
Evolving Robot Behaviours with Di�using GasNetworksPhil HusbandsSchool of Cognitive and Computing SciencesandCentre for Computational Neuroscience and RoboticsUniversity of Sussex, Brighton, UKphilh@cogs.susx.ac.ukAbstract. This paper introduces a new type of arti�cial nervous systemand shows that it is possible to use evolutionary computing techniquesto �nd robot controllers based on them. The controllers are built fromnetworks inspired by the modulatory e�ects of freely di�using gases,especially nitric oxide, in real neuronal networks. Using Jakobi's rad-ical minimal simulations, successful behaviours have been consistentlyevolved in far fewer evaluations than were needed when using more con-ventional connectionist style networks. Indeed the reduction is by a factorof roughly one order of magnitude.1 IntroductionIn evolutionary robotics, the predominant class of systems for generating be-haviours is that of arti�cial neural networks (ANNs). These networks can beenvisaged as simple nodes connected together by directional wires along whichsignals ow. The nodes perform an input output mapping that is usually somesort of sigmoid function [7]. Occasionally a simple di�erential equation is usedinstead, providing the possibility of richer dynamics [1]. Some have used feed-forward architectures, others have explored more free form arbitrarily recurrentnetworks. The original inspiration for all these styles of network is the neuro-science of the 1940s and 1950s. They abstract something of the electrical prop-erties and behaviours of real neuronal networks. However, two obvious questionsraise their heads. Do we have any reason to believe that these kinds of systemsare capable of generating adaptive behaviours in autonomous robots of a kindthat is much more sophisticated than we can manage today? Even if they are,will it be possible to �nd the networks in question, through evolutionary searchor some other technique?As has been pointed out by various people (e.g. [3]), advances in neurosciencehave made it clear that the propagation of action potentials, and the changingof synaptic connection strengths, is only a very small part of the story of thebrain (e.g [16]). This in turn means that connectionist style networks, and evenrecurrent dynamical ones, are generally very di�erent kinds of systems from thosethat generate sophisticated adaptive behaviours in animals. Indeed, it may be



better to think of natural nervous systems as some kind of ever changing chemicalmachine [16]. Although our picture of biological neural networks changes everyfew years, advances over the past decade or so can provide a rich source ofinspiration in devising alternative styles of arti�cial network. Among others,Brooks and colleagues went some way down that path by using ideas gleanedfrom some of the properties of the lobster hormonal system [2].As far as the author of this paper is concerned, current understandings ofnervous systems seem to suggest that a useful abstract way to think of themis in terms of several interacting classes of dynamical processes, each with dis-tinct characteristics (e.g. electrical, short-range chemical, long-range chemical)1.These processes can have very di�erent spatial and temporal properties and maybe heavily intertwined, modulating each other in complex ways. For instance,Hebbian style changes in synaptic e�cacy can be thought of as one of theseprocesses that can be turned on and o� and localised by other processes, such asthe change in local concentration of a particular chemical. At the detailed level,there will be complex cascades of chemical reactions involved, but it is sug-gested that it may be possible to pull out more abstract systems that describethe gross dynamical principles underlying the behaviour of nervous systems. Itis hoped that versions of these abstract systems, based on interacting dynamicalprocesses, can be developed that are su�cient to underpin adaptive machinesmore advanced than those available today. It is very di�cult to see how suchsystems can be investigated and developed except through some form of arti�-cial evolution. It is likely that, at least in principle, for any of these systems afunctionally equivalent recurrent dynamical network exists. However, my bet isthat in general it will be horrendously convoluted and almost impossible to �nd.It is hoped that the kinds of systems just sketched will be more amenable toevolution than standard ANNs and will be far easier to scale up. We shall see.This paper describes some very initial investigations into the kind of systemsoutlined in the previous paragraph. The main inspiration has been the recentdiscovery that freely di�using nitric oxide (NO) is synthesised in, and emittedby, nerve cells in many parts of nervous systems. As it di�uses, it acts as aneurotransmitter and is implicated in the modulation of various properties ofnerve cells and synapses [4].After describing the networks inspired by this biological phenomenon, socalled GasNets, a number of successful evolutionary robotics experiments usingthis new style of network are discussed. The paper closes with some conclusions,including the observation that, using GasNets, successful behaviours have beenconsistently evolved in far fewer evaluations than were needed when using moreconventional connectionist style networks.1 ANNS incorporating Hebbian connection strength changes can be thought of as asimple example of this kind of system. I am proposing exploring far richer systems.



