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Abstract. This paper introduces a new type of artificial nervouns system
and shows that it is possible to use evolutionary compnting technignes
to find robot controllers based on them. The controllers are built from
networks inspired by the modulatory effects of freely diffusing gases,
especially nitric oxide, in real neuronal networks. Using Jakobi’s rad-
ical minimal simulations, snccessful behaviours have been consistently
evolved in far fewer evaluations than were needed when nsing more con-
ventional connectionist style networks. Indeed the reduction is by a factor
of roughly one order of magnitude.

1 Introduction

In evolutionary robotics, the predominant class of systems for generating be-
haviours is that of artificial neural networks (ANNs). These networks can he
envisaged as simple nodes connected together by directional wires along which
signals flow. The nodes perform an input output mapping that is usually some
sort, of sigmoid function [7]. Occasionally a simple differential equation is used
instead, providing the possibility of richer dynamics [1]. Some have used feed-
forward architectures, others have explored more free form arbitrarily recurrent
networks. The original inspiration for all these styles of network 1s the neuro-
science of the 1940s and 1950s. They abstract something of the electrical prop-
erties and behaviours of real neuronal networks. However, two obvious questions
raise their heads. Do we have any reason to believe that these kinds of systems
are capable of generating adaptive behaviours in autonomous robots of a kind
that is much more sophisticated than we can manage today? Fven if they are,
will it be possible to find the networks in question, through evolutionary search
or some other technique?

As has been pointed out by various people (e.g. [3]), advances in neuroscience
have made it clear that the propagation of action potentials, and the changing
of synaptic connection strengths, is only a very small part of the story of the
brain (e.g [16]). This in turn means that connectionist style networks, and even
recurrent dynamical ones, are generally very different kinds of systems from those
that generate sophisticated adaptive behaviours in animals. Indeed, it may be



better to think of natural nervous systems as some kind of ever changing chemical
machine [16]. Although our picture of biological neural networks changes every
few years, advances over the past decade or so can provide a rich source of
inspiration in devising alternative styles of artificial network. Among others,
Brooks and colleagues went some way down that path by using ideas gleaned
from some of the properties of the lobster hormonal system [2].

As far as the author of this paper is concerned, current understandings of
nervous systems seem to suggest that a useful abstract way to think of them
is in terms of several interacting classes of dynamical processes, each with dis-
tinct characteristics (e.g. electrical, short-range chemical, long-range chemical)'.
These processes can have very different spatial and temporal properties and may
be heavily intertwined, modulating each other in complex ways. For instance,
Hebbian style changes in synaptic efficacy can be thought of as one of these
processes that can be turned on and off and localised by other processes, such as
the change in local concentration of a particular chemical. At the detailed level,
there will be complex cascades of chemical reactions involved, but it 1s sug-
gested that it may be possible to pull out more abstract systems that describe
the gross dynamical principles underlying the behaviour of nervous systems. Tt
is hoped that versions of these abstract systems, based on interacting dynamical
processes, can be developed that are sufficient to underpin adaptive machines
more advanced than those available today. Tt is very difficult to see how such
systems can be investigated and developed except through some form of artifi-
cial evolution. Tt is likely that, at least in principle, for any of these systems a
functionally equivalent recurrent dynamical network exists. However, my bet is
that in general it will be horrendously convoluted and almost impossible to find.
Tt is hoped that the kinds of systems just sketched will be more amenable to
evolution than standard ANNs and will be far easier to scale up. We shall see.

This paper describes some very initial investigations into the kind of systems
outlined in the previous paragraph. The main inspiration has been the recent
discovery that freely diffusing nitric oxide (NO) is synthesised in, and emitted
by, nerve cells in many parts of nervous systems. As it diffuses, it acts as a
neurotransmitter and 1s implicated in the modulation of various properties of
nerve cells and synapses [4].

After describing the networks inspired by this biological phenomenon, so
called GasNets, a number of successful evolutionary robotics experiments using
this new style of network are discussed. The paper closes with some conclusions,
including the observation that, using (GasNets, successful behaviours have been
consistently evolved in far fewer evaluations than were needed when using more
conventional connectionist style networks.

