans of the visual scene in silico, then heading in the
most familiar directions, after first traversing the blue training route. To assess robustness to
contrast changes, we used raw images as well as images automatically converted to binary as
sky/not-sky (see legend). C: Performance is not seriously affected by conspicuous changes to
the visual scene, such as passing pedestrians.

shown in in Figure 5B. As a training set we gave the robot two passes through
the route. Training images were gathered every 200 msec providing a dataset of
778 images (across the two passes). To assess performance, we drove the robot
once more across the route and extracted test positions every 200 msec. The view
from each test position was rotated through 360o and the best matching heading
recovered from the Infomax and Perfect Memory algorithms. The resultant head-
ings are shown by the arrows in Figure 6A. Both algorithms perform comparably
with mean errors across the test route of 19.4o and 21.4o for the perfect memory
and Infomax algorithms, respectively. The Infomax network is however faster: the
mean calculation time per image was 8.8 ms compared to 14.4 ms for perfect mem-
ory. Note also that whereas for perfect memory, computation time scales linearly
with the number of training images, it is constant for Infomax as the network size
is fixed. Hence, for routes with thousands of images (i.e. with a longer route or
recording at a greater frame rate), Infomax would have a considerable efficiency
advantage.
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To assess how compact the route memory can be and, as a corollary, how
quickly our algorithm can run, we repeated our analysis using ANNs with de-
creasing numbers of units in the hidden layer. The results are shown in Fig. 7.
Surprisingly, the performance is somewhat insensitive to the number of hidden
units with similar performances being seen for as few as 10 units. Going much
lower than this seems to result in somewhat erratic performance which can be
seen by the increasing spread in the data. The higher spread is significant, as we
are more concerned with the number of large errors rather than small ones, as
large errors disproportionately lead to failure. It may be that the performance of
the larger networks would improve with more training data or in different envi-
ronments, which we will investigate in future work. However, the performance for
small networks is very promising as the network calculations scale roughly linearly
with the number of hidden units, with small networks providing very rapid heading
estimates (approx 0.3 ms per image for the network with 10 hidden units). Having
many heading estimates in a short space of time can be very useful in avoiding
catastrophic errors as the image data can be very noisy between timesteps due
to uneven ground and sudden lighting changes such as lens flare, as it allows the
agent to poll across multiple samples and discard noisy estimates.
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Fig. 7 Distribution of heading errors for the Infomax algorithm when using different num-
bers of hidden units. Red lines show medians, boxes show 25th and 75th percentiles, whiskers
extend to 5th and 95th percentiles respectively. Circles show outliers which are points outside
the whiskers. Note that performance is comparable even with very small networks, with per-
formance declining only for five hidden units.

While this shows that our algorithm is feasible for long routes, the robot is not
autonomously navigating. To assess navigational success in this case, we used a
shorter paved path of approximately 10 m through a wooded area [63]. The robot
was manually driven along the blue path in Figure 6B recording training images
every 100 msec, which resulted in a dataset of 455 images as training data. To
subsequently navigate, we ran the following algorithm every 500 msec:

1. Capture and unwrap a panoramic image and perform any image processing
2. Using either the Infomax or Perfect Memory algorithm, calculate the familiar-

ity with the processed image ‘in-silico’ when rotated through 90o.
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3. Find the orientation with the highest familiarity and, if it is within 4o, start
driving forwards. Otherwise, start turning in the correct direction to align with
the image.

The robot successfully recapitulated the training path using each of the navigation
and image processing algorithms with little difference in performance apparent
(Figure 6B; mean distance between training and recapitulated paths was 9 cm with
standard deviation of 8 cm, within the margin of error for extracting robot location
from video). This is perhaps surprising given that the robot was navigating while
people walked up and down the path (Figure 6C) but is a result of the algorithm
being able to use wide-field, low-resolution information as it does not need to
extract or match features. Overall this shows that the algorithm is both robust to
the precise implementation used and conspicuous disruptions.

5 Control from Chaos: exploiting complex embodied neuromechanical
dynamics

While the FPTA evolutionary robotics work described in Section 3 used evolution-
ary search to find ways of exploiting the rich dynamics of a physical medium to
develop robust robot controllers, it is also possible to produce embodied robotic
system with complex exploitable dynamics through a combination of careful de-
sign and continuous adaptation. If a robot has suitable adaptive mechanisms it
can learn to exploit its own embodied dynamics to produce a desired behaviour.
But the potential dynamics of the system need to be rich and exploitable for this
to work effectively. Chaotic dynamics turn out to be very useful in this context.
In this section we discuss very recent work from our group which shows how, for
a class of embodied neuromechanical systems, it is possible to efficiently exploit
chaos in the development and learning of motor behaviours for bodies of arbitrary
morphology. Detailed analyses reveal chaos at all levels of the systems; the entire
brain-body-environment system exhibits chaotic dynamics which can be exploited
to power an exploration of possible motor behaviours.

Intrinsic chaotic dynamics in the nervous system have long been recognized in
neuroscience and have been shown to be integral to the operation of the brain [3,
45,38,130,64]. The existence of such dynamics in both normal and pathological
brain states across a variety of species, at both global and microscopic scales [130],
supports the idea that chaos plays a fundamental role in many neural mechanisms
[110]. Chaotic dynamics are known to operate in brain regions – such as the cortex
– that are associated with higher-level information processing [98,110], and also in
neural circuitry responsible for motor behaviours [114]. In many motor behaviours
chaos seems to occur not just at the neural level but also within the dynamics of
the body [99]. For instance, chaotic movement appears to play a crucial role in the
development and learning of limb coordination [91].

Following the seminal work of W. Freeman and colleagues [110], various mod-
els were developed to explain the existence and possible role of brain chaos [79,
69], and to show how chaos can enhance learning performance (e.g. of complex
rhythmic patterns [113,51]). The latter case inspired work on the adaptive control
of robot motor behaviours by utilizing chaotic attractors as a controllable source
of information (i.e. pattern reservoirs) for generating desired behaviours as well as
enabling flexible transitions between them. One broad approach that emerged in
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this area involved the control (stabilization) of chaos by sensory input. Such chaos
control has been realized both in wheeled mobile [134] and legged robots [112].