2 GasNetsIn this section a new form of arti�cial nervous system inspired by two aspectsof biological neuronal networks is described in detail. These two aspects are:the heterogeneity of intrinsic nerve cell properties found in much of the nervoussystem of invertebrates; and the modulation of these properties by di�usingNO, emitted from within the nervous system itself. Many of the known andpostulated e�ects of NO are not included, but will be the inspiration for futuredevelopments of this style of network.These are abstract systems founded on some of the general principles, ratherthan details, of biological networks. They are not models of real nervous systems.The abstractions chosen for this initial investigation into this style of networkare: heterogeneity in terms of transfer functions at the nodes in the network,modulation of intrinsic properties in terms of changing these functions as thenetwork runs. One last general point { these networks should not be thought ofas computational devices. They could be thought of as mathematical systems,but I prefer to regard them much more as simulations of physical devices.2.1 The 4 gas GasNetThe networks used in the experiments described later consist of units connectedtogether by excitatory links, with a weight of +1, and inhibitory links, with aweight of -1. The output , Oj, of a node j is a function of the normalised sum ofits inputs, Sj , as described by equation 1. In addition to this underlying networkin which positive and negative `signals' ow between units, an abstract processloosely analogous to the di�usion of gaseous modulators is at play. Some unitscan emit 'gases' which di�use and are capable of modulating the behaviour ofother units by changing their transfer functions in ways described in detail later.This form of modulation allows a kind of plasticity in the network in which theintrinsic properties of units are changing as the network operates. The networksfunction in a 2D plane; their geometric layout is a crucial element in the way inwhich the `gases' di�use and a�ect the properties of network nodes. This aspectof the networks is described in more detail later.Oj = f(Sj ) (1)Where, Sj = (Pp2Pj Op �Pn2Nj On +Pk2SENj Ik)(npj + nnj + nsj) +R (2)In equation 2, Pj is the set of network elements with excitatory connectionsto element j. Likewise, Nj is the set of elements with inhibitory link to j, andSENj is the set of sensors connected to j. R is the default activation of a node(= 0.05). npj, nnj and nsj are , respectively, the number of positive, negativeand sensor connections to element j, i.e.:



npj = jPjj (3)nnj = jNj j (4)nsj = jSENj j (5)Normalizing by dividing by the number of inputs keeps the summed inputin the range [-1,1]. The transfer function, f , is de�ned in equation 6, its outputrange is [-1,1] given the restriction on the input range.f(x) = �0; if x < 0 and (a < 0 or b < 0)(xa + xb)=2; otherwise (6)Where, a; b 2 PP = f0:1; 0:2; 0:3 ::: 0:8; 1; 2; 3 ::: 9; 10g (7)Overlays of plots of this function for many of the possible combinations of aand b are shown in �gure 1. As can be seen, a wide range of output responses toa given input are possible, depending on the values of the parameters a and b.As will seen later, default values of a and b for each node are set genetically, butare changed by di�using gases as the network runs. It is genetically determinedwhether or not a node will emit one of four gases, and under what circumstancesemission will occur (either when the `electrical' activation of the node exceedsa threshold, or the concentration of one of the gases, genetically