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Abstract

Oscillatory phenomena are ubiquitous in nature and have become particularly relevant
for the study of brain and behaviour. One of the simplest, yet explanatorily powerful, mod-
els of oscillatory coordination dynamics is the the HKB (Haken-Kelso-Bunz) model. The
metastable regime described by the HKB equation has been hypothesized to be the signa-
ture of brain oscillatory dynamics underlying sensorimotor coordination. Despite evidence
supporting such a hypothesis, to our knowledge there are still very few models (if any) where
the HKB equation generates spatially situated behaviour and, at the same time, has its dy-
namics modulated by the behaviour it generates (by means of the sensory feedback resulting
from body movement). This work presents a computational model where the HKB equation
controls an agent performing a simple gradient climbing task and shows i) how different
metastable dynamical patterns in the HKB equation are generated and sustained by the
continuous interaction between the agent and its environment; and ii) how the emergence of
functional metastable patterns in the HKB equation – i.e. patterns that generate gradient
climbing behaviour – depends not only on the structure of the agent’s sensory input but also
on the coordinated coupling of the agent’s motor-sensory dynamics. This work contributes
to Kelso’s theoretical framework and also to the understanding of neural oscillations and
sensorimotor coordination.

1 Introduction

Oscillatory phenomena are ubiquitous in nature, of particular importance to us is the study of
oscillatory dynamics as the generating mechanism of sensorimotor behaviour, a phenomenon that
expands from lower organisms (Dano et al., 1999; Gardner et al., 2006) to large-scale neurodynam-
ics of the mammalian brains (Buzsaki, 2006; Traub and Whittington, 2010). A prominent work
in this area is the empirically grounded theoretical framework of Coordination Dynamics which
seeks to identify general laws of coordination among rhythmic components operating at different
spatial and temporal scales (Kelso, 1995). This framework has motivated many empirical studies
of neural oscillatory dynamics underlying sensory and motor activities (Meyer-Lindenberg, 2002;
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Swinnen, 2002; Jantzen, 2004; Aramaki, 2005; Lagarde and Kelso, 2006) and has opened up dis-
cussion in different areas such as philosophy of cognitive science (Chemero, 2009; Bechtel and
Abrahamsen, 2010; Kaplan and Bechtel, 2011; Stepp et al., 2011) and theoretical neuroscience
(Kelso and Tognoli, 2009).

The main illustrative model for the Coordination Dynamics framework is that described by
the extended HKB equation which captures the temporal relation between the activity of coupled
oscillatory elements (Kelso, 1995; Kelso et al., 1990). This equation has been carefully studied
by manipulating a control parameter that modifies the oscillators’ natural frequencies or their
coupling factor. One of its main dynamical properties is the metastable regime in which the
phase relation variable engages when the control parameter crosses a certain threshold. Metastable
dynamics have been hypothesized to be the dynamical signature of the nervous system underlying
sensorimotor coordination (Kelso and Tognoli, 2009; Tognoli and Kelso, 2009; Bressler and Kelso,
2001). Empirical evidence favouring this hypothesis comes, for instance, from studies showing
correlation between sensory stimulation and transiently synchronized networks in the brain of
animals performing perceptual and motor coordination tasks (Rodriguez et al., 1999; Varela et al.,
2001; Buzsaki, 2006; Pockett et al., 2009; Singer, 2011; Hipp et al., 2011). Despite such evidence
supporting the existence of metastable regimes in the brain of behaving animals, to our knowledge
there are still very few models (if any) where the HKB equation generates the motor behaviour

of an agent interacting in a spatial environment and, at the same time, has its control parameter

modulated, through sensory feedback, by the motor behaviour it generates. Thus, in this work
we investigate the dynamics of the extended HKB equation within a closed sensorimotor loop by
implementing it as the controller of an agent performing a functional behaviour (gradient climbing)
in a simulated two-dimensional environment. The “output” of the extended HKB equation (the
phase relation variable) generates the agent’s motor behaviour and, at the same time, its control
parameter (in our particular case, the variable representing the oscillators’ frequency difference)
is modulated by the agent’s behaviour through its sensory activity. The extended HKB equation
within the agent’s sensorimotor loop will be referred to as the situated HKB model.

The HKB equation has been used to model cases of sensorimotor coupling such as in Kelso
et al. (2009), where a human subject receives sensory feedback from a computer screen and the
human’s behaviour in turn affects the computer. The novelty of the situated HKB model is that
the coupling is spatial and the HKB is not meant to capture the global feedback dynamics but
is used directly as a robotic controller. The resulting dynamics will be shown to have special
properties (e.g. multiple metastable regimes).

In the next section we briefly present the Coordination Dynamics framework. Next we de-
scribe the model and then analyse it; particularly we start by identifying patterns in the agent’s
sensorimotor behaviour and studying their underlying metastable regimes; we analyse the mutual
coordination between the situated HKB model and its control parameter; and carry out an exper-
iment to compare the dynamical and informational properties of the situated HKB model under
open and closed sensorimotor loops. Briefly, we will show i) how different metastable dynamical
patterns in the HKB equation are generated and sustained by the continuous interaction between
the agent and its environment; and ii) how the emergence of functional metastable patterns in
the HKB equation – i.e. patterns that generate gradient climbing behaviour – depends not only
on the structure of the agent’s sensory input but also on the coordinated coupling of the agent’s
motor-sensory dynamics. The analysis of the extended HKB equation within a sensorimotor loop
is a contribution to the Coordination Dynamics framework and, as such, it provides theoretical
insights to understanding the interplay between neural oscillations and sensorimotor behaviour.
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2 Coordination Dynamics

Coordination Dynamics is a consistent framework which can be used to investigate brain dynamics
and behaviour, it was proposed and developed by Kelso (1995) based on Haken’s work on syner-
getics (Haken, 1978). It extends von Holst’s work (von Holst, 1937, 1939) by combining empirical
experiments and theoretical models formulated mathematically to study how the components of
a system interact and produce coherent coordination patterns.