While such models have demonstrated how to harness neural chaos for various
sensorimotor, perceptual and learning tasks, they assume that the neural system
generates chaotic dynamics in the absence of sensory input, with sensory feed-
back mainly acting as a stabilizer for chaos. However, the identification of chaotic
dynamics in natural motor behaviours from multiple in vivo studies [91,43,103]
suggests that continuous sensory stimuli actively participate in the generation of
chaotic dynamics. In particular, the sensory input received while engaged in mo-
tor behaviours contains information about the physical body and its environment,
emphasizing the embodied nature of such chaotic behaviours.

This has been reflected in a strand of research which has proposed a more
active and radical exploitation of chaos, where the chaotic dynamics arise in a
whole neuro-physical system [68,67]. These models implemented a ‘bodily-coupled’
neuro-musculo-skeletal system inspired by cortico-medullo-spinal circuits. The neu-
ral system consisted of a group of identical electrically decoupled neuromuscular
units – each implementing an individual reflex loop, with sensory input, driven
by a central pattern generator (CPG, modelled by a neural oscillator). Although
each CPG communicated only locally with the corresponding muscle, information
was indirectly channeled between CPGs through the inertial and reactive forces
from the physical body and its environment, giving rise to a variety of sustained or
transient coordinated rhythmic movements which could be spontaneously explored
and discovered. Generating chaotic dynamics in these systems is crucial for the
exploration of self-organized motor coordination. It requires a proper set of tonic
(slowly changing) descending signals (which act as parameters) for each CPG.
These tonic ‘command’ signals descend from the brain in most spinal animals and
are usually related to sensory input. However, maintaining and controlling chaos
in these early models was challenging and it often rapidly dissipated.

Significantly extended models introduced by our group[105,106] addressed this
issue by incorporating an adaptive local neural mechanism to achieve the control-
lable chaotification of a similar embodied model for use with an arbitrary physical
system, where the sensory inputs for CPGs were homeostatically regulated (i.e.
maintained within appropriate ranges) while identical descending signals were fed
to all CPGs as a bifurcation parameter. This model enabled performance-driven
exploration and goal-directed learning of sustained locomotor behaviours in robotic
systems of arbitrary morphology. The bifurcation parameter was dynamically ad-
justed between chaotic and synchronized regimes, in response to a performance
feedback signal, to allow the system to escape from low performing behaviours
and be entrained in high performing ones (Fig 8). The system performs a kind of
‘chaotic exploration’, where chaotic dynamics power a form of search through the
space of possible system dynamics, settling on a high performing configuration.
This scheme defines a very general class of models in which there is one adaptive
neuromuscular unit for each muscle (actuator) degree of freedom (DoF) in the
body, hence it can be applied to many different bodies. While the behaviour of
these performance-driven systems is impressive, until very recently analysis of their
dynamics has been limited. In this section, as well as demonstrating the efficacy of
the overall approach, we outline detailed analysis of the dynamics, showing that
the whole neuro-physical system is exhibiting chaotic dynamics that are exploited
to generate goal-directed behaviour.
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Fig. 8 The overall chaotic exploration concept for motor behaviours. Left : Performance feed-
back is transformed into a descending input to all CPGs which acts as a bifurcation parameter.
The level of chaotification of the system is inversely proportional to its performance. Actua-
tor sensory signals pass through a homeostatic adaptive process (SA). Right : Overall search
dynamics of the method. Chaotic exploration samples the population of attractors (motor
patterns) that describe the intrinsic dynamics of the embodied system by driving the system
orbit through the state space. The orbit is entrained in a high performing basin of attraction.
This process warps (mutates) the attractor landscape producing a new landscape that inherits
major parts of the structure of the previous state space. The process repeats as fitter and more
stable behaviours emerge.

5.1 CPGs, adjustable chaoticity and homeostatic sensory adaptation

A central element of the chaotification of the embodied neuromechanical system
stems from Asai and colleague’s version of the two coupled Fitzhugh-Nagumo
(FHN) neuron model [6,5]. FHN neural models [36,88] have become important
tools in theoretical studies of chaotic neural systems [108,30]. They are widely
used two-dimensional simplifications of the biophysically realistic Hodgkin–Huxley
(HH) model of neural spike initiation and propagation [50].

The equations describing two reciprocally coupled FHN neurons are:

u̇1 = c(u1 −
u31
3
− w1 + z1) + δ(u2 − u1) (14)

ẇ1 =
1

c
(u1 − bw1 + a) + εu2 (15)

u̇2 = c(u2 −
u32
3
− w2 + z2) + δ(u1 − u2) (16)

ẇ2 =
1

c
(u2 − bw2 + a) + εu1 (17)

where u describes a neuron’s output and w is its refractory, or ‘recovery’, variable,
a = 0.7, b = 0.675, c = 1.75 are constants and δ = 0.013, ε = 0.022 are coupling
strengths. The constants and coupling strengths were empirically determined [6,
105], such that the neurons exhibit biologically plausible dynamics. z1 and z2 are
the external stimuli acting as the control parameters for the coupled system. While
a single isolated FHN (with δ = ε = 0) exhibits subcritical Hopf bifurcation at
z = zh≈0.38247, the coupled system can generate autonomous oscillations in a
narrow range below zh.

An interesting characteristic of this coupled FHN system is that it can generate
a rich variety of dynamics ranging from multiple synchronised and quasiperiodic
oscillations to chaotic orbits, depending on the two control inputs z1 and z2 [6,5,
107]. In particular, it has been shown that the system exhibits chaos in a certain



24 Husbands et al.

region of the parameter space defined by the values of z1 and z2 and the degree
of their asymmetry. Taking the equations’ left-right symmetry into account, the
Largest Lyapunov Exponent (LLE) map of two coupled FHNs (Fig 13A) on the
z2 − dz space (dz = z2 − z1) confirms the existence of chaotic dynamics within a
diagonal belt-shaped area that was identified in a previous more qualitative study
[5] (a strictly positive LLE indicates chaotic dynamics).