determined, inthe vicinity of the node exceeds a threshold).Gas Di�usion in the Networks A very abstract model of gas di�usion isused. For an emitting node, the concentration of gas at distance d from the nodeis given by equation 8. Here r is the genetically determined radius of inuenceof the node, so that concentration falls to zero for d > r. TC(t) is a linearfunction that models build up and decay of concentration after the node hasstarted/stopped emitting. The slope of this function is individually geneticallydetermined for each emitting node, C0 is a global constant.C(d; t) = �C0 � e�2dr � TC(t); d < r0; otherwise (8)TC(t) = (H( (t�te)k ); emittingH(H( (ts�te)k )�H( (t�ts)k )); not emitting (9)Where, te is the time at which emission was last turned on, ts is the timeat which emission was last turned o�, k is genetically determined for each nodeand:



Fig. 1. The transfer function used for the 4 gas GasNets. Input on the X axis, outputon the Y. Overlays of the function (see equation 6) for many combinations of a and bare shown. H(x) = 8<:x; x < 10; x � 01; otherwise: (10)In other words, the `gas' concentration varies spatially as a Gaussian centredon the emitting node. The height of the Gaussian at any point within the circleof inuence of the node is linearly increased or decreased depending on whetherthe node is emitting or not. Note TC(t) saturates at a maximum of 1 and aminimum of 0.Modulation by the Gases The values of a and b in the network unit transferfunction (see equation 6) are changed (or modulated) by the presence of gases atthe site of a unit. This modulation is described by equations 12{17 and happenscontinually as the network runs. This provides a form of plasticity very di�erentfrom that found in more traditional arti�cial neural networks. At every time stepthe value of a for nodei, ai, is updated according to equation 11.ai = PP [aiindex] (11)Where, aiindex = S(N; aini) (12)



Here aiindex is nodei's index into the set PP shown in equation 7. N isthe number of elements in PP . At each time step aini is updated according toequation 13. The linear (thresholded) function S is described by equation 14.aini = aidef:index + C1C0 �K � (N � aidef:index) � C2C0 �K � (aidef:index) (13)Where aidef:index is the genetically set default value for aiindex, C1 is theconcentration of gas 1 at the site of nodei, C2 is the concentration of gas 2 atthe site of nodei and C0 and K are global constants. So, aiindex increases in directproportion to the concentration of gas 1, and decreases linearly with respect tothe concentration of gas 2. In this way the value of a for nodei is changed by thepresence of gases 1 and 2 at the node's site.S(N; x) = 8<:x; 0 � x � N0; x < 0N; x > N (14)Similarly the value of b at nodei, bi, is changed by the presence of gases 3and 4. This is described by equations 15{ 17.bi = PP [biindex] (15)biindex = S(N; bini) (16)bini = bidef:index + C3C0 �K � (N � bidef:index) � C4C0 �K � (bidef:index) (17)2.2 The 2 gas GasNetThis paper will concentrate on early results found using the 4 gas style GasNet.However, we are currently investigating slightly simpler versions using 1 or 2gases. For instance, in one of our 2 gas networks the transfer function at eachnode is of the form shown in equation 182. Again the weights are restricted tobe either +1 or -1. The value of b is genetically set at each node as is the defaultvalue of k. The two gases raise and lower the value of k in a similar manner tothe way a and b are changed in the 4 gas model.Oj = tanh([k �Xi Oiwij] + b) (18)2 Thanks to Andy Philippides for suggesting this form.



