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Abstract

We propose a previously unrecognized kind of informational entity in the brain that is capable of acting as the basis for
unlimited hereditary variation in neuronal networks. This unit is a path of activity through a network of neurons, analogous
to a path taken through a hidden Markov model. To prove in principle the capabilities of this new kind of informational
substrate, we show how a population of paths can be used as the hereditary material for a neuronally implemented genetic
algorithm, (the swiss-army knife of black-box optimization techniques) which we have proposed elsewhere could operate at
somatic timescales in the brain. We compare this to the same genetic algorithm that uses a standard ‘genetic’ informational
substrate, i.e. non-overlapping discrete genotypes, on a range of optimization problems. A path evolution algorithm (PEA) is
defined as any algorithm that implements natural selection of paths in a network substrate. A PEA is a previously unrecognized
type of natural selection that is well suited for implementation by biological neuronal networks with structural plasticity.
The important similarities and differences between a standard genetic algorithm and a PEA are considered. Whilst most
experiments are conducted on an abstract network model, at the conclusion of the paper a slightly more realistic neuronal
implementation of a PEA is outlined based on Izhikevich spiking neurons. Finally, experimental predictions are made for the
identification of such informational paths in the brain.
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Introduction

A unit of evolution as defined by John Maynard Smith is any

entity that has multiplication, variation and heredity [1]. If units

have differential fitness they can evolve by natural selection. Units

of evolution [1] at the same level of selection [2] are generally

considered to be discrete non-overlapping individuals, for

example, living organisms, B-cells undergoing somatic selection,

ribozymes in the RNA world, and binary strings in a genetic

algorithm. The mechanism by which the above units multiply with

unlimited heredity depends on template replication [3]. The

fundamental process of natural selection using explicit multiplica-

tion by template replication to copy information is shown in

Figure 1.

It was template-replication-based natural selection that inspired

John Holland to invent the now famous genetic algorithm [4]. But

as we will show, a discrete non-overlapping symbolic sequence,

e.g. a ‘genetic’ substrate is not the only kind of unlimited heredity

substrate that can be a kind of unit of evolution.

This paper proposes an alternative informational substrate (and unit of

evolution in a weaker sense) that can accumulate adaptations when in the

context of a population of such units, by natural selection, but in the absence of

explicit multiplication by template replication of such units. What is more,

we propose a realistic physical implementation of these units,

which from now on are referred to simply as paths.

The notion of a path as a unit of evolution rests on our insight

that natural selection need not act between physically independent

individuals as shown in Figure 1. Instead, natural selection can act

on paths in a directed graph, e.g. in a neuronal network, if the

covariance between the phenotype of that path and the fitness of

that path is not outweighed by transmission bias due to mutational

exploration, and environmental change [5]. This more general

formulation of natural selection was originally discovered by Price,

i.e. natural selection takes place when there is covariance between

a trait and the probability of transmission of that trait, irrespective

of whether that transmission is achieved by explicitly multiplying

entities as required by John Maynard Smith or by some other

recipe (such as path evolution in which there is no explicit

multiplication of paths). Similar ideas have been presented by

Steven Frank who uses the generality of Price’s formulation to

describe Darwinian processes occurring in development and

learning [6,7]. George Price describes what it is to be a ‘‘natural

selection cake’’. John Maynard Smith describes one way to make

the ‘‘natural selection cake’’. Path evolution is best seen as yet

another way to make this class of cake.

Paths in a network have some benefits compared with non-

overlapping genetic units of evolution. The number of possible

paths in a network can be far greater than the number of nodes or

edges in the network because each node and edge can be part of

many paths [8]. The number of possible paths in a brain-sized
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network is beyond astronomical; a desirable feature for an

informational substrate. The same supra-astronomical property

has been described for the more complex organizations known as

polychronous groups (stereotyped neuronal spike patterns) ob-

served by Eugene Izhikevich in recent models of spiking neuronal

networks with delays [8]. We consider the important relation of

neuronal paths to polychronous groups in the Discussion.

The majority of this paper examines a special kind of path

evolution algorithm, based on a tournament selection genetic

algorithm, to show the capacity for paths to act as unlimited

heredity informational substrates. Having convinced ourselves that

paths in networks (that have some general properties) can indeed

exhibit all the crucial behaviours of a unit of evolution, we produce

a more realistic neuronal path evolution algorithm based on a

spiking neural network with synaptic weights modulated by

Dopaminergic reward that preserves these required properties

and so also allows natural selection of paths.