In the embodied neuromechanical systems illustrated in Fig 8 each CPG, i, uses
a single FHN oscillator described by Eqns. 18-19, communicating locally with its
dedicated muscle/actuator by giving motor signal ui and receiving sensory signal
Ii from the muscle/actuator proprioceptors.

u̇i = c(ũi −
ũ3i
3
− wi + z) + δ(Ii − ũi) (18)

ẇi =
1

c
(ũi − bwi + a) + εIi (19)

where ũi is the CPG output translated by ũi = ui +Aref, Aref is a reference offset
in order to bring the output of the CPG into a zero-centered oscillation. Other
symbols and constants are as in Equations 14-17.

The input Ii is a realtime modulated signal from the muscle/actuator proprio-
ceptors which is passed through a homeostatic sensory adaptation process (SA in
Fig 8). Here we use a systemic model of dynamic sensory modulation inspired by
the adaptive fusimotor action in muscle spindles [81], which attempts to maintain
the amplitude and offset of a rhythmic sensory signal close to those of a reference
CPG. The raw proprioceptive sensor signal, si, is transformed into the adapted
sensory signal Ii, which is fed to the corresponding CPG, according to the following
equation:

Ii = (si − ŝi) log(1 + eαi) + (ŝi + βi) (20)

where αi and βi are dynamic variables that control the homeostatic process. αi
determines the amplitude scaling and βi the offset bias. ŝ is the moving average
of s, as determined by a simple leaky integrator which is used to smooth the
adaptation. The dynamics of αi and βi are:

τhα̇i = Pref − pi (21)

τhβ̇i = −Îi (22)

Where Îi is the smoothed moving average of Ii and pi is the smoothed moving
average of the log power of the signal Ii, which is a measure of the signal strength.
Pref is the target value for p from the reference CPG. Hence αi is dynamically
changed to keep the signal strength close to that of the reference CPG output.
The offset variable, βi, changes to maintain Ii as zero-centered, like the reference
CPG. See [108] for further details of the system dynamics and the exact properties
of the reference CPG.

This homeostatic adaptation, keeping the sensory signal close to that of a
reference CPG, has a crucial and powerful effect: since the sensory signal is its
only connection with the rest of the neuromechanical system, each CPG acts as if
the entire rest of the system is its pair in the two coupled FHN oscillator system
described by Eqns. 14-17. Every CPG views the rest of the system (i.e. the physical
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system and the other CPGs) as a single autonomous system (Fig. 9). This allows
a scale-invariant two coupled CPG scheme for an arbitrary physical system that
is able to generalize, amplify and exploit the chaotic regimes of the coupled FHN
system.

CPG CPG

CPG
Rest of

Neuro-Physical
System

CPG Physical 
System

CPG

CPG

CPGSA SA

SA

SA

CA

B

Fig. 9 Scale invariant interaction between each oscillator and the rest of a neuro-physical
system. Every neural oscillator communicates with all the other subsystems only through the
local coupling to its corresponding muscle. An oscillator interacting with the rest of the neuro-
physical system (B) is analogous to the interaction between two coupled oscillators (A), in
that any oscillator sees its incoming information from the entire rest of the system as if from
another oscillator (boxes with dashed lines in (B) and (C)) via homeostatic sensor adaptation
(SAs in (C)).

5.2 Embodied chatoc exploration in action

Figs 10-12 illustrate the chaotic exploration system in action for two different
simulated robots, highlighting some particularly effective aspects of its operation.

CPG
CPG

A B C

muscle

compliant
rigid

CPG

0.3m

Fig. 10 Simulated robots. (A) 3-arm 2D mass-spring-damper swimmer. (B) 8 DoF
quadruped. (C) Antagonistic torsional muscles for a joint of quadruped.

Fig. 11 focuses on chaotic exploration for the 3-arm swimmer shown in Fig 10A,
in which limb coordination had to be learnt. The swimmer was constructed using
a 2D mass-spring-damper system, where the stiffnesses of the springs were set dif-
ferently to represent three distinct types of body part: rigid structures, compliant
edges, and actuating muscles, as indicated in Fig. 10A. All point masses were set
to 1kg, and the spring rest lengths were set to those at the neutral pose of the
robot as shown in Fig 10A, except rm = 0.075 for the three muscle edges. For each
outer edge of the robot, a fluid force acting in the normal direction was calculated
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[108]. The required behaviour was to move straight ahead in an efficient manner.
The evaluation measure for the robot was thus based on its forward speed. Since
the system has no prior knowledge of the body morphology of the robot, it does
not have direct access to the direction of movement or information on body orien-
tation. In order to facilitate steady movement in one direction without gyrating in
a small radius, the center of mass velocity of the robot was continuously averaged
by leaky integration, and its magnitude was used as the performance value [105,
106], defined as:

E = ‖v̄‖ (23)

τE ˙̄v = −v̄ + v (24)

where τE = T , the CPG period, and v is the center of mass velocity.
With three CPG-muscle units acting in combination with the partially com-

pliant body, the swimmer has a total of 25 degree of freedom (DoF) described by
the system variables. The behavioural stability landscape for the swimmer robot,
shown in Fig. 11A, was obtained empirically by repeatedly running the system
for 3000 sec starting from 50×50 phase difference points on the grid. Then all the
movement vectors in the same grid cell were averaged to generate the ‘flow field’
of phase differences between the three CPGs. The permanently stable behaviours
were also found numerically by long term observations of the system running from
many different initial phase differences. The performance landscape (Fig. 11B) was
also empirically generated on the phase space in the same way, except sensory feed-
back was disabled in order to maintain the initial phase differences of the CPGs.
Considering the radial symmetry of the robot body, the stable behaviours that
emerged define three qualitatively different modes: high performance propulsion
using two arms (Fig. 11D), small arm movements by nearly in-phase action, and
periodic transition of phase differences which result in circling movement with no
forward locomotion. Since the patterns for the three high performing peaks are
also highly stable, we artificially forced the system to eventually escape from those
states by gradually increasing the chaoticity whenever the system is stabilized to
any of the discovered patterns, which allowed us to illustrate the resulting long
term exploration dynamics (Fig. 11C). The exploration statistics show the highest
performance peaks are most visited, demonstrating the efficacy of the method.
Further generality of the method was demonstrated using a simulated quadruped
with 8 degrees of joint freedom, where each joint is driven by a pair of antagonistic
torsional muscles, resulting in 16 CPGs (2 per joint DoF, Fig 10B,C). See [105,106]
for the full details of the physical parameters for this type of actuator. The time
plots of 15 phase differences between all 16 CPGs during exploration are shown in
Fig 12. The environment was deliberately challenging, complete with non-smooth
reaction forces due to ground friction with slip, to encourage transients so that the
long term exploration dynamics could be illustrated. Although transient, most of
the high performing patterns found were surprisingly stable, typically lasting for
hundreds of walking cycles. Without such challenging slip, very stable long-term
locomotion patterns were found, similar to those in [105]. Fig 12A, A1, and B1
show two different locomotor behaviours (forward and side walking) that were dis-
covered by the exploration process, which exemplifies how the system is able to
find completely different modes of locomotion for a given physical system. Because
of the nature of the environment, many of the discovered legged motions included
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Fig. 11 Chaotic exploration of 2D swimmer. (A) behavioural stability landscape. 6 stable
points (on a 2-torus surface) and 2 periodic transitions emerged symmetrically due to the
radial symmetry of the robot morphology. (B) Performance landscape. 3 stable points have
the highest performances (i.e. locomotion speed), whereas the other 3 points (nearly all-in-
phase motions) and the 2 transient behaviours show low performances. (C) Long-term visits
during chaotic exploration. (D) Snapshots of high-performing locomotion (the behaviour point
at the middle of (A); (3.62,3.62)).