The driving example of Coordination Dynamics is the HKB (Haken-Kelso-Bunz) model which
describes the relative phase dynamic between two non-linearly coupled oscillators (Haken et al.,
1985). This model was originally designed to replicate the type of phase relation dynamics ob-
served in an empirical experiment involving rhythmic behaviour of human fingers. In this exper-
iment a subject rhythmically moves his right and left index fingers in a horizontal plane at the
same frequency of a pacing metronome. The HKB model replicates how the angle between the left
and right fingers changes over time (the phase relation dynamics) given different initial conditions
– fingers in-phase or anti-phase – and at an increasing metronome frequency (Kelso, 1995, p.46).
This model was mainly used to explore the in-phase and anti-phase stable synchronizations, the
transition between them, and their basins of attraction.

Later on Kelso et al. (1990) extended the HKB model by adding a symmetry-breaking pa-
rameter in order to replicate a type of phase relation dynamics between non-identical oscillatory
components, i.e. components with different natural frequencies, which is a more realistic phe-
nomenon in nature (Kelso and Engstrom, 2006). One of the main properties of the extended HKB
model is the existence of metastable dynamics where the variable representing the temporal rela-
tion (i.e. the phase relation) constantly moves in a transient dynamic through regions of the phase
space with low potential energy (representing moments of transient synchronization) followed by
regions with high potential energy (representing moments of desynchronization) and without set-
tling down in point attractors (representing moments of stable synchronization). The graphic in
Fig. 1 depicts the attractor landscape of the extended HKB model considering different values
for the parameter of symmetry breaking. A low value for the parameter of symmetry breaking
generates multistable phase relation dynamics, as schematically represented by the lower curve
with two stable (filled circles) and unstable (open circles) points depicted on the x axis. As the
symmetry breaking parameter increases, the derivative of phase relation also increases (see middle
curve) and consequently the attractor landscape becomes monostable – notice that the middle
curve has only a single stable point. For higher values of the symmetry breaking parameter a
saddle-node bifurcation takes place and both fixed points disappear1. The dynamics of the phase
relation near the region where the fixed points used to be are termed “metastable dynamics”, as
Kelso and Tognoli (2009, p.108) put it:

“In coordination dynamics, metastability corresponds to a regime near a saddle-node
or tangent bifurcation in which stable coordination states no longer exist (e.g., in-
phase synchronization where the relative phase between oscillating components lingers
at zero), but attraction remains to where those fixed points used to be (remnants of
attractor repellors).”

A numerical analysis of the extended HKB equation for a specific set of parameters will be
presented in the results section.

Bressler and Kelso (2001) describe the presence of metastable dynamical regimes of phase
relations in oscillatory brain signals by recording the local field potential (LFP) from up to 15
sites in one cortical hemisphere of a macaque monkey performing a visual discrimination task.
They analysed the density distribution function of phase relations between pairs of LFP signals

1“The saddle-node bifurcation is the basic mechanism by which fixed points are created and destroyed. As a
parameter is varied, two fixed points move toward each other, collide, and mutually annihilate” (Strogatz, 2000).

3



  0 pi/2 pi 3pi/2 2pi

0

Phase relation

D
er

iv
at

iv
e 

of
 

ph
as

e 
re

la
ti

on

Figure 1: Schematic representation of the extended HKB equation attractor landscape. Each
curve depicts the derivative of phase relation (y axis) throughout its state space (x axis) given 3
different values for the symmetry breaking parameter (lower, middle, and upper curves). Stable
points are represented by filled circles and unstable ones by open circles. The phase relation
dynamics changes from multistable (lower curve) to monostable (middle curve) and eventually
metastable (upper curve).

and detected that two cortical sites transiently synchronized with phase relation near −54 degrees
during the interval [105, 155]ms after the stimulus onset. Apart from that time window, during
the whole task ([−70, 400]ms) the same cortical sites were found to be desynchronized (they did
not present any other significant peaks on the distribution phase relations), which according to
them indicates the functional involvement of these sites at a specific stage of the visual discrimi-
nation task. Other cortical sites presented different temporal patterns of coordination presumably
reflecting different functional involvement during the task.

Despite the detailed mathematical and experimental understanding of oscillatory dynamics
of the extended HKB equation, to our knowledge there is no study of how this dynamics might
be affected when it is situated within a sensorimotor loop. In parallel with this work, we have
elsewhere studied what we have called “the situated HKB model” (Aguilera et al., 2012), formal-
izing the dynamics of spatial sensorimotor coupling and analytically solving and comparing the
situated HKB model with its equivalent decoupled canonical HKB model for a monostable para-
metric configuration. In this paper, our goal is to study the situated HKB model operating in the
metastable dynamics. We analyse relationship between behavioural, sensorimotor and internal
oscillatory dynamic patterns; we compare how metastable regimes of phase relations differ be-
tween the situated HKB model and the decoupled-HKB model and study the transitions between
characteristic regimes in the situated HKB model; we carry out an experiment and show that
the dynamical and informational properties of the situated HKB model change in the absence of
a coordinated coupling between the agent’s motor and its sensory dynamics, and also that the
emergence of functional metastable regimes in the situated HKB model depends on the agent’s
motor-sensory coupling.