Using the first abstract model of paths, a standard and

extremely unsophisticated genetic algorithm called a microbial

genetic algorithm [9] is used to evolve paths in a network, in order

to merely demonstrate that paths can in fact act as unlimited

hereditary substrates for an evolutionary algorithm. From the

population perspective, each path is interpreted as an individual

candidate solution, one network consisting of many potentially

overlapping paths/candidate solutions. Given appropriate path

traversal, weight change and structural plasticity rules (that we will

describe in due course) a path may be seen as a unit of evolution in

the sense that it exhibits multiplicative growth (although not explicit

replication), variation, and heredity. Each path phenotype is

associated with a reward that determines whether the edges of that

path are strengthened or weakened following traversal. A pair-wise

tournament selection genetic algorithm (microbial GA) compares

the reward obtained by two paths. The directed edges of the

winning path are strengthened, whilst the directed edges of the

losing path are weakened. Edges shared by both paths are not

changed. Each time a node is activated there is a probability that it

will mutate, i.e. produce an alternative route that bypasses that

node. This generates the potential for a novel but correlated path

with a novel but correlated phenotype. By this process the more

frequently traversed paths are responsible for most of the

exploration. Nodes that are inactive for some period of time

become disconnected.

We find that the path-based GA (PEA) compares favourably

with the standard gene-based GA on a range of combinatorial

optimization problems and continuous parametric optimization

problems. However, there are important and interesting differ-

ences. For example, the PEA more readily appears to sustain a

memory of past selective environments and can store previously

discovered characters for reuse in later optimization tasks. Finally,

a more realistic neuronal PEA is presented showing for the first

time how natural selection can occur in a biologically plausible physical

system with unlimited heredity and yet without template replica-

tion.

What is this paper not? The main aim of this paper is to show

that paths can be informational substrates in the brain. It is not to

show that a microbial GA acting on paths in the present form is

superior to other optimization algorithms in computer science. In

fact, we do not believe that this version of a PEA in precisely its

present form is implemented in the brain. It is presented here to

allow a comparison between standard genetic and novel path

based hereditary substrates. The paper is intended to convince the

reader that competing, mutating, and crossing over of neuronal

paths is a plausible substrate for heredity in the brain, that could

potentially be used by a range of possible PEAs. In fact, the more

realistic PEA presented at the end of this paper provides a

demonstration that more neuronally plausible algorithms could

be PEAs, i.e. use paths as hereditary substrates for natural

selection.

To summarise, methodologically the justification for the

comparison between a standard microbial GA and a path based

microbial GA is to use a simple (and relatively unsophisticated)

genetic algorithm (specifically one that does not require global

operations such as explicit sorting of all genotypes) to demonstrate

the hereditary capacity of a new kind of informational
substrate in the brain. Of-course it may be possible to

optimize path phenotypes using other kinds of PEA, even to use

path-based information for other algorithms that are not PEAs. At

the end of the paper a more realistic PEA is presented that is quite

different from the microbial GA, but is still an example of natural

selection of paths and hence can be called a PEA.

Figure 1. One generation of natural selection by template replication. At time t the population consists of 4 individuals with two
phenotypes b1 = 0111 and b2 = 0101. The frequency of these phenotypes is q1 = 1 and q1 = 3. One generation involves template replication (possibly
with mutation not shown) and removal of individuals to maintain the same population size. In the above diagram, this results in the same two
phenotypes but with different frequencies q1 = 2 and q2 = 2 respectively. According to the Price equation, the fact that phenotypic traits covary with
fitness causes fitter traits to increase in the population [5].
doi:10.1371/journal.pone.0023534.g001

Paths as Units of Evolution
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Simple Examples of Paths in Networks
Figure 2 shows two networks on the left, and all the paths they

contain on the right. The top network contains two paths, each of

which has a distinct phenotype. The pink path has phenotype

0101 and the green path has phenotype 0111. Unfilled circles

represent nodes with node phenotype 0, and filled circles

represented nodes with node phenotype 1. The network on the

bottom of Figure 2 contains four paths, shown on the right. Three

of the paths have the same phenotype (pink, 0101) and one path

has phenotype 0111 (green).

Path Traversal. Note that each directed edge is associated

with a weight between zero and one. The sum of weighs out of one

node is always normalized to one after any weight change.

Weights correspond to transition probabilities (weights) Pij and are

used to determine the frequency of a path. The probability of

traversal (we will call this the frequency) of that path is the product

of the weights Pij along that path. A node can be active or inactive.