' ANNS incorporating Hebbian connection strength changes can be thought of as a
simple example of this kind of system. T am proposing exploring far richer systems.



2 GasNets

In this section a new form of artificial nervous system inspired by two aspects
of biological neuronal networks is described in detail. These two aspects are:
the heterogeneity of intrinsic nerve cell properties found in much of the nervous
system of invertebrates; and the modulation of these properties by diffusing
NO, emitted from within the nervous system itself. Many of the known and
postulated effects of NO are not included, but will be the inspiration for future
developments of this style of network.

These are abstract systems founded on some of the general principles, rather
than details, of biological networks. They are not models of real nervous systems.
The abstractions chosen for this initial investigation into this style of network
are: heterogeneity in terms of transfer functions at the nodes in the network,
modulation of intrinsic properties in terms of changing these functions as the
network runs. One last general point  these networks should not be thought of
as computational devices. They could be thought of as mathematical systems,
but T prefer to regard them much more as simulations of physical devices.

2.1 The 4 gas GasNet

The networks used in the experiments described later consist of units connected
together by excitatory links, with a weight of 41, and inhibitory links, with a
weight of -1. The output | O;, of a node j is a function of the normalised sum of
its inputs, S5, as described by equation 1. In addition to this underlying network
in which positive and negative ‘signals’ flow between units, an abstract process
loosely analogous to the diffusion of gaseous modulators is at play. Some units
can emit 'gases’ which diffuse and are capable of modulating the behaviour of
other units by changing their transfer functions in ways described in detail later.
This form of modulation allows a kind of plasticity in the network in which the
intrinsic properties of units are changing as the network operates. The networks
function in a 2D plane; their geometric layout is a crucial element in the way in
which the ‘gases’ diffuse and affect the properties of network nodes. This aspect
of the networks is described in more detail later.

0; = (5)) (1)
Where,
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In equation 2, P; is the set of network elements with excitatory connections
to element j. Likewise, N; is the set of elements with inhibitory link to j, and
SFEN; is the set of sensors connected to j. I is the default activation of a node
(= 0.05). np;, nn; and ns; are |, respectively, the number of positive, negative
and sensor connections to element 7, 1.e.:



np; = | P (3)

nnj = [ Njl (4)
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Normalizing by dividing by the number of inputs keeps the summed input
in the range [-1,1]. The transfer function, f, is defined in equation 6, its output
range is [-1,1] given the restriction on the input range.

|0, if <0 and (e <0 orb<0)
flo) = { (2 + .17h)/27 otherwise (6)
Where,
a,be PP=140.1,02,03...0.8,1,2,3... 9,10} (7)

Overlays of plots of this function for many of the possible combinations of a
and b are shown in figure 1. As can be seen, a wide range of output responses to
a given input are possible, depending on the values of the parameters a and b.
As will seen later, default values of @ and b for each node are set genetically, but
are changed by diffusing gases as the network runs. Tt 1s genetically determined
whether or not a node will emit one of four gases, and under what circumstances
emission will oceur (either when the ‘electrical” activation of the node exceeds
a threshold, or the concentration of one of the gases, genetically determined, in
the vicinity of the node exceeds a threshold).

Gas Diffusion in the Networks A very abstract model of gas diffusion is
used. For an emitting node, the concentration of gas at distance d from the node
is given by equation 8. Here r is the genetically determined radius of influence
of the node, so that concentration falls to zero for d > r. TC(1) is a linear
function that models build up and decay of concentration after the node has
started /stopped emitting. The slope of this function is individually genetically
determined for each emitting node, Cy 18 a global constant.

Coxe%deC(t), d<r

0, otherwise

C(d,t) = { (8)
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Where, t, is the time at which emission was last turned on, #; is the time
at which emission was last turned off, k is genetically determined for each node
and:
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Fig. 1. The transfer function used for the 4 gas GasNets. Input on the X axis, output
on the Y. Overlays of the function (see equation 6) for many combinations of o and b
are shown.

x, <1
Hz)=<0,2<0 (10)

1, otherwise.