3 Network encodingThe basic geneotype used to encode 4 gas GasNets consisted of an array of realnumbers. Each node in the network had 15 real values associated with it. Thatis:< geneotype > :: (< gene >)�< gene > :: < x >< y >< Rp >< �1p >< �2p >< Rn >< �1n >< �2n >< rec >< TE >< CE >< k >< Re >< adef:ind >< bdef:ind >This encoding was used to generate networks conceptualized to exist on a2D Euclidean plane. x and y give the position of a network node on the plane.The next six numbers de�ne two segments of circles, centred on the node. Thesesegments are used to determine the connectivity of the network. Rp gives theradius of the `positive' segment, �1p its angular extent and �2p its orientation.Rn, �1n and �2n de�ne a `negative' segment. The radii range from zero tohalf the plane dimension, the angles range from zero to 2�. The segments areillustrated in �gure 2. Any node that falls within a positive segment has anexcitatory (+1) link made to it from the segment's parent node. Any node thatfalls within a negative segment has an inhibitory (-1) link made to it from thesegment's parent node. Developing networks on a 2D plane has a number ofadvantages as discussed in [11]. The idea of using a plane has been previouslyexplored by at least Husbands [8], Nol� [15] and Jakobi [10]. Of course, in thiscase the geometry of the network is crucial to the workings of the gas di�usion,so the networks have to exist on a plane. This particular encoding is directlyinspired by Jakobi's [11].The rest of a gene is interpreted as follows. The value of rec 2 f0; 1; 2gdetermines whether the node has no recurrent connection to itself, an excitatoryrecurrent connection or an inhibitory recurrent connection, respectively. TE 2f�1; 0; 1; 2;3; 4g provides the circumstances under which the node will emit agas. These are: not at all, if its `electrical' activity exceeds a threshold, or ifthe concentration of the referenced gas (1,2,3 or 4) at the node site exceeds athreshold. CE 2 f1; 2; 3; 4g gives the gas the node can emit. k is a real in therange [1,15] and is used to control the rate of gas build up/decay as describedearlier by equation 9. Re is the maximum radius of gas emission, this rangesfrom 2 to half the plane dimension. adef:ind and bdef:ind are the default valuesfor the a and b indices as used in equation 11 to determine the default valuesof a and b for the node.This basic encoding can be used to search for network topologies and ge-ometries with a �xed number of nodes, or a dynamic length version can beused to evolve networks in a more open-ended way [6]. Of course, the use ofthe segments to determine the connectivity means the number of connections,and hence the basic architecture, is never �xed. To say nothing of the additionaldynamic properties introduced by the di�using gases.
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inhibitory connectionFig. 2. Positive and negative segments de�ne the connectivity of the network. Thenetwork develops and functions on a 2D plane.4 ExperimentsIn order to start exploring the properties of GasNets, particularly their evolvabil-ity and suitability as control systems, it was decided to rerun some of Jakobi'srecent experiments [10,11], substituting the new type of network for his moreconventional connectionist ones. It would then be possible to compare the kindsof solutions found, how quickly they evolved, and so on. A major reason forchoosing Jakobi's work was the fact that he had evolved the behaviours in ques-tion using his innovative and radical minimal simulations [11,10, 12]. Controlsystems evolved using these ultra-lean ultra-fast simulations transfer perfectlyto reality. Because of their speed, many evolutionary runs can be performedallowing the kind of exploration desired in this case. Jakobi's original minimalsimulation code was used for the experiments described here.4.1 Khepera with state: the T-mazeThe �rst behaviour attempted was that required to perform Jakobi's T-mazetask. This is illustrated in �gure 3. A Khepera robot [13], making use of 6 IRproximity sensors and 2 ambient light sensors, moves along a corridor. A lightshines from either the left or the right, chosen randomly. Once the Kheperareaches the T-junction it should turn in the direction the light shone from.For this experiment, following Jakobi [10], a �xed number of network nodeswas used. Also, bilateral symmetry was imposed on the control network. 14 nodes