To generate a path, the start node is activated, and all other nodes

are inactivated. In one time-step, the active node will then cause

activation of one downstream node, chosen by roulette wheel

selection over the outflow weights to all downstream nodes of the

active node. The original active node is then inactivated.

Therefore, at any one time, only one node is active in the

network. This process iterates until the finish node becomes

activated, at which point the path has been generated.

Given this probabilistic traversal scheme, it is easy to see that

both networks at the top and bottom of Figure 2 have the same

relative frequency of phenotypes as at time t in the traditional

template based natural selection scheme shown in Figure 1. Each

phenotype b, e.g. 0101, we will index with i, giving bi. Each

phenotype bi has frequency qi. The frequency qi of a phenotype is

defined as the sum of the frequencies of paths with that phenotype

bi. The frequency of an individual path is the proportion of times

that that particular path is traversed when the start node is

stimulated. Note that the fact that two different networks can

produce the same frequency of phenotypes (as in the top and

bottom networks in Figure 2) means there is a redundant (many-

to-one) encoding of phenotypes by paths, and this may permit

non-trivial neutrality [10], i.e. the probability distribution of

phenotypes reachable by single mutations of paths may differ

depending on the underlying configuration of paths that generated

them. Later we will see that this allows the network to structure

exploration by learning from previous environments.

Paths as Units of Evolution. Whilst paths exhibit

multiplicative growth, but do not explicitly replicate (multiply) in

the sense that they do not reconfigure non-overlapping material to

take on the same form as a parental entity. The increase or

decrease of the frequency of a path occurs because there is

strengthening (or weakening) of the transition probabilities Pij

along a path. Whether there is strengthening or weakening of these

transition probabilities depends on the reward obtained by a path.

Paths are units of evolution if multiplicative growth is sufficient,

rather than explicit multiplication. Note that because paths are

overlapping, the multiplicative growth of one path also is

multiplicative growth of parts of other paths.

Paths exhibit variation. Variation exists because each path can

have a distinct path phenotype constituted by the order of node

phenotypes along that path. Paths exhibit heredity by two

mechanisms. Firstly, when a path undergoes multiplicative growth

by increasing Pij along that path, i.e. when its frequency increases,

this results in the increase of the frequency qi of its associated

phenotype bi in the population of path phenotypes. Secondly,

when a path mutates (to be described later) correlated variability

exists because a new path phenotype, whilst not identical to the

parental path phenotype, will still resemble the parent’s path

phenotype because a mutant path is always a short bypass of the

parental path and therefore overlaps with much of the parental

path, i.e. like begets like. Correlated variability was shown to be a

Figure 2. Two networks and the paths they contain. Paths with phenotype 0101 are shown in pink. Paths with phenotype 0111 are shown in
green. The transition probabilities associated with each edge are marked. Note that here all the outflow transition probabilities from one node sum to
one.
doi:10.1371/journal.pone.0023534.g002

Paths as Units of Evolution
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fundamental requirement for evolvability that was lacking in a

previous proposal of an alternative to template replication due to

compositional inheritance [11]. Hereditary and correlated varia-

tion of paths is necessary for them to be units of evolution.

Node Mutations. The mechanism of pathway mutation is

shown in Figure 3A and is based on the idea of quantal synaptic

mutation originally developed by Adams [12] and for which

evidence has recently been found in the form of activity dependent

structural plasticity [13,14]. On the top left is seen a mutation of

the first node of the network that was previously shown at the top

of Figure 2. Mutants occur with a certain probability, m, each time

a node is activated. A node mutation involves creating a new node

at the same layer (drawn in the figures above or below the parent

node). The new node has weak initial connection strength from the

node that activated the parent node, and a connection of strength

1 to the node that was activated by the parent node. This preserves

the original paths, yet creates new alternative paths. Note that

‘creating a new node’ can be equivalent to connecting to and from

a previously existing unconnected node, and this will be the

neuronal interpretation given in the later more realistic model.

The path phenotypes of the alternative pathways will be correlated

with the path phenotypes of the paths that contain the node that

underwent a mutation. Initially the alternative paths are traversed

with low probability, in other words the frequency qi
m of a mutant

path phenotype bi
m in a population of path phenotypes will be low,

if that path phenotype did not previously exist in the population.

Note that this kind of mutation could not occur in the population

shown in Figure 1. Because a node can be involved in many paths

each having different path phenotypes, a single node mutation can

change the frequency of many path phenotypes at the same time.