In other words, the ‘gas’ concentration varies spatially as a (Gaussian centred
on the emitting node. The height of the Gaussian at any point within the circle
of influence of the node is linearly increased or decreased depending on whether
the node is emitting or not. Note T'C'(1) saturates at a maximum of 1 and a
minimum of (.

Modulation by the Gases The values of @ and b in the network unit transfer
function (see equation 6) are changed (or modulated) by the presence of gases af
the site of a unit. This modulation is described by equations 12 17 and happens
continually as the network runs. This provides a form of plasticity very different
from that found in more traditional artificial neural networks. At every time step
the value of a for node;, @, is updated according to equation 11.

a’ = PP[U’;ndem] (]])
Where,
a;n,dem = S(N7 (]:77) (]2)



Here a! is node;’s index into the set PP shown in equation 7. N 1s

index R
the number of elements in PP. At each time step a),; 1s updated according to

equation 13. The linear (thresholded) function S is described by equation 14.

o o . Oy ,
(]:77 = H’?iefjnde.’n =+ m X (N o n’jiefjnde.’n) o m X (aze,ﬁindem) (]3)

' 1s the

concentration of gas 1 at the site of node;, 'y 1s the concentration of gas 2 at

Where ailefm’dem is the genetically set default value for a;n,dem7

the site of node; and Cy and K are global constants. So, al increases in direct

index
proportion to the concentration of gas 1, and decreases linearly with respect to
the concentration of gas 2. In this way the value of a for node; is changed by the

presence of gases 1 and 2 at the node’s site.

x, 0<x <N
S(N,2)=<0, <0 (14)
N, & >N

Similarly the value of b at node;, ', is changed by the presence of gases 3
and 4. This i1s described by equations 15 17.

bi = PP[ Zn,dem] (]5)
jn,dem = S(N7 b:n) (]6)

o o . C ,
b= b B (N, (b, 17
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2.2 The 2 gas GasNet

This paper will concentrate on early results found using the 4 gas style (GasNet.
However, we are currently investigating slightly simpler versions using 1 or 2
gases. For instance, in one of our 2 gas networks the transfer function at each
node is of the form shown in equation 182. Again the weights are restricted to
be either +1 or -1. The value of b is genetically set at each node as is the default
value of k. The two gases raise and lower the value of & in a similar manner to
the way a and b are changed in the 4 gas model.

0; = tanh([k x > O;w;;] +b) (18)

2 Thanks to Andy Philippides for snggesting this form.



3 Network encoding

The basic geneotype used to encode 4 gas (GasNets consisted of an array of real
numbers. Each node in the network had 15 real values associated with it. That
is:

< geneotype > = (< gene >)*

<gene > < x> Y>< Ry >< By >< Oy >< Ry >< By >< Oy >
<rec > TH>< OFE ><k >< R, >< agefing >< baefind >

This encoding was used to generate networks conceptualized to exist on a
2D Euclidean plane. x and y give the position of a network node on the plane.
The next six numbers define two segments of circles, centred on the node. These
segments are used to determine the connectivity of the network. R, gives the
radius of the ‘positive’ segment, @y, its angular extent and @,, its orientation.
R,, @1, and @4, define a ‘negative’ segment. The radii range from zero to
half the plane dimension, the angles range from zero to 27. The segments are
illustrated in figure 2. Any node that falls within a positive segment has an
excitatory (+1) link made to it from the segment’s parent node. Any node that
falls within a negative segment has an inhibitory (-1) link made to it from the
segment’s parent node. Developing networks on a 2D plane has a number of
advantages as discussed in [11]. The idea of using a plane has been previously
explored by at least Husbands [8], Nolfi [15] and Jakobi [10]. Of course, in this
case the geometry of the network is crucial to the workings of the gas diffusion,
so the networks have to exist on a plane. This particular encoding is directly
inspired by Jakobi’s [11].