some foot slippage, which is energy-inefficient if too great. However, an interesting
and unexpected discovery was that the method found particular combinations of
different foot slips and asymmetric limb movements resulting in relatively efficient
close to straight locomotion of the whole body (as an alternative to bilaterally
symmetric gaits). The realtime and online operation of the exploration process al-
lows practical and challenging scenarios such as re-adaptation after damage. This
is illustrated in (Fig 12B and B1), where the robot simply resumes the exploration
of new locomotor behaviours for the new (i.e. damaged) body. In this case one
leg was chopped off at the knee; after a period of exploration triggered by a drop
in performance, leading to an increase in chaoticity, a new stable, relatively effi-
cient ‘hobbling’ gait was quickly discovered where the phase difference patterns,
and hence limb coordination mechanisms, were completely different from those
used pre-damage. Fig. 13 shows Largest Lyapunov Exponent (LLE) maps for the
two coupled FHN system and three representative embodied neuromechanical sys-
tems (with 9,16 and 25 DoFs). LLEs were calculated at a fine resolution over the
parameter space defined by zcpg and zref which are the representative factors cor-
responding to z1 and z2 in two coupled FHN CPGs (Eqn 14-17), where zcpg is
the descending input for all CPGs and zref determines the reference values for
homeostatic adaptation described in Sect. 5.1). The resolution of the LE calcu-
lations on the parameter region under investigation (i.e the non-gray pentagonal
area) was 0.001 on both axes, resulting in total of 170,801 data points for each
neuromechanical system. Strictly positive LLEs indicate chaos.

In order to mitigate the massive computational load of calculating full LE spec-
tra over the whole space, the analysis was divided into two stages by first filtering
out non-chaotic points by calculating LLEs (λ1) using Wolf’s method [129] (with a
time step of 0.001s for 20000 seconds) which is about an order of magnitude faster
than calculating full LE spectra. Next the points with λ1 > 0.0005 were identi-
fied as chaotic and were processed using a standard QR decomposition method
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Fig. 12 Chaotic exploration of Quadruped. (A) An example of the time courses of phase
differences between CPG-1 and the other 15 CPGs during exploration. Two high performing
locomotor behaviours are shown as (A1; quadruped walking gait) and (A2; side-walk like gait)
with corresponding snapshots. (B) A scenario for the realtime recovery from damage where the
one of lower limbs was removed during the course of (A1) behaviour (the moment of damage
is indicated by the red arrowhead), a new high performing behaviour (B1; hobbling walking
gait) was quickly found. The gray arrows in (A1), (A2), and (B1) indicates the directions of
movement.

[32] for computing LE spectra by numerically updating both the model and its
variational equations using Runge-Kutta 4th order integration with a time step of
0.001s for 10000 seconds. Accurate fine resolution LLEs were thus calculated. The
whole procedure was processed for two weeks on a parallel computing platform
using 160 virtual CPUs.
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Fig. 13 LLE maps for (A) Two coupled FHN oscillators; (B) 9DoF embodied neuromechan-
ical system; (C) 16DoF system; (D) 25DoF system. Due to the finite computation time, LLEs
less than 0.0005 are discarded and rendered as black. Positive non-zero LLEs indicate chaos.

The resulting maps clearly show that the main chaotic regions of all systems,
including the initial two-CPG model, are very similarly spread on the same area,
thus demonstrating that the homeostatic adaptation does indeed result in systems
that support the scale-invariant two-CPG scheme illustrated in Fig. 9. Examining
the diagonally stretched bands of the chaotic area suggests that chaotic dynamics
mainly take place around the Hopf bifurcation point of a CPG (z=zcpg=zh≈0.3812
in Eqn 18-19). More detailed examinations of this region [108], outside the scope
of this paper, demonstrates that dynamic Hopf bifurcation underlies the dynamics
that power this successful chaotic exploration method. Because the scale invariant
two-CPG scheme encompasses the entire bodily system’s indirect interactions with
each CPG, the maps for the embodied neuromechanical systems reveal chaotic
dynamics at all levels of the system, from the neural oscillators to the bodily
movements. The dynamics of the whole brain-body-environment systems had areas
rich with complex and chaotic regimes: all these systems exhibited chaos and
hyperchaos. It is this that is exploited in learning locomotion behaviours.

6 Efficient flying: evolved controllers that exploit aerodynamics

Our final example highlights ongoing research into evolving dynamical neural net
controllers for bird inspired flapping wing flight. In this case the dynamics of
the neural networks must mesh with the physics of the body and wings as the
(simulated) winged robot moves through the air. Evolution must shape the overall
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brain-body-environment dynamics so they can be exploited to create efficient flight
in which the robot is able to manoeuvre in an agile way while being subjected to
external disruption through sporadic gusts of wind.