This is one of the features that distinguish the path evolution

algorithm from a standard genetic algorithm. In some cases this

causes interference, but in others this allows constructive guidance

of search. We will see in the simulations that the algorithm is

capable of controlling the extent of overlap to suit the problem at

hand, e.g. in the case where the network is evolved in variable

environments, two non-overlapping paths are generated and

maintained in memory.

Path Crossover. Path crossover occurs with probability x
whenever two distinct paths differ in reward, see Figure 3B. A

weak weight is formed from a random layer in the loosing path to

the next layer in the winning path. Another weak weight is formed

from a random layer (after the first point of crossover) in the

winning path to the next layer in the losing path. Thus, this is a

two-point crossover that creates a new weak path that consists of

part of the loosing path and part of the winning path.

The Evolutionary Theory of Neuronal Paths
Evolutionary Dynamics of Paths in Fixed Networks. Let

us consider the evolutionary dynamics over one generation of the

simple network at the top of Figure 2. The frequency of the pink

path is also the frequency of the path phenotype b1 = 0101, namely

q1 = 0.25, because only one path has that phenotype. The

frequency of the path phenotype b2 = 0111 is q2 = 0.75, and is

the frequency of the green path. For more complex networks the

frequency of a path phenotype will be the sum over the

probabilities of taking all paths with that phenotype. So now we

have the frequencies of phenotypes in the ancestor generation at

time t. Let us assume that b1 has reward r1 = 2 and b2 has reward

r2 = 3. Ignoring mutation for now, let one generation consist of

choosing two paths. Each path is generated according to the

roulette wheel traversal method described previously. From these

two paths the winning path is chosen as the path with the highest

reward associated with it. The probability of choosing path 1 twice

is P(1,1) = (0.75)2. The probability of choosing path 1 and path 2 is

P(1,2)+P(2,1) = 2(0.75)0.25. The probability of choosing path 2

twice is P(2,2) = 0.252. Only when different paths (with distinct

path characters) are chosen is a winner and looser defined.

Therefore, with probability 0.375 per generation, path 2 will be

chosen as the winner and path 1 as the looser. The transition

probabilities Pij are then modified as follows. The edges along the

winning path (not shared by the losing path) will be strengthened

according to the following rule…

DPij~(1zl)Pij ð1Þ

and the edges along the losing path (not shared by the winning

path) will be weakened according to the following rule…

DPij~(1{l)Pij ð2Þ

for the losing path, followed by normalization over each set of

outflow edges for which weights were changed. Specifically, if

l= 0.1 then the weight of the edge to path 1 will decrease from

0.75 to 0.7560.9 and the weight on the edge to path 2 will

increase by 0.2561.1, which after normalization gives values new

transition probabilities 0.71 and 0.29 respectively. By this learning

rule the path character with the higher reward increases in the

population and the path character with the lower reward

decreases.

Let us consider a more general formulation of the above

dynamics. Mathematica File S1 shows a deterministic model

constructed with dynamical equations that captures the essence of

natural selection in these path-based systems. A path is a genotype.

A node on a path is an allele. A locus consists of all nodes on paths

a certain number of nodes away from the start node (i.e. in the

same layer). The frequency of a path is the probability that activity

passes along that path when the start node is stimulated. The

frequency of a phenotype is the probability that that phenotype

will be produced when the start node is stimulated. An

understanding of the system will involve a description of the

dynamics and links between these various concepts.

The kind of network at the top of Figure 2 can be considered as

a system with one locus and two alleles. The two alleles are the two

parallel nodes at the same locus (layer) of each path. Let us set the

initial weight to one of these nodes as w1 and the other weight

w2 = 12w1 because the total outflow weight from the common

preceding node must sum to 1. Weight change only occurs if two

different paths are chosen in the two traversals available in each

generation. Therefore, weight change occurs with probability

2w1(12w1). With probability 122w1(12w1) there is no weight

change. Let us assume (without loss of generality) that the winning

path (i.e. the path with higher reward) is associated with the node

with weight w1. Then the new weight at time t+1 of w1 is given by

w1,tz1~2w1(1{w1)
w1(1zl)

w1(1zl)z(1{w1)(1zl)

z(1{2w1(1{w1))w1

ð3Þ

For initial values w1 = 0.1, w2 = 0.9, and l= 0.1, this gives the

dynamics shown in Figure 4.

The path (and phenotype) associated with higher reward

reaches fixation, whilst the one with the lower reward goes extinct.

Now let us consider the more complex network in Figure 3A.