The rest, of a gene is interpreted as follows. The value of rec € {0,1,2}
determines whether the node has no recurrent connection to itself, an excitatory
recurrent, connection or an inhibitory recurrent connection, respectively. TF €
{—1,0,1,2,3,4} provides the circumstances under which the node will emit a
gas. These are: not at all, if its ‘electrical’ activity exceeds a threshold, or if
the concentration of the referenced gas (1,2,3 or 4) at the node site exceeds a
threshold. C'F € {1,2,3,4} gives the gas the node can emit. k is a real in the
range [1,15] and is used to control the rate of gas build up/decay as described
earlier by equation 9. R, is the maximum radius of gas emission, this ranges
from 2 to half the plane dimension. ag.finq and bg.rinq are the defanlt values
for the a and b indices as used in equation 11 to determine the default values
of @ and b for the node.

This basic encoding can be used to search for network topologies and ge-
ometries with a fixed number of nodes, or a dynamic length version can be
used to evolve networks in a more open-ended way [6]. Of course, the use of
the segments to determine the connectivity means the number of connections,
and hence the basic architecture, is never fixed. To say nothing of the additional
dynamic properties introduced by the diffusing gases.
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Fig. 2. Positive and negative segments define the connectivity of the network. The
network develops and functions on a 2D plane.

4 Experiments

In order to start exploring the properties of (GasNets, particularly their evolvabil-
ity and suitability as control systems, it was decided to rerun some of Jakobi’s
recent experiments [10,11], substituting the new type of network for his more
conventional connectionist ones. Tt would then be possible to compare the kinds
of solutions found, how quickly they evolved, and so on. A major reason for
choosing Jakobi’s work was the fact that he had evolved the behaviours in ques-
tion using his innovative and radical minimal simulations [11,10,12]. Control
systems evolved using these ultra-lean ultra-fast simulations transfer perfectly
to reality. Because of their speed, many evolutionary runs can be performed
allowing the kind of exploration desired in this case. Jakobi’s original minimal
simulation code was used for the experiments described here.

4.1 Khepera with state: the T-maze

The first behaviour attempted was that required to perform Jakobi’s T-maze
task. This is illustrated in figure 3. A Khepera robot [13], making use of 6 TR,
proximity sensors and 2 ambient light sensors, moves along a corridor. A light
shines from either the left or the right, chosen randomly. Once the Khepera
reaches the T-junction 1t should turn in the direction the light shone from.

For this experiment, following Jakobi [10], a fixed number of network nodes
was used. Also, bilateral symmetry was imposed on the control network. 14 nodes
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Fig. 3. Jakobi’s T-mare task. At the junction the robot must turn in whichever direc-
tion the light was shining from. Schematic of Khepera, showing sensor positions, at the
right of the figure.

were used. One for each of the sensors, 2 for each motor (motor output was
calculated as forward-motor-node output - backward-motor-node output), and
2 others. Bilateral symmetry was achieved by encoding for 7 nodes. Their (x,y)
coordinates were constrained to lie in the left half of the network plane. Each of
the nodes was reflected in the line x=(half plane width), creating 7 new nodes.
The positive and negative segments of the original nodes were also reflected in
the half way line. All other genetically encoded properties were inherited intact.
On developing the connectivity of the network, as determined by the segments, a
symmetrical network 1s formed. The left hand side is connected to the Khepera’s
left hand sensors and motor, the right hand side is connected to the Khepera’s
right hand sensors and motor. One predetermined node for each sensor and
motor.

A distributed, or diffusion; GA of the kind described in [9] was used. Tt
employed a population of 225 spread out over a 15x15 grid with overlapping
(Graussian local neighbourhoods, in which local selection rules operated. Standard
one point crossover was used with a probability of 0.9. Mutation operated as
follows. With a rate of one mutation per geneotype, any value to be mutated
was changed by a random real in the range +£10% of its total range 80% of the
time and by a random value in the range +40% the remaining 20% of the time.

Fach evaluation consisted of 12 trials. The starting orientation of the robot,
the corridor width and length and the position of the lights were all randomly
varied between trials. Other aspects of the simulation were randomly varied
within and across trials in keeping with the minimal simulation methodology
[10]. The fitness function (taken from [10]) is shown in equation 19.

f=di 4+ dy+ bonus (19)

Where dq is the distance moved down the first corridor, ds is the distance
moved down the second corridor and bonus is 100 1f the robot turns in the correct



direction at the junction, 0 if 1t doesn’t. A trial is aborted if the robot touches
a wall.