3 Model description

3.1 The agent and its controller

The model consists of a two dimensional simulated environment and a circular agent whose task
is to climb a linear gradient towards the centre of the environment where the peak is located.
The agent has a body of of 5 units diameter with two diametrically opposed motors and a sensor
randomly positioned at 90 ◦± 5 ◦ relative to the motor axis2. The agent’s sensor is connected to a

2Although the variation of 5 degrees in the sensor’s position increases the likelihood of the optimization algorithm
(explained below) to obtain a more robust solution for the gradient climbing behaviour, it is not necessary for
evolving the parameters of the model.
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controller and the latter connected to both motors, as shown in Fig. 2. The controller’s dynamics
are governed by the extended HKB equation where the difference in natural frequencies (ω) is
modulated by the agent’s sensory input (s), as defined in (1).

mr

ml
HKB

d

I

Figure 2: Agent and its environment. The agent has a sensory input, two motors mr and ml and
is controlled by the HKB equation, see Eq. (1). The gradient in the environment is represented
by the grey scale, where the darker the color the higher the gradient. The highest gradient is
positioned at the coordinates x = 0 and y = 0 in the two-dimensional environment.

φ̇ = sω − a sin φ− 2 b sin(2φ), (1)

where φ is the phase relation between two oscillators at an undetermined level of abstraction4,
s is the sensor activation given by s = c1ḋ, where c1 is a constant and ḋ is the derivative of
the distance from the agent to the centre of the environment; ω is a constant representing the
difference in natural frequencies between two oscillators; a and b are constants representing the
coupling factor. By sensing the derivative of the distance ḋ, the agent is able to perceive a
linear radial gradient with its peak at the centre of the environment. We have chosen this type
of derivative sensing because many organism’s behaviour is based on interactions with different
types of gradients5. Also, for a minimal model, sensing the derivative has the advantage that
the agent does not perceive a continuously increasing input, making the dynamics more regular
throughout the behaviour of the agent.

The equation is integrated with time step 0.001 seconds using the Euler method. The right
and left motors of the agent are governed by Eq. (2) and (3), where c2, c3 and c4 are constants.

mr = c2(cos(φ+ c3) + 1) (2)

ml = c2(cos(φ+ c4) + 1) (3)

4In the experiment carried out by Kelso, the phase relation φ models the angle between the right and left fingers,
as described in section 2. This variable has also been interpreted as the phase relation between neural oscillatory
components underlying the fingers’ coordination (Kelso and Tognoli, 2009). In the context of this work, φ describes
the phase relation of oscillatory components at an undetermined level of abstraction (it can be interpreted, for
instance, as the phase relation between individual neurons, or neuronal groups). Our goal here is not to develop a
model with empirical accuracy, but to raise theoretical issues about oscillatory dynamics underlying sensorimotor
coordination.

5Most of small scale adaptive behaviour occurs along chemical gradients. The microscopic world is a world
of gradients (like thermal gradients or light gradients but mostly chemical gradients). The adaptive behaviour
of small animals (e.g. C. elegans) and individual motile cells (e.g. bacteria but also animal cells migrating
during development) is mostly a gradient-related adaptive behaviour. Navigating smell or heat gradients is also a
stereotypical adaptive task for higher animals.
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3.2 Optimization with a genetic algorithm

In order to obtain an agent performing gradient climbing, a total of 7 parameters (c1, c2, c3, c4,
ω, a, b) were optimized with the microbial genetic algorithm (Harvey, 2001). These parameters
were encoded in a genotype as a vector of real numbers in the range [0,1] linearly scaled, at each
trial, to their corresponding range (a = [0.1, 10], b = [0.1, 10], ω = [17, 22], c1 = [0, 3], c2 = [0, 0.4],
c3 = [0, 2π], and c4 = [0, 2π]). The genetic algorithm (GA) setup was: population size (50);
mutation rate (0.05); recombination (0.60); reflexive mutation; normal distribution for mutation
(µ = 0, σ2 = 0.1); trial length (150 seconds); and trials for each agent (20). At the end of the
20th trial the worst fitness (out of 20) was used as the selective fitness of the agent. The fitness
function was defined by (4):

F =

{

1−
df
di
; if df < di;

0; otherwise;
(4)

Where F is the fitness; di and df are the initial and final distances from the agent to the
centre of the environment where the peak of the gradient is located. This fitness function selects
the agents that perform gradient climbing in an environment with a peak at its centre. The
optimized parameters found by the GA were the following: c1 = 2.72, c2 = 0.36, c3 = 3.44,
c4 = 3.21, ω = 19.67, a = 0.99 and b = 7.94. The GA ran for 150 tournaments (equivalent to
6 generations) and the best agent got a fitness of 0.98. Most solutions found by the GA were
monostable controllers. In order to obtain metastable dynamics we had to run different instances
of GAs, each one with different ranges of ω.

There is no specific reason why the microbial genetic algorithm was used, any other optimiza-
tion method would probably work as the problem is relatively simple. Neither is there a specific
reason why c1 and ω are two different parameters, they could have been optimized as a single
variable since their product is what is actually relevant. We have used two parameters to keep
the model coherent in the sense that c1 represents the sensor strength and the ω the frequency
difference.

Notice that the purpose of the model developed here is not to solve the problem of gradient
climbing (which could be solved by a simple Braitenberg vehicle), but to raise and discuss the-
oretical issues about the interplay between oscillatory and sensorimotor dynamics based on the
analysis of the HKB equation controlling an agent’s behaviour under a metastable regime. In this
sense, we are not looking for optimum nor general solutions for the gradient climbing behaviour
but for a solution where the controller is metastable while the agent is performing the desired
behaviour.

The next sections present the analysis of the fittest agent found the by the GA.

4 Results

In section 4.1 we briefly present two distinct sensorimotor behaviours that the agent engages
in during its interaction with the environment and their underlying metastable regimes in the
situated HKB model. In section 4.2 we analyse how the metastable regimes are generated and
how the transition between them takes place. In section 4.3 we perform an experiment to
compare the effects of motor-sensory coupling on the dynamical and informational properties of
the situated HKB model.