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Schematic of KheperaThe T-mazeFig. 3. Jakobi's T-maze task. At the junction the robot must turn in whichever direc-tion the light was shining from. Schematic of Khepera, showing sensor positions, at theright of the �gure.were used. One for each of the sensors, 2 for each motor (motor output wascalculated as forward-motor-node output - backward-motor-node output), and2 others. Bilateral symmetry was achieved by encoding for 7 nodes. Their (x,y)coordinates were constrained to lie in the left half of the network plane. Each ofthe nodes was reected in the line x=(half plane width), creating 7 new nodes.The positive and negative segments of the original nodes were also reected inthe half way line. All other genetically encoded properties were inherited intact.On developing the connectivity of the network, as determined by the segments, asymmetrical network is formed. The left hand side is connected to the Khepera'sleft hand sensors and motor, the right hand side is connected to the Khepera'sright hand sensors and motor. One predetermined node for each sensor andmotor.A distributed, or di�usion, GA of the kind described in [9] was used. Itemployed a population of 225 spread out over a 15x15 grid with overlappingGaussian local neighbourhoods, in which local selection rules operated. Standardone point crossover was used with a probability of 0.9. Mutation operated asfollows. With a rate of one mutation per geneotype, any value to be mutatedwas changed by a random real in the range �10% of its total range 80% of thetime and by a random value in the range �40% the remaining 20% of the time.Each evaluation consisted of 12 trials. The starting orientation of the robot,the corridor width and length and the position of the lights were all randomlyvaried between trials. Other aspects of the simulation were randomly variedwithin and across trials in keeping with the minimal simulation methodology[10]. The �tness function (taken from [10]) is shown in equation 19.f = d1 + d2 + bonus (19)Where d1 is the distance moved down the �rst corridor, d2 is the distancemoved down the second corridor and bonus is 100 if the robot turns in the correct



direction at the junction, 0 if it doesn't. A trial is aborted if the robot touchesa wall.Jakobi had originally used binary networks in which the connectivity, weightson the connections and node thresholds were genetically encoded [10]. He hadbeen able consistently evolve robust successful controllers in 1,000 generationsusing a similar GA to that described above, with a population of 100. Thismay seem rather a large number of evaluations, but it must be appreciated thatevolving in a minimal simulation i sin many senses harder than in reality, becauseof the extreme use of noise. Hence it would be expected that a greater number ofevaluations would be required than in reality, although this is heavily o�set bythe speed at which the simulations run. The resulting controllers are extremelyrobust, capable of successful behaviour in a wide range of conditions.To date more than 15 runs have been completed using the GasNets. In eachrun success was achieved in less than 100 psuedo generations3, in several casesin less than 50. In other words, the number of evaluations needed was decreasedby a factor of one order of magnitude.Interestingly, some of the successful controllers made use of the gases andsome didn't. All were very heterogeneous as far as the transfer functions ofthe nodes were concerned. In the runs where the �nal successful controllersdidn't use gases, they had been used extensively during the evolution of the�nal population. When the gases were removed all together, it was not possibleto evolve successful controllers within 500 generations. Since the gases are theagents of a form of plasticity in the networks, these observations suggest thatthe Baldwin e�ect [14] is at play, albeit a rather di�erent form than has beenobserved before. This will need further investigation.Many di�erent successful behaviour generating mechanisms were observed.The evolved controller shown in �gure 4 represents a class of mechanisms,makinguse of the gases, of which several examples were seen.Briey, the network shown in �gure 4 works as follows. The motor transferfunctions are such that the default behaviour, in the absence of sensory input,is straight line forward motion. The left most and right most IR sensors (see�gure 3) are connected directly to the right and left motors, respectively. Thisarrangement, coupled with the particular motor transfer functions, provides abasic Braitenburg style obstacle avoidance behaviour. This is what enables therobot to travel along the corridors without crashing. The brief chemical activityinitiated at nodes 1 and 8 by the IR stimulus, and the ensuing transfer functionmodulation, reinforces the Braitenburg behaviour. Nodes 3 and 10 are connectedto the left and right ambient light sensors respectively. When either is stimu-lated by the light shining from the side of the �rst corridor it feeds into thenodes 0 and 7 feedback loop. The transfer functions are such that only a con-tinuous stimuli ramps up the activity levels and initiates the release of gas 2from whichever of nodes 0 and 7 is being directly fed the active AL signal. Theevolved time constants on the gas build up and decay processes mean that onlythe continuous AL stimuli as the robot moves through the light zone (as opposed3 One psuedo generation occurs every N o�spring events, where N = population size.