Jakobi had originally used binary networks in which the connectivity, weights
on the connections and node thresholds were genetically encoded [10]. He had
been able consistently evolve robust successful controllers in 1,000 generations
using a similar GA to that described above, with a population of 100. This
may seem rather a large number of evaluations, but it must be appreciated that
evolving in a minimal simulation i sin many senses harder than in reality, because
of the extreme use of noise. Hence it would be expected that a greater number of
evaluations would be required than in reality, although this is heavily offset by
the speed at which the simulations run. The resulting controllers are extremely
robust, capable of successful behaviour in a wide range of conditions.

To date more than 15 runs have been completed using the GasNets. In each
run success was achieved in less than 100 psuedo generations?, in several cases
in less than 50. In other words, the number of evaluations needed was decreased
by a factor of one order of magnitude.

Interestingly, some of the successful controllers made use of the gases and
some didn’t. All were very heterogeneous as far as the transfer functions of
the nodes were concerned. In the runs where the final successful controllers
didn’t use gases, they had been used extensively during the evolution of the
final population. When the gases were removed all together, it was not possible
to evolve successful controllers within 500 generations. Since the gases are the
agents of a form of plasticity in the networks, these observations suggest that
the Baldwin effect [14] is af play, albeit a rather different form than has been
observed before. This will need further investigation.

Many different successful behaviour generating mechanisms were observed.
The evolved controller shown in figure 4 represents a class of mechanisms, making
use of the gases, of which several examples were seen.

Briefly, the network shown in figure 4 works as follows. The motor transfer
functions are such that the default behaviour, in the absence of sensory input,
is straight line forward motion. The left most and right most TR sensors (see
figure 3) are connected directly to the right and left motors, respectively. This
arrangement, coupled with the particular motor transfer functions, provides a
basic Braitenburg style obstacle avoidance behaviour. This is what enables the
robot to travel along the corridors without crashing. The brief chemical activity
initiated at nodes 1 and 8 by the TR stimulus, and the ensuing transfer function
modulation, reinforces the Braitenburg behaviour. Nodes 3 and 10 are connected
to the left and right ambient light sensors respectively. When either is stimu-
lated by the light shining from the side of the first corridor it feeds into the
nodes ) and 7 feedback loop. The transfer functions are such that only a con-
tinuous stimuli ramps up the activity levels and initiates the release of gas 2
from whichever of nodes 0 and 7 is being directly fed the active AL signal. The
evolved time constants on the gas build up and decay processes mean that only
the continuous AT stimuli as the robot moves through the light zone (as opposed

3 . . . .
One psunedo generation occurs every N offspring events, where N = population size.



Fig.4. An evolved successful control network for the T-maze task. Network connec-
tivity plus the radius of influence of emitting nodes is shown. These are depicted as
ellipses as the X scale is twice the Y scale. See text for details.

to the very brief TR stimuli from nodes 1 and 8 ensured by the successful obstacle
avoidance subnetwork) triggers this part of the circuit. Tf the left AT sensor is
active it triggers release of gas 2 from node 7. Because node 7 is closer to the left
motor nodes (12 and 13) than the right motor nodes (5 and 6) it has a stronger
modulatory effect on their transfer functions. The overall effect is to reduce left
motor output with respect to right. By the time the robot comes to the junc-
tion it inevitably turns to the left. In a similar way, if the right AT, sensor had
been on, the robot would have turned to the right. The underlying Braitenburgh
obstavcle avoider still works under this modulation. The genetically determined
slow decay of gas 2 is important to the successful operation of this behaviour.
Obviously the geometric layout of the network is crucial. Unfortunately space
does not allow a more detailed analysis here. Figure 5 shows the transfer func-
tions for the network. Note that they cover a very wide range of response types.
This was found in every successful controller examined, including those that did
not use gases. This, along with the observed role that the differences in transfer
functions plays in successful controllers, suggests transfer function heterogeneity
can be a very useful thing in sensorimotor systems. All of this is moving some
way from the kind of positions held in mainstream cognitive science as to what
a behaviour generating mechanism should look like. Tt adds more grist to the
mills of left-field philosophers of cognitive science such as Wheeler [17].