Here there are four paths and four phenotypes, or two loci with

two alleles at each locus. Let the two weights at the first locus be

Paths as Units of Evolution
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Figure 3. Mutation is implemented using bypass routes. (Part A) A single mutation to the network in Figure 2 produces two new paths and
two new path phenotypes (Right). (Part B) 2-point crossover between a winning path (green) and a losing path (red).
doi:10.1371/journal.pone.0023534.g003

Figure 4. Selection between two alleles at one locus. The allele associated with higher reward reaches fixation, whilst the other allele goes extinct.
doi:10.1371/journal.pone.0023534.g004

Paths as Units of Evolution
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w1 = x and w2 = (12x) and we two weights at the second locus be

w3 = y and w4 = 12y. The frequency of each path is then…

P(A)~xy

P(B)~x(1{y)

P(C)~(1{x)(1{y)

P(D)~(1{x)y

ð4Þ

Again, the weights associated with the winning path are changed

as in (1) and the weights associated with the losing path as in (2)

followed by normalization. Consider the cases in which w1 and w2

will change. This happens only when the path pairs AC, AD and

BC are traversed with probabilities P(AC) = 2 P(A) P(C), P(AD) = 2

P(A) P(D) and P(BC) = 2 P(B) P(C), respectively. When the other

pairs are traversed, either fitness is identical and there is no change

in weights, e.g. (B & D), or the paths do not differ at the w1 and w2

edge, e.g when paths (D&C) or (A&B) are taken. Assume that in

this case we wish to minimize the number of 1’s (filled circles) in

each path. Looking at each case in turn then, A beats C, A beats

D, and B beats C, and so w1 will always be strengthened or not

changed at all in each generation according to the following

equation…

w1,tz1~ P(AC)zP(AD)zP(BC)½ � w1(1zl)

w1(1zl)z(1{w1)(1zl)

z 1{(P(AC)zP(AD)zP(BC))½ �w1

ð5Þ

Note that w2 is just 12w1. Similarly, w3 an w4 will only change

when path pairs AB, AC, and CD are traversed in a generation.

Figure 5 shows the vector field of the Dw1 and Dw3 for the various

possible values of w1 and w3, and the dynamics of allele

frequencies and phenotype frequencies over time for initial

conditions w1 = 0.2, and w3 = 0.1, and l= 0.1.

The fittest alleles (w1 and w3) and the fittest path, A, go to

fixation, whilst the other alleles and paths go extinct. As the vector

field shows this is inevitable from any initial condition of w1 and

w3. Effectively the two alleles are in linkage equilibrium.

Linkage Disequilibrium of Alleles in Paths. The network

in Figure 6A is initially fully connected (in the forward direction). It

has two loci, each with two alleles. We show that it is possible to

establish linkage disequilibrium by weight change alone. Consider

the case where the ordering of reward is 10.01.11 = 00.

Mathematica File S1 shows a deterministic model of how the

weights x,y and z change over time to send the fittest path 10 to

fixation. Alternatively, if the fitness function is 10 = 01.11 = 00,

both paths 10 and 01 are maintained at non-zero probability, the

ratio depending on the initial value of the weight x. The initially

more frequent of the 10 and 01 paths reaches a higher steady state

value, see Figure 6B.

The capacity to maintain non-random assortment of the alleles

by i. maintaining 10 and losing 01 (in the selective case) and ii. by

maintaining B and C at different frequencies in the neutral case

shows the capacity for linkage disequilibrium. The network

converges to make one path in the selective case, and two non-

overlapping paths in the neutral case. As we saw in Figure 3A,

there are some networks that will not permit the maintenance of

Figure 5. Selection at two loci, each locus having two alleles. The two fitter alleles (with weights w1 and w3) reach fixation whilst the other
alleles (w2 and w4) go extinct.
doi:10.1371/journal.pone.0023534.g005

Paths as Units of Evolution
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linkage disequilibrium because it is impossible to establish two

non-overlapping paths because of a node bottleneck. In this case,

mutations will be required to produce a greater number of nodes

at that locus, so that paths can pass without overlapping with

each other, thus maintaining multiple linkage disequilibria

(pairwise associations) between alleles at loci on either side of

the bottleneck.