4.1 Metastable regimes underlying sensorimotor behaviours

Fig. 3-A presents the behaviour of an agent during a single trial of gradient climbing. Fig. 3-
B shows how the distance from the agent to the region of highest gradient (the centre of the
environment) changes for 20 trials of the experiment; the agent’s position, orientation and the
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Figure 3: Graphic A. Single trial of an agent’s behaviour in the environment. The agent starts
at the position (x=-30,y=12) and moves up the gradient towards the centre (x=0,y=0). When
the agent approaches the region of highest gradient it starts moving around it, as shown in the
inset that zooms into the agent’s behaviour in the interval t = [80, 90] seconds. Graphic B.

Distance from the agent to the centre of the environment for 20 trials starting at random initial
conditions. The inset zooms into the distance from 80 to 90 seconds for the trial shown in graphic
A. The agents tested take at least 80 seconds to approach the region of highest gradient.

controller’s phase relation (φ) have a random value at the beginning of each trial. The agents
take from 80 up to 105 seconds to move towards the centre of the environment and then they
start moving around it. The patterns of sensorimotor behaviour that the agents engage in when
they are approaching the centre and when they are moving around it are shown in Fig. 4. These
patterns are defined by different (repeatedly observed) closed orbits in the state space of sensory
and motor activities and will be referred to as SM1 and SM2, respectively (SMn standing for
SensoriMotor pattern n).
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Figure 4: Patterns of sensorimotor behaviour in which the agents engage in when they are moving
towards the region of highest gradient (A) and when they are moving around it (B). The agent’s
sensor is shown in the x axis and the difference in speed between its right and left motors (mr−ml,
defined in Equations 2 and 3) is shown in the y axis. Black lines highlight the sensorimotor
dynamics within the time intervals [10, 50]s and [110, 150]s in graphic A and B, respectively. All
agents converge to the same pattern of sensorimotor behaviour during those time intervals.

Underlying the sensorimotor behavioural patterns SM1 and SM2 there are two distinct metastable
regimes of the phase relation (φ). The regimes are defined as the distinct regions of the agent’s
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dynamics that correspond directly to the empirically observed behaviours SM1 and SM2. As the
following analysis shows, the dynamics in these regions have clear differences. Fig. 5-A shows
such regimes for 20 successful trials – those presented in Fig. 3-B. Notice that these regimes are
depicted by showing the state space of the agent’s controller (φ ∈ [0, 2π) in the x-axis) and the
derivative of φ throughout the state space (in the y-axis). The derivative φ̇ is calculated by Eq.
1 at each time step of the simulation. For any initial conditions all controllers converge to the
metastable regimes R1 and R2 of φ for the sensorimotor patterns SM1 and SM2, respectively. In
both regimes the derivative of the phase relation is always greater than zero showing that the
state of the controller never reaches a fixed point. Fig. 5-B shows the density distributions of
φ for R1 and R2. These distributions were generated by dividing the state space [0, 2π) into 48
equally spaced bins and using the values of φ from the time windows [10, 50] s and [110, 150] s (a
total of 40000 data points for each time window) considering a single trial of gradient climbing.
The regimes R1 and R2 have two regions where φ slows down, which can be seen by two peaks
in the density distribution of each regime (φ spends more time in the regions with low derivative,
that is why there are peaks in the density distributions). The difference between distributions
(represented by the line without marks in the graphic) maintains a level slightly below zero and
has a peak in between [π, 3π/2].
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Figure 5: Metastable regimes of phase relation (φ) that the agent engages in while it is moving
towards the centre of the environment and while it is moving around it. Graphic A shows the
metastable regimes in terms of φ (x axis) and φ̇ (y axis) underlying SM1 (black line) and SM2

(grey line). These regimes will be referred to as R1 and R2, respectively (see legend). Graphic B

shows the density distributions of R1 (line with circles), R2 (line with crosses) and the difference
between the distributions (line without markers).

Basically, the purpose of the next section is to understand the coordination between the agent’s
metastable oscillatory regimes – R1 and R2 – and its sensorimotor behaviours – SM1 and SM2.
We will study how these oscillatory regimes are generated and maintained during the agent’s
interactions with its environment and also how the transition between them takes place.

4.2 Generation and transition between metastable regimes

We shall start by analysing the extended HKB equation without the sensorimotor loop. This
analysis does not present any new result that has not been previously presented by Kelso et al.
(1990) and Kelso (1995). However, it is important in the context of this paper to set the ground
to study the situated HKB model. The purpose here is to understand how the control parameter
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s affects the derivative of φ throughout its state space [0, 2π). The controller is studied within
the parameter range s = [−3.92, 3.92], which is the interval of sensory activation when the agent
is behaving in the environment.

Fig. 6-A shows φ̇ throughout the state space of φ given three constant values of s. When
s = −3.92 the state space contains an attractor (black-filled circle) and a repeller (white circle).
When s = 0 and s = 3.92 there are no fixed points and the dynamics of φ are metastable. By
keeping s constant the derivative φ̇ always presents a global minimum at φ = 0.796 and a local
minimum at φ = 3.916 radians. From now on these two points will be referred to as φG and φL,
respectively. Fig. 6-B shows how s changes the derivative at minima φG and φL; note the linear
relationship between these variables. For s < −3.09 (see vertical dashed line) the derivative is
negative at global minimum φG and positive at the local minimum φL, showing that the state
space has at least two fixed points. Above s > −3.09 the derivative is positive at φG, showing that
the state space does not have fixed points. Fig. 6-C shows the bifurcation diagram of φ for the
independent variable s. As s increases within the range [-3.92, -3.09) both fixed points (attractor
and repeller) approach each other; when s ≈ −3.09 both points merge into a single half-stable
point; and when s > −3.09 this single point disappears and φ’s dynamics become metastable.
Summing up, s affects the dynamics of the agent’s controller by linearly changing the derivative
of φ throughout the entire state space [0, 2π); additionally, a) within a certain range of s the
attractor landscape presents two fixed points (an attractor and a repeller) that approach each
other as s increases; and b) above this range the fixed points disappear and the phase relation
dynamics fall into a metastable regime.