One of the most impressive features of the behaviour of ornithopters, such as
birds, is their stable and rapid aerial manoeuvering [127]. Generating such be-
haviours in artificial systems is challenging and remains an open problem [87,104,
74]. In order to achieve a successful compromise between the contradictory prop-
erties of stability and manoeuverability in flapping wing flight, the work described
here employs two bio-inspired concepts: the important role of morphology in gener-
ating the overall embodied behavioural dynamics [94,93,128,59], and mechanosen-
sory reflexes which are embodied as Reflexive Pattern Generators [39]. These are
effectively merged into a simple and tractable robot model using a flexible wing
composed of a series of partially independent sub-panels, acting like feathers, which
have mechanosensors connected to the control system. This system allows us to
study the under-explored role of asymmetric wing and tail movements (much work
in the area uses symmetric wing beats) which is widely used by birds and underlies
their superb manoueverability.

The robot comprises two single-armed wings which each have three degrees of
freedom (dihedral, sweep, and twist) and a tail with 3 degrees of freedom (bend,
twist, spread) (see figure 14). A wing is composed of four feathers which are
attached to its skeleton using hinge joints with nonlinear angular springs. The
Open Dynamics Engine was used to simulate the articulated rigid body dynamics.

3-DoFs

0.4m r
Τ

NF
ŝ

torsional spring
pitch

twist

Fig. 14 The flapping wing flying robot (left), the feathered wing (centre), and the tail with
asymmetrically controlled spread.

Just as the morphological constraints exploited by ants to produce extremely
efficient navigation strategies were the core inspiration for the work described in
Section 4, and the evolved morphology of the visual sensors were an important
aspect of the EHW robot controllers (Section 3.1), the feathered wing introduces
a degree of ‘morphological computation’ [94] to the flying robot. The shape of
the wing changes, enabling aerodynamics that can be actively transformed and
exploited by the evolved controllers for efficient flight. The flexible feathers act
as an ‘aerodynamic cushion’ in that they reduce the stiffness of motor control. In
completely rigid wings, a small difference in stroke force between two wings will
result in a drastic change of net aerodynamic force on the body. Conversely, in a
flexible wing, the change will be small due to the passive bending of each feather.
This property also confers robustness against external perturbations. Also, as in
real bird flight, our feathers can hold laminar air flow through a large range of
angles of incidence of a wing arm without stalling [21]. This results in a wide
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range of effective stroke angles in which the feathered wings are able to produce
more lift than rigid wings.

Another important advantage of using feathered wings is that a robot, like a
bird, can sense the aerodynamic forces and distributions on each wing through the
degree of feather bending [19]. This work utilises feather sensing in a way that is
analogous to the use of touch or pressure sensors on legged robots to deal with un-
even terrain and external perturbation. Supplementary to the gradual descending
command from the optic and vestibular systems, in a bird agile sensory reflexes
from oscillatory feathers can be effectively entrained to the pattern generation of
wingbeats and play a crucial role in active stabilisation [127]. We observed similar
phenomena in the evolved flying robot.

The wing panels receive different aerodynamic forces through the application
of a realistic elliptical lift distribution, whereby the innermost panels receive the
highest forces and the tip panels the least. Such a distribution is known to hold for
finite wingspans. The aerodynamic forces on the tail are calculated using a model
of a thin triangular wing with low aspect ratio [115], which results in realistic tail
spread dependent forces and distinct lift distributions.

A nonlinear angular spring for feather bending was simulated using a first
order differential equation so that the bend angle smoothly decays toward the
equilibrium position between aerodynamic torque and the spring torque. At each
time step, the bend angle rate of the i th feather receiving aerodynamic torque T
(=|T| in Fig. 14) is described by:

θ̇i(t) = P (Ti(t− 1)− kθi(t)) (25)

where P is a proportional factor and k is the spring constant. We set P = 100 and
k = 0.1. The bending torque is calculated from the net aerodynamic force exerted
on the center of mass of the feather.

A pair of bilaterally symmetric fully connected continuous-time recurrent neu-
ral networks (CTRNNs) were at the heart of the controller, with weights, biases
and time constants set by an evolutionary algorithm. The CTRNNs were mod-
elled by equations 7- 8 (Section 3.3), except that in this case σ(x) = tanh(x).
Figure 15 shows the structure of the control system. In each of the CTRNNs there
were 6 neurons for wing control (2 for each DoF), 2 for the tail and the rest are
interneurons (just one was used for the results shown here).

The tail has four joints controlled by the four tail neurons. A pair of tail bend
neurons controls both the tail pitch and roll, and a pair of spread neurons control
asymmetric spread actions (left and right halves of tail fan independently spread,
see Fig. 14, which is more avian-realistic than previous work). Tail bend/pitch,
twist/roll and spread angles are controlled by the following equations:

θbend = gb(BL +BR) (26)

θroll = gr(BL −BR) (27)

θLspread = gsSL (28)

θRspread = gsSR (29)

where g are gains and B,S are signals from the tail neurons (left and right). This
arrangement models two pairs of tail pitch muscles bilaterally connected on each
side, such that the flexion of one side results in both tail pitch and twist. If the
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Fig. 15 Neural control structure for the flying robot. Neurons in dashed-lined circles are
the main neurons. Large arrows represent all-to-all connection. All neuron parameters and
connection weights are bilaterally symmetric (mirrored).

muscles on both sides contract equally together, only tail pitch is affected. This
avian-inspired setup enables subtle control during flight.

The neural circuits were integrated using the forward Euler method with a
step size of 0.01. The output signals from motor neurons are fed to the simulated
servomotors as desired angular positions.

In order to achieve robust, efficient flight a multi-objective evolutionary al-
gorithm (MOEA) was used, based on the SPEA2 algorithm [136]. The behaviour
required was for the flyer to follow a straight target path at a given altitude (10m),
a ‘target point’ is located 5m ahead of the robot, moving along the straight path
(Fig. 16). Periodically during flight, the robot receives perturbations from wind
gust that last for a few seconds. Before the perturbations begin, the robot only
has to reach the target altitude after takeoff, but once the perturbations start, the
robot should return to the flight path line as soon as possible and continuously
maintain it. These evaluation conditions require the evolution of sophisticated, ro-
bust flight control. Because of the highly nonlinear nature of the robot-environment
interactions, the robot is forced to capture a variety of fairly complex manoeuvres.
The robot effectively ‘senses’ the target point on the linear trajectory to follow
because the azimuth of the target point and the direction of gravity relative to
the robot’s orientation were used to calculate the body pitch, yaw, and roll sensor
values, as well as the flight speed and altitude.