Assignment of Path Phenotypes. The reward obtained by a

path is a function of its phenotype bi. The assignment of a

phenotype to a path is determined by how the path interfaces with

the environment. This ‘environment’ may be an effector system, or

another region of the neuronal network. The elucidation of

realistic genotype-phenotype maps is as difficult in these systems as

it is in evo-devo, however, some suggestions are given. Figure 7

Figure 6. The network has three parameters x,y and z, and encodes four paths, A,B,C and D. Part A shows the dynamics of weights and
path frequences for the fitness function 10.01.11 = 00. Path 10 (B, green) reaches fixation, and all other paths go extinct. Part B shows the dynamics
of paths for the fitness function 10 = 01.11 = 00, for different initial weights of x of 0.6 and 0.4. Non-overlapping paths B and C are maintained at
different concentrations that depend on the initial value of x. Paths A and D again go extinct.
doi:10.1371/journal.pone.0023534.g006

Paths as Units of Evolution
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shows some idealized examples of paths and their path characters

and how these path characters may be associated with reward in

various implementations of pathway evolution. See the Discussion

for further implementation details in more realistic neuronal

settings. Figure 7 part A shows that neurons may (indirectly)

innervate distinct effectors such that a particular path comes to

represent a sequence of motor actions, for example, at a high level

in a motor system, a sequence of left and right turns may be

Figure 7. Different ways in which a path can have a phenotype. (A) Nodes may indirectly encode motor actions, e.g. a pattern of turns in a
maze, or any other binary effector system. In this way a binary path phenotype can be encoded. (B) Alternatively the position of a node along the x-
axis may determine a real-valued character from 21 to 1. Bypass mutants may be more likely to encompass adjacent neurons, thus producing
correlated variability in phenotypes (C) An even more complex phenotypic interpretation of a path is to think of the network as an (anticipatory)
classifier system [53] that can evolve by a modification of PE if nodes are conditions and edges are actions. A condition (t) – action – condition (t+1)
triplet is a classifier.
doi:10.1371/journal.pone.0023534.g007

Paths as Units of Evolution
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encoded by a path. In this sense, a binary genotype can be

encoded. Figure 7 part B shows that neurons may be organized

into a topographic map in which adjacent positions have

correlated response functions, and this is a way to encode a

continuous valued genotype. Such maps are seen in early visual

layers for example in which adjacent neurons have similar

response characteristics. Figure 7 part C shows that a more

complex kind of path phenotype may be a network of condition-

action-(next condition) triplets that encodes a feed-forward model

of an environment. The possibilities are in fact endless.

The full details of the PEA are given in the Methods section,

and the C++ code is available in Code S1. The Results section

compares the performance of PEA with various parameter settings

against the equivalent standard gene based microbial genetic

algorithm [9] on various combinatorial and real-value optimiza-

tion problems, and for evolution in variable environments. Finally

a more plausible neuronal implementation of a path evolution

algorithm is presented.

Methods

A PEA effectively maintains a rooted directed acyclic graph,

with each vertex containing a reference to a parameter

(phenotype) with a value for the parameter, and each edge being

weighted with a normalized value, so that edge weights correspond

to probabilities.

The graph is constrained so that paths are guaranteed to

contain exactly one vertex for each distinct parameter. In this way,

each path through the graph corresponds to a particular

parameter combination, and the graph as a whole encodes a

probability distribution over parameter combinations. The graph

is optimized for a particular utility function by an iterative process

of competitive evaluation which increases and decreases the

probability of producing two stochastically generated paths, and

operators which stochastically grow and shrink the graph (by

adding and deleting vertices) in a manner equivalent to (dis-

)connecting from previously (un-)connected nodes.

The tournament selection inspired PEA is described in Figure 8

and Figure 9.

A network is initialized with N parallel linear directed paths

(typically 1, 10 or 100 paths) of L nodes in length. The simplest

case described above involves N = 1, i.e. the system starts with a

single path of nodes. Let the first node be the start node that will

be stimulated at the onset of each fitness evaluation. Each directed

edge has associated with it a transition probability Pij. Initially all

probabilities along the chain are set to 1. If the system is initialised

with more than one parallel chain then the sum of probabilities out

of the start node to the first node of each chain are normalized to

one so that each chain is equally likely to be traversed initially.

Upon stimulating the start node each node in an activated chain

will fire sequentially until the end of the chain is reached. If there

are many output edges from a node however, only one of the post-

synaptic nodes can become active. This ensures that only one path

is active at one time, and allows maintenance of path variation. A

noise term can be introduced to the transition probability to

promote exploration.

Because each node has a particular phenotype, each path of

activity also has a phenotype. For example, if we wish to

implement a binary genetic algorithm using this network then a

node should be interpreted as having a label (a phenotype

unrelated to the network dynamics described here) of zero or one,

see Figure 4A. We randomly initialize the node phenotypes of the

initial path. For example, activity passing along the initial path

may produce the phenotypic sequence 0111010001. Let each

phenotypic sequence so produced be associated with a reward r, as

defined by a reward (fitness) function.