We now move to the analysis of the situated HKB model which has its control parameter
s and phase relation φ co-modulating each other through the sensorimotor loop. We selected
a small time window of 1.5 seconds during a single trial of gradient climbing in order to start
presenting the dynamics of s and φ (see Fig. 7). Graphic 7-A shows how the derivative φ̇ at
the points of minima φG and φL are changing over time. The sensor dynamics s (in graphic
7-B) and the derivative at φG and φL (in graphic 7-A) move up and down together due to their
linear relationship. Although the fixed points appear in the state space around the minimum
φG during t1 = [10.53, 10.60] and t2 = [11.18, 11.25] seconds, the phase relation does not reach
the attractor. The reason for that is that during t1 and t2 the phase relation φ is away from the
minimum φG moving in the region near the local minima φL = 3.916 (see horizontal line in graphic
7-C) and when φ reaches the region near φG the sensor value has increased and the fixed points
have disappeared. The main point to understand from this analysis is that the control parameter
s linearly changes the derivative throughout the entire state space of φ, as a result, although
for some values of s the state space shows one or two attractors, the continuous sensorimotor
modulation of s in coordination with φ never allows the system to settle down on such attractors.

By looking at the values of s shown in Fig. 8 we can see how the derivative throughout the
state space of φ is changing during R1 and R2. The greatest difference in the derivative takes place
when φ is around the local minima φL; exactly at φL, for instance, the values of s are ≈ −1.94 and
≈ 1.55 during R1 and R2, respectively; showing that when φ is at the point of local minima, the
derivative throughout the entire state space is lower during R1 than during R2. This difference
explains why there is a peak in between π and 3π/2 in the graphic of density distribution shown
in Fig. 5-B. The state space has its lowest derivative and also fixed points around the global
minimum φG in two situations: a) when φ is within [3.69, 3.82] during R1, and b) when φ is
within [2.65, 3.12] during R2; both shown in the graphic by the values of s below the horizontal
dashed line. Despite the presence of fixed points, φ dynamics never reaches a stable or unstable
state as the state space changes when φ is around the global minimum φG (see that the values of
s are above the horizontal dashed line when φ is around the global minimum φG = 0.796). The
main point to understand from this analysis is how s changes the derivative of the state space of
φ in different ways during the regimes R1 and R2.

We have been describing how s modulates φ by changing the derivative of the latter; however,
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Figure 6: Graphic A. Phase relation φ (x axis) and its derivative φ̇ (y axis) for 3 different
values of constant inputs s = −3.92 (lower curve), s = 0 (middle curve) and s = 3.92 (upper
curve). When s = −3.92 the state space contains an attractor (black-filled circle) and a repeller
(white circle). When s = 0 and s = 3.92 there are two points of minima at φ = 0.796 and
φ = 3.916, respectively. Graphic B. Relation between s and the derivative at the points of
minima φ = 0.796 (black line) and φ = 3.916 (grey dashed line). For s < −3.09 (see vertical
dashed line) the derivative at φ = 0.796 is negative, and for s > −3.09 both points of minima
are positive. Graphic C. Bifurcation diagram of φ (see y axis) for the independent variable s
(x axis). Vertical dashed line is at s = −3.09. The black-filled circles represent point attractors
and the white circles represent the repellers. When s > −3.09 the phase relation dynamics are
metastable.
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Figure 7: Graphic A shows how the derivative φ̇ at points of minima φG (black line) and φL

(grey line) are changing over time. The horizontal line highlights φ̇ = 0. Graphic B shows how
s (y axis) is changing over time. The horizontal line highlights s = −3.09, the threshold at above
which the fixed points disappear. Note the linear relation between the dynamic of s (in graphic
B) and the derivatives at the points of global φG = 0.796 and local φL = 3.916 minima (in graphic
A). Graphic C shows how φ is changing over time. The horizontal lines highlight the points φG

and φL. Vertical dashed lines highlight the time intervals t1 = [10.53, 10.60] and t2 = [11.18, 11.25]
seconds where the fixed points appear in the state space.

φ also modulates the dynamics of s by moving the agent in the environment – i.e. the dynamics
of s and φ are generated by a process of co-modulation between these variables. Thus, the regimes

R1 and R2 are generated and sustained by continuously modifying the derivative throughout the

state space of φ in a structured way through s and, at the same time, by continuously modulating

s through mr and ml. Notice that as φ maps onto mr and ml according to Eq. (2) and (3),
respectively, it is possible to analyse the system by considering only s and φ; that is, the dynamics
of the loop s → φ → (mr,ml) → s can be reduced to the co-modulation dynamics s ↔ φ. Briefly,
the main message of the analysis we have presented so far is that the regimes R1 and R2 are

generated and sustained by different dynamics of co-modulation s ↔ φ. Having seen how R1 and
R2 are generated, in the rest of this section we analyse the transition between these regimes in
terms of the stability of the co-modulation s ↔ φ.

The stability of s ↔ φ during a single trial of gradient climbing is presented in Fig. 9 by using
the Poincare map. At t = 0.2 and t = 0.7 seconds the co-modulation is unstable but moving
towards the region of stability represented by the diagonal line; at t = 1.2 seconds it is near the
stable region with s = −2.3; at t = 7.7 seconds it stabilizes with s = −1.98, corresponding to R1

(some values are not shown in the graphic). The co-modulation dynamics maintains stability while
the agent is moving towards the centre of the environment engaged in the sensorimotor behaviour
SM1. As soon as the agent approaches the centre, at t = 80 seconds, the co-modulation starts
losing its stability, as shown by the sequence of grey points near the region pointed at by the
arrow R1. At t = 101 seconds the co-modulation is totally unstable and transiting to another
stable region; after t = 104 seconds it is near the stable region, and at t = 107 seconds it stabilizes
with s = 1.2. The stabilization completes the transition from R1 to R2. In sum, the dynamics
of s ↔ φ starts unstable, converges to the stable pattern corresponding to R1, becomes unstable
again, and then converges to another stable pattern corresponding to R2.
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Figure 8: Relations between s and φ that generate the dynamical regimes R1 (black line) and
R2 (grey line), respectively. Horizontal dashed line highlight the value of s below which the fixed
points appear in the state space of φ.