In order to achieve this behaviour in an efficient way, three objectives (to be
minimized) were used in the MOEA approach: the average distance to the target
path (D), mechanical power consumption (P ), and a measure of wing flapping
(W ). The MOEA selection pressure is guided by the Pareto fronts formed using
these objectives (Fig. 18).
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Fig. 16 Flapping wing flyer evaluation strategy.
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where ta is the time until the robot falls to the ground, τi(t) and ωi(t) are the
torque and angular speed of wing motor i. A, F are the time averaged amplitude
and frequency of the two wing motions over all axes and S is the flight speed during
the period the robot is airborne. The evolutionary progression of the population
during a typical run can be seen in Fig. 18. Very good solutions were reliably
found after a few hundred generations. Some solutions had very low values for all
objectives. Because the minimum wingbeat objective (W ) takes its best possible
values when the flyer can successfully remain airborne, the population always
saturated towards lowW in the later generations as can be seen in the figure. Hence
the population always moved toward robust, stable flight regardless of the target
following and the power consumption measures, although many members had low
values for these too, as can be seen. Videos of typical good solutions in action can be
found at https://youtu.be/-JBBwaw0x8Q and https://youtu.be/N9A_Z4hYZ3s.
These show the natural and smooth transitions between flapping wing flight and
gliding as the robot manoeuvres.

The evolved controllers produce robust efficient flight by exploiting complex
asymmetric dynamics partly enabled by continually changing wing and tale mor-
phologies. Continuous changes in wing morphology can be seen in Fig. 17 which
shows flapping wing motion as the robot tracks the moving target. See the videos
mentioned above for the full sequences.

7 Conclusions

This paper has highlighted a number of different kinds of evolutionary and adaptive
techniques used to exploit dynamics in the creation of embodied behaviours.

The experiments on evolving FPTA controllers for a visually guided robot,
described in Section 3 demonstrated three things. First, it is possible to evolve,

https://youtu.be/-JBBwaw0x8Q
https://youtu.be/N9A_Z4hYZ3s
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Fig. 17 Sequential frames of the simulated flying robot performing wing flaps. Changes in
the feathered wing morphology are visible. The coloured square indicates the ‘target’ and the
arrow shows the direction of motion of the target.
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Fig. 18 Evolving flapping wing flyer population. The red individuals represent the pareto
frontiers, green represents archived members from earlier Pareto fronts, blue represents the
rest of the population.

directly in hardware, component level analog electronic circuits to generate non-
trivial visually guided sensorimotor behaviour in a mobile robot. More generally,
it was established that concise evolved transistor-based circuits could successfully
coordinate sensory input and actuator output to produce robust behaviour even
when the sensors and actuators were low-grade, noisy and unreliable. By integrat-
ing visual feature extraction and selection into the evolutionary approach, highly
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robust embodied sensorimotor dynamics emerged which were readily exploited by
evolution.

Second, and perhaps most interesting, controller circuit analysis and compara-
tive experiments established that the successful evolved circuits exploited the rich
dynamics of the FPTA hardware medium. The evolved solutions to non-trivial
visual navigation tasks can be viewed as dynamical systems with (behavioural)
attractors that result in completion of the task regardless of start conditions [53,
42]. The continuous analog medium of the FPTA seems a particularly good sub-
strate to enable the evolution of such attractors. This possibility of rich unconven-
tional dynamics to be exploited is a large part of what makes the FPTA a highly
evolvable medium for this kind of application. Naively it might be thought that
the large search space defined by the FPTA genetic encoding used would make it
much more difficult to find solutions than for the more constrained, smaller search
space of the fixed-architecture CTRNN controllers, which were also rich with dy-
namics. Comparative experiments showed this was not the case, with the FPTA
being significantly more evolvable. The unconventional, potentially complex, dy-
namics afforded by the physical properties of the hardware medium, increases the
degeneracy of the FPTA as an evolvable substrate. We use degeneracy as it is ap-
plied to biological systems [120,34]: multiple, often interacting, ways of achieving
an outcome (in this case implying many different, easily accessible, routes through
the fitness landscape towards high fitness areas). Degeneracy has been shown to
greatly boost evolvability [54].

Third, with a carefully constructed, special kind of simulation, it was possi-
ble to evolve robot controllers that transferred seamlessly to the real world. Our
methodology involved refining the simulation in light of problems with early trans-
fers (making sure the visual latency matched that of the physical robot, and the
severe limitations introduced by errors in the vision turret, and so on, were repli-
cated in the simulation). The robustness and generality of evolved behaviours was
such that the robot controllers could handle unseen variations in the environment
and continued to perform well when used in completely different environments
[40], thus exhibiting behavioural resilience.

The ant-inspired navigation algorithms described in Section 4 provide insights
into the way insects navigate with low resolution vision and modest neural re-
sources. Their successful demonstration on robots operating in dynamic outdoor
environments also shows that they can form the basis of autonomous robot nav-
igation systems in applications where processing is at a premium (e.g. planetary
exploration), or GPS and mapping data is unavailable or infeasible (and hence
makes SLAM approaches [119] difficult). In summary, this research shows that
taking inspiration from insects and taking advantage of the embodied dynamics
of innate behaviours allows a parsimonious approach and simple algorithm which
does not require precise place recognition. By removing the need for localisation,
we can use a simple ANN trained for familiarity and not image recognition, mean-
ing that all computation can be performed on board a small autonomous robot.
The next stages are to take further advantage of the bio-inspired embodied dy-
namics and to 1) embody the image search process using sinuous paths modulated
by the visual input [111]; 2) optimise the visual processing by copying insect eyes
[83]and 3) add temporal dynamics into the ANN [60].