Now, at each generation, two paths are constructed by the

traversal method and the reward due to each of those paths is

determined on the basis of their path phenotypes. If these two

paths have differential reward they compete with each other for

resources. This is a tournament selection method as used in steady-

state genetic algorithms. The edges along the winning path are

multiplicatively strengthened and the edges along the losing path are

multiplicatively weakened, following which all outflow edge

Figure 8. The PEA Outline. See Figure 9 for details of the path traversal, crossover and mutation functions.
doi:10.1371/journal.pone.0023534.g008
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probabilities are normalized at each node in the path. Note that if

the two paths in a single tournament spatially overlap and share

edges, then these particular edges are not modified. Specifically,

the algorithm modifies path probabilities as follows: edge weights

in favored paths are multiplied by (1+l) (see line 9 Figure 8) and

edge weights in disfavored paths are multiplied by (12l) (see line

13 figure 8), before renormalization. Shared edges are identified

and either penalized or left unmodified, depending on the

experiment. Later we investigate a diversity maintenance mech-

anism that involves weakening shared edges. Note that each of the

two paths should have distinct eligibility traces that can be used to

allocate the delayed reward appropriately.

As well as traversal probability changes modulated by reward

there are structural plasticity operations occurring in the network

that create and destroy edges. Node mutations can occur with a

certain probability m per node whenever that node is active.

Mutation of a node occurs by choosing an active node g in a

traversed path and creating a new node in that layer. The node

that activated the node g now activates the new node, and the new

node activates the node that was activated by the node g. This

biases mutation to make more bypass mutant grafts around the

stronger (more frequent) paths. Also it is possible to imagine the

mutation operation as not one of creating a new node, but rather

of co-opting an unused node from an existing node in the vicinity.

Less specific variants of the mutation operator have been explored,

e.g. allowing a new node to have connections from all nodes that

were connected to its parent, or allowing it to connect to all nodes

to which its parent node was connected. Generally these variability

operators are more harmful. Crossover from the losing path to the

winning path and back again to the losing path may occur in some

runs with a low probability x. This is a 2-point crossover operation

that allows utilization of the useful parts of a winning path by the

losing path. If a node is not active in some time period it is

removed. Also, if the transition probability of an edge sinks below

some threshold value, that edge it is removed.

We see that a path is a unit of evolution in the sense that it have

multiplicative growth, i.e. the frequency of the path in a

population of paths can increase exponentially (sigmoidally with

Figure 9. Details of path traversal, crossover and mutation operators.
doi:10.1371/journal.pone.0023534.g009
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resource limitation). There is path variation, i.e. there are many

different path phenotypes maintained at one time. There is

heredity, that is, a node mutation will transform existing path

phenotypes into new path phenotypes that resemble the original

ones (like begets like).

Results

Several optimization benchmarks were used to characterise the

PEA with different parameter settings. Performance was compared

to an equivalent microbial GA but which uses a traditional genetic

substrate, on binary multiple knapsack problems and on a set of

parametric optimization problems. The extra ability of the PEA to

show memory of past solutions was demonstrated.

Combinatorial Optimization Problems
The binary multiple knapsack problem is an extension of the

simple 0/1 knapsack problem, on which genetic algorithms have

been somewhat successful [15]. A knapsack has capacity C, and

there are n objects. Each object has weight wi, and a profit pi. We

aim to fill the knapsack for maximum profit but without exceeding

its capacity, i.e. to find a vector x = (x1, x2…. xn) where xi M [0,1],

such that
Pn
i~1

wixiƒC and for which P( x
r

)~
Pn
i~1

pixi is maximum.

In the multiple knapsack problem, there are m knapsacks. Each

object is either placed in all m knapsacks, or in none at all. Each of

the m knapsacks has capacity c1, c2…. cm, and each objects has a

different profit in each knapsack, i.e. each objects is defined by a

profit vector of length m. Again, no knapsack must be overfilled

and maximum profit must be packed.