The Poincare map can also be interpreted in an alternative way. This map was generated
for the phase relation φ = π/2 which corresponds to the motor activity mr = 1.16 and ml =
0.96 – according to Eq. (2) and (3), respectively. We can read the Poincare map as being the
representation of the agent’s sensory input when its motor states are mr = 1.16 and ml = 0.96.
In this case, when the agent is moving towards the centre of the environment these motor states
map onto a sensory input s ∼ −1.98 (point of stabilization in the Poincare map corresponding to
the regime R1); and when it approaches the centre the motor-sensory dynamics become unstable
and eventually settle down in a different stable pattern with s ∼ 1.2 (point of stabilization in the
Poincare map corresponding to the regime R2). For both values of s (s ∼ −1.98 and s ∼ 1.2) there
is a micro variation in the order of 10−2 as the agent’s movement and consequently the derivative
of the distance to the centre of the environment, which is measured by the agent’s sensor, do not
vary smoothly (shown by the small oscillations in the distance depicted in graphic 3-B).
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Figure 9: Poincare map showing the values of s at every time φ = π/2. The diagonal line
highlights the region of the map where s remains constant at φ = π/2. The numbers near the
black points show the approximated time in seconds of the value of s shown on the y axis. The
arrows indicate the regions to where the co-modulation dynamics s ↔ φ converge during R1 and
R2. These regions are highlighted by the black points.

Notice that the topology of the state space underlying R1 is different from the one underlying
R2; more specifically, the transition from R1 to R2 is not characterized by a movement of the
system to a different region of the state space (e.g. movement to a different basin of attraction),
but by a modification on the topology of the state space [0, 2π) caused by a different dynamic
structure of s.

Also notice that whereas the agent’s internal dynamics operates in a metastable regime, the
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agent as a whole operates in a stable limit cycle dynamics – represented by the trajectories in
state space defined by s and φ depicted in Fig. 8. These regimes are compatible with each other
as the fact that the variable φ is metastable – characterized by the passage near saddle node
bifurcation points (φG and φL) – does not exclude the existence of stable limit cycles in the whole
system consisting of s, φ, mr and ml.

Basically, so far we have shown two patterns of sensorimotor behaviours SM1 and SM2 and
their underlying metastable dynamical regimes R1 and R2, we have shown that these dynamical
regimes are generated and sustained by the continuous co-modulation between s and φ; and
have analysed how the transition between regimes takes place in relation to the stability of the
co-modulation s ↔ φ.

4.3 Effects of the motor-sensory coordinated coupling on the HKB

model

In this section we perform an experiment to analyse how the dynamical and informational prop-
erties of the agent’s internal oscillatory dynamics change when the modulations s → φ and φ → s
are not coupled with each other. A single trial of the experiment consists of an agent performing
gradient climbing starting from a random position and orientation in the environment and with
random initial phase relation. We record the sensory dynamics of this agent and then play it
back to the same agent starting from the same position and random initial phase relation. By
doing that the controller of both agents (normal and recorded) are modulated by the same control
parameter dynamics – i.e. s → φ is the same for both agents – however only the first agent is able
to modulate its own control parameter – i.e. only the first agent has φ → s coupled to s → φ.
These agents will be referred to as “coupled” and “decoupled”, respectively.

For all initial conditions tested (10000 trials) the dynamics of the internal oscillatory dynamics
of the coupled agent always converges to R1 and then it switches to R2 (such dynamical pattern
transition will be written as R1  R2). This result is exactly what we have shown in the previous
section. On the other hand, the internal dynamics of the decoupled agent might converge either
to the same pattern R1  R2 or to a different one R3  R4, see the density distributions of phase
relations for these patterns in Fig. 10. Accordingly, the dynamics between s and φ in the coupled
and decoupled agents may also differ from each other, as shown in Fig. 11.

The probabilities of convergence to either R1  R2 or R3  R4 depend on the difference
between the initial values of φ in the coupled and decoupled agents, as shown in Fig. 12. The
initial distance from the agent to the centre of the environment and the angle of the agent’s
body in relation to the centre do not affect the regimes to which the controller converges. The
probability of the decoupled agents to converge to R1 R2 given a initial phase lag within (0,0.17]
is 97.6% (see first bar on the left of the graphic); and for a lag within (6.11,6.28] the probability
is 99.3% (see last bar on the right of the graphic). The probability of the decoupled agents to
converge to R3 R4 given an initial phase lag within (2.62,2.79] is 98.2% (see the longest grey
bar in the region before π radians). When the agent converges to R3 R4 the agent’s behaviour
is totally non-functional as it keeps moving in circles around its starting position.

Summing up, the dynamical properties of the agent’s controller depends on whether φ mod-
ulates s; when there is modulation, the controller always converges to R1  R2. In the absence
of modulation the controller might converge either to the functional R1  R2 or to the non-
functional R3  R4. This result suggest that the emergence of functional metastable patterns
in the situated HKB model – i.e. patterns that generate gradient climbing behaviour – depend
not only on the structure of the agent’s sensory input but also on a coordinated coupling of the
agent’s motor-sensory dynamics.