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Fig. 4. An evolved successful control network for the T-maze task. Network connec-tivity plus the radius of inuence of emitting nodes is shown. These are depicted asellipses as the X scale is twice the Y scale. See text for details.to the very brief IR stimuli from nodes 1 and 8 ensured by the successful obstacleavoidance subnetwork) triggers this part of the circuit. If the left AL sensor isactive it triggers release of gas 2 from node 7. Because node 7 is closer to the leftmotor nodes (12 and 13) than the right motor nodes (5 and 6) it has a strongermodulatory e�ect on their transfer functions. The overall e�ect is to reduce leftmotor output with respect to right. By the time the robot comes to the junc-tion it inevitably turns to the left. In a similar way, if the right AL sensor hadbeen on, the robot would have turned to the right. The underlying Braitenburghobstavcle avoider still works under this modulation. The genetically determinedslow decay of gas 2 is important to the successful operation of this behaviour.Obviously the geometric layout of the network is crucial. Unfortunately spacedoes not allow a more detailed analysis here. Figure 5 shows the transfer func-tions for the network. Note that they cover a very wide range of response types.This was found in every successful controller examined, including those that didnot use gases. This, along with the observed role that the di�erences in transferfunctions plays in successful controllers, suggests transfer function heterogeneitycan be a very useful thing in sensorimotor systems. All of this is moving someway from the kind of positions held in mainstream cognitive science as to whata behaviour generating mechanism should look like. It adds more grist to themills of left-�eld philosophers of cognitive science such as Wheeler [17].4.2 Khepera with more state, the double T-mazeThe second behaviour attempted was that required to perform the double T-maze task. This is illustrated in �gure 6.This time there is a sequence of 2 lights. The robot must turn at a pair ofjunctions in accordance with the directions from which the two lights are shining



Fig. 5. The transfer functions at the nodes of the controller shown in �gure 4(e.g. right,left). The experimental setup was essentially the same as for the singleT-maze, with a slightly modi�ed �tness function.f = d1 + d2 + d3 + bonus1 + bonus2 (20)Jakobi was not able to evolve successful controllers for this task using hisbinary networks. However, with the GasNets, for 5 runs completed to date,success was achieved in 3 runs by 350 generations; in 1 run success was achievedby 700 generations; and in 1 run success was not achieved by 1000 generations.At the time of writing none of these runs has yet been analysed.4.3 Visually guided behavioursIn this section a very brief mention of some on-going joint work with Tom Smithwill be made. We are in the process of investigating the use of GasNets to controla visually guided robot. The Sussex gantry robot [5] is best thought of as atwo wheeled device with a �xed forward pointing video camera. We have beenconcurrently evolving network controllers and the robot's visual morphology (the
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kheperaFig. 6. The double T-maze.genetically speci�ed number and positions of pixels from the camera's image thatprovide the only sensory input to the robot). We are using another of Jakobi'sminimal simulations [10] to evolve a target discriminating behaviour (move to atriangle while ignoring a rectangle) under very noisy lighting conditions.Jakobi reported needing 6,000 generations of his GA to reliably evolve robustcontrollers. We have found successful controllers in less than 800 generationsusing the 4 gas GasNets and the same GA and encoding described earlier. Thistime the GA was allowed to �nd the appropriate number of network nodes byusing gene insertion and deletion operators that allowed the geneotype lengthto vary. A successful controller (complete with evolved visual morphology) isshown in �gure 7. It is structurally much less complex than Jakobi's evolvedcontrollers. Indeed it seems remarkably simple considering the very noisy natureof the lighting and the relative complexity of the task. This work will be reportedon in detail elsewhere and is mentioned here to demonstrate that GasNets arenot merely restricted to good performance on one type of task.5 Conclusions and DiscussionThis paper has introduced a new type of arti�cial nervous system and has shownthat it is possible to use evolutionary computing techniques to �nd robot con-trollers based on these systems. This has been demonstrated for a range ofbehaviours involving two di�erent robots. These successes were achieved usingvery similar setups to those employed by Jakobi when he previously evolvedcontrollers for the same tasks. The main (although admittedly not only) di�er-ence between our experiments and his were the style of network used. He usedfairly standard connectionist type networks while we used GasNets, as describedearlier in this paper. We found that we were able to consistently evolve success-ful controllers in far fewer evaluations than him. Indeed the reduction was by afactor of roughly an order of magnitude.
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