The modular coupled oscillator control architecture described in Section 5 has
been shown to be highly effective in a number of ways. First, adjustable chaos is
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generated at all levels of the embodied neuromechanical systems being controlled,
and is exploited to power a performance-directed exploration of the space of pos-
sible motor behaviours. Second, this exploration and discovery of high performing
behaviours does not require any prior or built-in knowledge of the robot body
morphology or the properties of the environment. The control architecture auto-
matically adjusts itself to whatever body-environment system it is connected to,
as long as the basic setup is as illustrated in Figs. 8 and 9; homeostatic sensory
adaptation being a crucial part of the system. Third, neuromechanical systems in
this class are resilient: they are able to compensate in realtime to bodily damage,
failures and changes to the environment, rapidly finding new control patterns that
produce the desired behaviour.

Most other approaches to the development of resilient machines, for instance
from the field of evolutionary robotics, make use of some form of self-model [16,
27]. Evaluations based on the model guide an explicit search process where pos-
sible new behaviours are tried out in an internal simulation. As the size of the
system increases this approach can become computationally expensive and time
consuming and requires significant amounts of a priori knowledge of the robot
and its environment. In contrast, the chaotic exploration method is model-free, it
requires no expensive internal self-simulations or a priori knowledge, and occurs
in realtime.

The evolutionary robotics approach, as exemplified by the work described in
Sections 3 and 6, can discover highly unconventional systems when it is uncon-
strained. For instance the evolved FPTA control circuits did not have to conform
to some pre-specified architecture. When properties, including the morphology, of
the sensors and/or the robot body are coevolved with the controller (as in Sec-
tion 3.1), a powerful shaping and harmonising of all levels of dynamics underlying
behaviour can be achieved. But this comes at a cost – very large numbers of robot
evaluations must be undertaken. In contrast the chaotic exploration approach is
much more efficient, occurring in realtime through the intrinsic dynamics of the
control architecture, without the need for costly offline evaluations. In this case
the architecture is constrained and pre-specified (if very general), but its poten-
tial applications are nonetheless widespread (any system that can conform to the
scheme shown in Fig. 8).

Interestingly, there is a closer relationship between evolutionary search and
chaotic exploration than may at first be obvious [106]. In fact the overall chaotic
exploration process has a number of parallels with evolutionary dynamics. The
whole system (literally) embodies a population of (motor behaviour) attractors
which is sampled by chaotic exploration. The proprioceptor-driven homeostatic
adaptation process warps (mutates) the state space such that a new landscape of
attractors is created, but one that inherits the major properties of the previous
(ancestor) landscape (replication with variation). The process repeats with the new
population being sampled by chaotic exploration (Fig. 8). Since the population of
attractors is effectively implicit – the intrinsic dynamics of the system drive it to
sample the space of attractors – our embodied system can be thought of as a kind
of generative search process. The overall brain-body-environment system (literally)
embodies a population of motor pattern attractors through its dynamics; it cannot
help but sample them during the exploration phases. This is loosely analogous to
the generative statistical models used by Estimation of Distribution Algorithms
(EDAs) [92,72], which are well established as part of the evolutionary computing
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canon. Instead of using an explicit population of solutions and the traditional ma-
chinery of evolutionary algorithms, EDAs employ a (often Bayesian) probabilistic
model of the distribution of solutions which can be sampled by generating possible
solutions from it. Search proceeds through a series of incremental updates of the
probabilistic model guided by feedback from sampled fitness. In an analogous way
our generative system (the overall system dynamics) is incrementally updated in
relation to evaluation based feedback. The overall system dynamics is the gen-
erative model, the exploration phase is the sampling step, with the performance
evaluation, E, controlling a selection pressure, and the homeostatic adaptation
process provides a kind of mutation which facilitates the replication (with varia-
tion) of the whole phase space, now containing a slightly different population of
attractors but with a bias towards preserving more stable and fitter areas. This
work thus points towards the possibility of intrinsic mechanisms, based entirely
on neuro-body-environment interaction dynamics, that might be involved in cre-
ating Darwinian processes that could continually run within the nervous systems
of future robots [35].

To some extent morphology is important to all of the case studies used in this
paper. Be it the way the sensor morphology co-evolves with the robot controllers in
the FPTA study, or the behavioural strategy relies on morphological constraints in
the ant-inspired navigation work, or the way in which continually changing wing
and tail morphologies generate beneficial airflow patterns in the flapping wing
flyer example. In common with the use of chaotic exploration for the development
of locomotion behaviours, in all these cases information processing is not located
solely in the nervous system of the machine; it is spread out over the brain-body-
environment system. Some strands of work in soft robotics seek to push this idea
further, to blur the line between body and nervous system even more, with greater
amounts of processing offloaded onto the body [49,15,58,59].

The behaviours described in this paper, although robust and resilient, are still
fairly simple. The dynamics exploited, although often complex, are limited when
compared with those used in many animal behaviours. There is still much to
explore in the two-way exchange between biology and robotics.

Acknowledgements Thanks to members of the CCNR for helpful discussions, also to Ittai
Flascher, as well as members of the INSIGHT consortium, and to the anonymous reviewers
for comments on an earlier draft of this paper.

Declarations

Conflict of interests. The authors declare that they have no conflict of interest.
Funding. Funding for the various strands of work described in this paper came
from: EPSRC grants EP/P006094/1 and EP/S030964/1, EU ICT FET FP7 project
INSIGHT, and Intel Corp. ND was supported by an EPSRC studentship.

References

1. Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University
Press (1991)



38 Husbands et al.

2. Adamatzky, A.: Reaction Diffusion Automata: Phenomenology, Localisations, Computa-
tion. Springer (2013)

3. Aihara, K., Matsumoto, G.: Temporally coherent organization and instabilities in squid
giant axons. Journal of Theoretical Biology 95(4), 697–720 (1982)

4. Amari, S.i.: Natural Gradient Works Efficiently in Learning. Neural Computa-
tion 10(2), 251–276 (1998). DOI 10.1162/089976698300017746. URL http://www.
mitpressjournals.org/doi/10.1162/089976698300017746

5. Asai, Y., Nomura, T., Abe, K., Sato, S.: Classification of dynamics of a model of motor
coordination and comparison with Parkinson’s disease data. Biosystems 71, 11–21 (2003)

6. Asai, Y., Nomura, T., Sato, S., Tamaki, A., Matsuo, Y., Mizukura, I., Abe, K.: A coupled
oscillator model of disordered interlimb coordination in patients with Parkinson’s disease.
Biological Cybernetics 88, 152–162 (2003)