Finally, we study how the informational properties of the system change when the modulations
s → φ and φ → s are not coupled to each other. The amount of information that the controller
of the decoupled agent carries about sensory stimulation is equal or smaller than the amount
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Figure 10: Density distributions of the oscillatory regimes that the decoupled agents (those that
receive the recorded input of an agent with full sensorimotor coupling—see text for details) might
converge to. The oscillatory dynamics converges either to R1  R2 or to R3  R4 (see legends).
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Figure 11: Trajectories in the state space of s and φ for the decoupled agent. Initially s and φ
converge to either a pattern that generates R1 or to another one that generates R3 (shown in
graphic A). Then, they switch either to a pattern that generates R2 or R4 (shown in graphic B).

of information carried by the controller of the coupled agent. The amount of information is
equal when the controller converges to R1  R2 and smaller when it converges to R3  R4.
This difference is analyzed with information-theoretic measures applied to s and φ dynamics
considering 20 trials of the experiment in which the coupled agent converges to R1  R2 and the
decoupled one to R3  R4 (methods are described in the Appendix). Particularly, we measured:
a) the Shannon entropy of the sensor – referred to as H(s) – which gives the amount of bits
needed to “codify” the sensory dynamics; b) the mutual information between s and φ of the
decoupled agent – referred to as I(s;φd) – which gives the amount of information the controller
has about the sensory dynamics; and c) the conditional mutual information between s and φ of
the coupled agent given φ dynamics of the decoupled agent – referred to as I(s;φc|φd) – which
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state space [0, 2π) was divided into 36 equally spaced intervals represented by the bars.

gives the amount of information carried by the controller of the coupled agent that is not already
present in the controller of the decoupled agent. In essence these measures will inform us about
how the information present in the controller about sensory activity changes with and without
the modulation φ → s – see Fig. 13.

The agent’s sensory dynamics needs ≈ 5 bits to represent all its possible states, as shown
by H(s). The controller of the decoupled agent carries ≈ 3.5 bits of information about the
sensory dynamics, as shown by I(s;φd); and by adding the modulation φ → s the amount of
information increases by ≈ 0.5 bits (≈ 14%), as shown by I(s;φc|φd). This result suggests that
the informational content that the agent’s controller carries about its control parameter s is
greater when φ and s modulates each other than when only s modulates φ or, in other words, the
modulation of sensory activity by motor behaviour increases the amount of information present
in the agent’s oscillatory network.
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Figure 13: Information-theoretic measures for the agent’s controller with and without the mod-
ulation φ → s. All measures represent the mean over 20 trials and error bars their standard
deviation. On average the agent’s sensor entropy H(s) remains around 5 bits. Under open-loop,
the mutual information between the decoupled agent’s controller and its sensor I(s;φd) stays at
≈ 3.3 bits while the agent is approaching the centre of the environment (time in seconds is repre-
sented on the x axis) and slightly increases to ≈ 3.6 when the agent is moving around the centre
of the environment. The controller of the coupled agent carries 0.5 bits of additional information
about the sensor that is not present in the controller of the decoupled agent, shown by I(s;φc|φd).
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5 Discussions and conclusions

The contribution of this paper is twofold, it presents a dynamical analysis of the extended HKB
equation within a closed sensorimotor loop and also gives theoretical insights into the interplay
of sensorimotor behaviour and neural oscillatory dynamics.

We have shown qualitatively different sensorimotor behaviours – SM1 and SM2 – and their

underlying metastable regimes of phase relations – R1 and R2, respectively. This result is relevant
mainly in the context of the Coordination Dynamics framework as it presents a simple case of
the relation between metastability in the HKB model and sensorimotor behaviour. We have also
shown that the regimes R1 and R2 are generated and sustained by continuously modifying the

derivative throughout the state space of φ in a structured way through s and, at the same time, by

continuously modulating s through φ via mr and ml. In the context of Coordination Dynamics,
this result helps to understand how different metastable regimes can be generated and sustained by
the HKB model when it is within a sensorimotor loop. More generally, this result suggests that an
agent’s internal oscillations depend on sensorimotor dynamics to engage in functional metastable
regimes; that is, the ongoing interaction involving an agent and its environment generates and
sustains the agent’s coherent metastable oscillatory regimes.

The density distributions of phase relations for the regimes R1 and R2 – presented in graphic
5-B – suggest that, for this specific model, the synchronization strength between the oscillators
is enough to distinguish between the different sensorimotor patterns the agent can engage in.
Particularly, during SM1 and SM2 the oscillators get synchronized in the same ranges of phase
difference [0, π/2] and [π, 3π/2]; but the magnitude of synchronization at [π, 3π/2] is higher during
SM1 than during SM2. This result is in accordance with some empirical works in neuroscience
that seek to identify synchronized clusters in the brain correlated to an animal perceptual-motor
activity, as cited in the Introduction section. Hipp et al. (2011), for instance, have found that the
magnitude of synchronization in the beta and gamma frequencies across distributed brain areas
could predict a subject perception – bars crossing one another or bouncing off each other. For a
more detailed discussion on the functional roles of synchronous and desynchronous oscillations for
the generation of coherent sensorimotor coordinations see Santos et al. (2012). There the authors
analyse a theoretical model and suggest that i) the information about an agent’s sensorimotor
dynamics is evenly distributed throughout the entire range of phase relations without a privileged
status to either synchronous or desynchronous oscillations and ii) both synchronous and desyn-
chronous oscillations carry similar causal contribution for the generation of an agent’s coherent
sensorimotor coordination.