4.2 Khepera with more state, the double T-maze

The second behaviour attempted was that required to perform the double T-
marze task. This is illustrated in figure 6.

This time there is a sequence of 2 lights. The robot must turn at a pair of
junctions in accordance with the directions from which the two lights are shining
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Fig. 5. The transfer functions at the nodes of the controller shown in figure 4

(e.g. right left). The experimental setup was essentially the same as for the single
T-maze, with a slightly modified fitness function.

f=dy 4+ ds+ ds + bonus + bonuss (20)

Jakobi was not able to evolve successful controllers for this task using his
binary networks. However, with the (GasNets, for 5 runs completed to date,
success was achieved in 3 runs by 350 generations; in 1 run success was achieved
by 700 generations; and in 1 run success was not achieved by 1000 generations.
At the time of writing none of these runs has yet been analysed.

4.3 Visually guided behaviours

In this section a very brief mention of some on-going joint work with Tom Smith
will be made. We are in the process of investigating the use of GasNets to control
a visually guided robot. The Sussex gantry robot [5] is best thought of as a
two wheeled device with a fixed forward pointing video camera. We have been
concurrently evolving network controllers and the robot’s visual morphology (the
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Fig. 6. The double T-maze.

genetically specified number and positions of pixels from the camera’s image that
provide the only sensory input to the robot). We are using another of Jakobi’s
minimal simulations [10] to evolve a target discriminating behaviour (move to a
triangle while ignoring a rectangle) under very noisy lighting conditions.

Jakobi reported needing 6,000 generations of his GA to reliably evolve robust
controllers. We have found successful controllers in less than 800 generations
using the 4 gas (GasNets and the same GA and encoding described earlier. This
time the GA was allowed to find the appropriate number of network nodes by
using gene insertion and deletion operators that allowed the geneotype length
to vary. A successful controller (complete with evolved visnal morphology) is
shown in figure 7. Tt is structurally much less complex than Jakobi’s evolved
controllers. Indeed it seems remarkably simple considering the very noisy nature
of the lighting and the relative complexity of the task. This work will be reported
on in detail elsewhere and is mentioned here to demonstrate that (GasNets are
not merely restricted to good performance on one type of task.

5 Conclusions and Discussion

This paper has introduced a new type of artificial nervous system and has shown
that it 1s possible to use evolutionary computing techniques to find robot con-
trollers based on these systems. This has been demonstrated for a range of
behaviours involving two different robots. These successes were achieved using
very similar setups to those employed by Jakobi when he previously evolved
controllers for the same tasks. The main (although admittedly not only) differ-
ence between our experiments and his were the style of network used. He used
fairly standard connectionist type networks while we used (GasNets, as described
earlier in this paper. We found that we were able to consistently evolve success-
ful controllers in far fewer evaluations than him. Indeed the reduction was by a
factor of roughly an order of magnitude.
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Fig. 7. Successful evolved GasNet for a visnally guided behaviour. See text for details.

This suggests that the space of possible behaviours open to being generated
by GasNets is somehow ‘thicker’ than for Jakobi’s more conventional networks. Tt
is easier to find successful controllers in this space; it is rich with useful network
dynamics and mechanisms.

This in turn suggests that networks involving a number of interacting dy-
namical processes with distinct properties and characteristics, may well be a
very powerful building block for evolutionary robotics. The inspiration for these
networks were, of course, real nervous systems. Recent advances in neuroscience
mean that there is a rich seam of inspiration to mine. In abstracting principles
from biological systems in order to build adaptive machines, 1t is hoped that a
mutually beneficial interface between neuroscience and AT will flourish and prove
to be profoundly important in both fields. The initial studies reported here are
the very beginning of a new line of research at Sussex. There is much more of
this story to come.
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