7. Baddeley, B., Graham, P., Husbands, P., Philippides, A.: A model of ant route navigation
driven by scene familiarity. PLoS Computational Biology 8(1) (2012). DOI 10.1371/
journal.pcbi.1002336

8. Baddeley, B., Graham, P., Philippides, A., Husbands, P.: Holistic visual encoding of ant-
like routes: Navigation without waypoints. Adaptive Behavior 19(1), 3–15 (2011)

9. Beer, R.: The dynamics of adaptive behaviour: a research program. Robotics and Au-
tonomous Systems 20, 257–289 (1997)

10. Beer, R., Williams, P.: Information processing and dynamics in minimally cognitive
agents. Cognitive Science 39, 1–38 (2015)

11. Beer, R.D., Quinn, H.J.C.R.D., Ritzmannt, R.E.: Biorobotic approaches to the study of
motor systems. Current Opinion in Neurobiology 8, 777–782 (1998)

12. Bekey, G.: Autonomous Robots: From Biological Inspiration to Implementation and Con-
trol. MIT Press, Cambridge, MA (2005)

13. Bell, A.J., Sejnowski, T.J.: An Information-Maximization Approach to Blind Separation
and Blind Deconvolution. Neural Computation 7(6), 1129–1159 (1995). DOI 10.1162/
neco.1995.7.6.1129. URL http://www.mitpressjournals.org/doi/10.1162/neco.1995.
7.6.1129

14. Berenson, D., Estevez, N., Lipson, H.: Hardware evolution of analog circuits for in-situ
robotic fault-recovery. In: 2005 NASA/DoD Conference on Evolvable Hardware (EH’05),
pp. 12–19. IEEE Comp. Soc. Press (2005). DOI 10.1109/EH.2005.30

15. Bongard, J.: Why morphology matters. In: P. Vargas, E. DiPaolo, I. Harvey, P. Husbands
(eds.) The horizons of evolutionary robotics, pp. 125–152. MIT Press (2014)

16. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling.
Science 314, 1118–1121 (2006)

17. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: A sur-
vey. J. Intell. Robot. Syst. Theory Appl. 53(3), 263–296 (2008). DOI 10.
1007/s10846-008-9235-4. URL https://link-springer-com.ezproxy.sussex.ac.uk/
article/10.1007/s10846-008-9235-4

18. Bressler, S.L., Kelso, J.A.S.: Cortical coordination dynamics and cognition. TRENDS in
Cognitive Sciences 5(1), 26–36 (2001)

19. Brown, R., Fedde, M.: Airflow sensors in the avian wing. Journal of Experimental Biology
179, 13–30 (1993)

20. Buehlmann, C., Fernandes, A.S.D., Graham, P.: The interaction of path integration and
terrestrial visual cues in navigating desert ants: what can we learn from path character-
istics? Journal of Experimental Biology 221(1) (2018)

21. Burtt Jr., E., Ichida, J.: Selection for feather structure. Acta Zoologica Sinica 52, 131–135
(2006)

22. Buzsaki, G.: Rhythms of the brain. Oxford University Press (2006)
23. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.,

Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: To-
ward the robust-perception age. IEEE Transactions on robotics 32(6), 1309–1332 (2016)

24. Cagnoni, S. (ed.): Evolutionary Image Analysis and Signal Processing. Springer (2009)
25. Campos, P., Lawson, D., Bale, S., Walker, J., Trefzer, M., Tyrrell, A.: Overcoming faults

using evolution on the panda architecture. In: Proceedings of IEEE Congress on Evolu-
tionary Computation (CEC’13), pp. 613–620. IEEE Press (2013)

26. Chang, E., Matloff, L.Y., Stowers, A.K., Lentink, D.: Soft biohybrid morphing wings
with feathers underactuated by wrist and finger motion. Science Robotics 5(38) (2020).
DOI 10.1126/scirobotics.aay1246. URL https://robotics.sciencemag.org/content/5/
38/eaay1246

http://www.mitpressjournals.org/doi/10.1162/089976698300017746
http://www.mitpressjournals.org/doi/10.1162/089976698300017746
http://www.mitpressjournals.org/doi/10.1162/neco.1995.7.6.1129
http://www.mitpressjournals.org/doi/10.1162/neco.1995.7.6.1129
https://link-springer-com.ezproxy.sussex.ac.uk/article/10.1007/s10846-008-9235-4
https://link-springer-com.ezproxy.sussex.ac.uk/article/10.1007/s10846-008-9235-4
https://robotics.sciencemag.org/content/5/38/eaay1246
https://robotics.sciencemag.org/content/5/38/eaay1246


Recent Advances in Evolutionary and Adaptive Robotics 39

27. Chatzilygeroudis, K., Vassiliades, V., Mouret, J.B.: Reset-free trial-and-error learning for
robot damage recovery. Robotics and Autonomous Systems 100, 236–250 (2018)

28. Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0.
The International Journal of Robotics Research 30(9), 1100–1123 (2011)

29. Dale, K., Husbands, P.: The evolution of reaction-diffusion controllers for minimally cog-
nitive agents. Artificial Life 16(1), 1–19 (2010). DOI 10.1162/artl.2009.16.1.16100. URL
https://doi.org/10.1162/artl.2009.16.1.16100. PMID: 19857145

30. Davison, E., Aminzare, Z., Dey, B., Ehrich Leonard, N.: Mixed mode oscillations and
phase locking in coupled fitzhugh-nagumo model neurons. Chaos: An Interdisciplinary
Journal of Nonlinear Science 29(3), 033105 (2019). DOI 10.1063/1.5050178

31. Dayan, P., Abbot, L.: Theoretical Neuroscience. MIT Press (2005)
32. Dieci, L., Russell, R., Van Vleck, E.: On the computation of Lyapunov exponents for

continuous dynamical systems. SIAM Journal on Numerical Analysis 34(1), 402–423
(1997)

33. DiPaolo, E., Buhrmann, T., Barandiaran, E.: Sensorimotor Life: An Enactive Proposal.
Oxford University Press (2017)

34. Edelman, G., Gally, J.: Degeneracy and complexity in biological systems. Proc. Natl.
Acad. Sci. USA 98(24), 13763–13768 (2001)
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