Another result we have shown is that the transition from R1 to R2 takes place when the

co-modulation between s and φ becomes unstable. This result suggests that an agent’s internal
oscillations switches between functional metastable regimes when the dynamics of interaction
involving the agent and its environment becomes unstable. While a pattern of motor activity is
mapped onto another pattern on the agent’s sensory activity – i.e. the interaction is stable – then
the agent’s internal dynamics settles down into a metastable pattern (e.g. R1); but once the same
motor activity starts generating a different sensory stimulation – i.e. the interaction becomes
unstable – the agent’s internal dynamics makes a transition to another metastable pattern (e.g.
R2). This result shows how the transition between dynamical regimes in the situated HKB model
depends on the stability of the agent’s sensorimotor contingencies.

The experiment with recorded input further investigates the continuous mutual coordination
and interdependence between the agent’s sensorimotor behaviour and its internal oscillatory dy-
namics. It shows that the dynamical properties of the agent’s controller depends on whether φ
modulates s; when there is modulation the controller always converges to R1  R2 and in the

absence of modulation the controller converge to either R1  R2 or R3  R4. In other words,
the modulation of the agent’s sensory dynamics by its motor activity (φ → s) assures that the
controller converges to the functional metastable regimes R1 and R2 that generate coherent senso-
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rimotor behaviours for the agent to perform gradient climbing. In the absence of this modulation
the agent’s internal oscillations and its motor-sensory dynamics might become uncoordinated and
consequently generate a non-functional interaction between the agent and its environment. More
generally, this experiment suggests that functional metastable oscillatory regimes are tightly de-
pendent on the agent’s sensorimotor contingencies, as when the agent’s sensory activity is not
coordinated to what the agent is doing then the internal oscillations might converge to a non-
functional regime.

The modulation of the agent’s sensor by its motor behaviour through the environment not
only influences the dynamical properties of the agent’s controller, but might as well increase the
mutual information between the agent’s controller and its sensory dynamics. Particularly, we
have shown that the mutual information between φ and s is greater when there is co-modulation

s ↔ φ than when only s modulates φ. This result should be more carefully investigated with more
variations of the experiment as it could be only by chance that the regimes R3 and R4 presented
a mutual information lower than R1 and R2; however, it still remains interesting for opening the
discussion on whether the uncertainty of neural oscillations about sensory stimuli decreases under
modulation of motor activity.

These results and the type of mathematical analysis we have carried out throughout this
paper can contribute to the ongoing debate about the constitutive role of action for perception,
bringing it down to the field of neurodynamics. In short, proponents of the constitutive role of
action for perception (O’Regan and Noe, 2001b,a; Noe, 2004; Myin and O’Regan, 2008) claim
that perceiving is a form of action:

In the sensorimotor contingency theory, the experienced quality of perceptual feelings
is taken to arise from the precise ways in which one perceptually explores one’s en-
vironment. Sensorimotor contingencies [. . . ] are the ways in which, during such an
exploration, perceptual input varies as a function of perceptual exploratory actions.
(Myin and O’Regan, 2008, p.192)

Opponents of this view (Clark, 2006; Prinz, 2006), concede that action is causally relevant
for perception, but not that it is necessary for perception to occur, i.e. action is not constitutive
of perception. Without going into details we want to point out that the abstract philosophical
discussion about the role of action for perception can benefit from the mathematical and compu-
tational modelling we have presented here. In particular it can illustrate in detail the notion of
constitution. In the case of our agent, reaching R1  R2 was not just the result of receiving the
appropriate input (caused by direct or indirect motor activity), but the result of a fine grained
coordination process that depends on fine grained sensorimotor contingencies. In more complex
and realistic sensorimotor conditions (both on the side of the controller, the environment and the
sensory and motor functions), it is to be expected that the available number of metastable regimes
( Rn) be much higher than the 4 we found on our agent. As a result, if one was to interpret a
particular metastable regime as a neural correlate of a perceptual “state”, it would be practically
impossible to achieve it without the right sensorimotor contingencies being generated-by and, in
turn, modulating the very metastable oscillatory regime. It is in this sense that the constitutive

nature of action for perception can be explicitly identified and characterized. In the context of
the coordination dynamics theoretical paradigm, the present model becomes an explicit illustra-
tion of the interaction between what Kelso and Engstrom (2006) call the organism∼environment
complementary pair and the perception∼action complementary pair.

The metastable regimes that the HKB model can illustrate have been hypothesized to be
the signature of brain functioning. Despite evidence of metastability in empirical experiment of
animals performing perceptual motor coordination tasks (as described in the introduction), to our
knowledge there was no previous model of a situated HKB system that operates in a metastable
region, coupling internal metastable oscillations to sensorimotor coordination dynamics through
a control parameter. The model we have developed and analyzed in this paper has contributed
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to fill this gap and has shown the tight dependency that can be established between an agent’s
neural oscillatory metastable regimes and the sensorimotor contingencies they make possible when
coupled to the environment.

A Information-theoretic measures

Shannon’s entropy (Shannon, 1948) is shown in Eq. (5), where p(xk) is probability mass function
of the outcome xk.

H(X) = −
b

∑

k=1

p(xk)log(xk), (5)

The mutual information (Shannon, 1948; Cover and Thomas, 2005) is shown in Eq. (6), where
H(X), H(Y ) are the entropies of the sets X and Y respectively, and H(X, Y ) is the joint entropy
of both sets.

I(X;Y ) = H(X) +H(Y )−H(X, Y ), (6)

The standard measure of conditional mutual information (Cover and Thomas, 2005) is shown
in Eq. (7).

I(X;Y |Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z

p(x, y, z)log2
p(x, y|z)

p(x|z)p(y|z)
(7)

where X, Y and Z are sets of discrete random variables; and p is the probability mass function
for the given subscripts (x,y and z).

The temporal dynamics of the information-theoretic measures were captured by using a moving
window of 10 seconds; i.e. the probability mass functions were calculated considering a moving
window containing 10000 data points. The continuous value of s ∈ [−3.92, 3.92], φc and φd

∈ [0, 2π) were discretized into 50 equally spaced bins.
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