A typical run on the hard Weing8 instance of the knapsack

problem [16] is shown in Figure 10. This is a hard knapsack

problem with 105 objects and 2 knapsacks in which most pack

vectors result in overfilling. To deal with this a punishment term is

used in the fitness function that gives a negative fitness that is the

extent of overfilling in all knapsacks. Otherwise the fitness is the

profit of the knapsacks. On 30 independent runs, the PEA had a

mean score of 615368 (sd = 7272) and the microbialGA with

population size 100 had a mean score of 600236 (sd = 20003). The

best solution obtained with the PEA was 622352 and the best score

with the microbialGA was 623459 (the global optimum). In

another knapsack problem (Weish25) the microbialGA obtained

mean = 9900, sd = 40.8 and max = 9936 (the global optimum) over

30 trials, whilst the PEA obtained a mean of 9925, sd = 21.5, and

max = 9936. There was no significant difference between the PEA

and the GA on any of the knapsack problems we examined.

This shows that the existence of overlapping paths does not

destroy the ability of a path-based microbial GA to evolve

solutions to a hard optimization problem.

Continuous Parametric Optimization Functions
A continuous value encoding of phenotype can be defined

straightforwardly as in Figure 7B. Each node is associated with a

real-value number character. Mutation involves the production of

a bypass mutant to a nearby node chosen as a Gaussian function

(mean centered on the parental value, s.d = 0.1) of distance from

the parent node. The position along the x-axis determines the real

number encoded by a node. Figure 11 shows performance on the

Sphere (Eq. 6), Rosenbrock valley (Eq. 7) and Quartic with noise

(Eq. 8) functions, the equations for which are shown below…

f1(p)~
Xn

i~1

p2
i {5:12vpiv5:12 ð6Þ

f2(p)~
Xn{1

i~1

100(piz1{p2
i )2z(1zpi)

2 {2:048ƒpiv2:048 ð7Þ

f3(p)~
Xn

i~1

ip4
i zgauss(0,1) {1:28ƒpiv1:28 ð8Þ

Note that as opposed to the knapsack problem the function value

must be minimized rather than maximized and so line 7 of Figure 8

is modified to read win = min(fitA, fitB). In all runs we examined,

the standard GA converges faster than the equivalent PEA to the

solution. Note that the PEA with these settings behaves very much

like a stochastic hill-climber (SHC), i.e. there is relatively little

diversity of paths, and large path overlap between paths, see

Figure 11. The number of simultaneously maintained phenotypes

is low.

This highlights a fascinating feature of the PEA; it is able to

modify the effective population size of paths by expanding and

contracting in response to the task conditions. Sometimes it

behaves like a stochastic hill-climber (SHC) with just 2 members in

the population of virtual paths of activity, and at other times it

behaves like a full evolutionary algorithm with a larger effective

population size of paths. These effects are explored later.

Interestingly, we found that with the SHC like parameter

settings for the PEA, the PEA performed very poorly on

Rastrigin’s function which is a cosine modulation of de Jong’s

Sphere function used previously, see Figure 12. The Rastringin

function contains many local optima and is highly multimodal

with regularly distributed minima locations, see Eq. 9 below…

f4(p)~10:nz
Xn

i~1

(p2
i {10: cos (2ppi)) {5:12ƒpiv5:12 ð9Þ

However, PE with a GA-like parameter setting (Figure 12, right),

in which phenotype diversity of paths is preserved for a longer

period in the run, performed about as well as the GA on the

Rastrigin function. To make the PEA behave more like a full

population and less like a solitary search mechanism such as SHC,

we increase tau (the period after which a node dies if it is not

activated), we apply a non-zero c for exploration during a traversal

so that even after a high fitness path has been found there is still a

base level of exploration. Also, we implement a diversity

maintaining change to the weight modification rule in which

edges that are present in both paths are in fact punished in the

same way as the losing path is punished in line 13, Figure 8.

The PEA with GA like parameters performed without any

significant difference to a genetic algorithm on Restrigin’s function

(Figure 12, right), whereas a PEA with the SHC like parameter set

(Figure 12, left) always got easily stuck on a local optimum. With

these GA type parameters, many more nodes and edges are

maintained in the network at any one time than in the solution to

the easier problems in Figure 11. Also, phenotypic diversity is

slower to be lost, and genotype overlap is less throughout the run.

Without punishing overlapping edges the PEA could not reach the

same level of performance as the GA on this problem. This is in

line with prior experience that in order to solve Restrigin’s

function, diversity maintenance is critical.

Memory and Variable Environments/Tasks
Recently, as part of the extended evolutionary synthesis, people

have begun to seriously study the evolution of evolvability [17,18].
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A population undergoing natural selection can automatically learn

from past environments to structure exploration distributions so as

to have a higher probability of producing fit phenotypes in novel

but related environments [10,19,20]. This can occur if there is

non-trivial neutrality, i.e. a many to one genotype to phenotype

map in which genotypes can be discovered that produce

phenotypic exploration distributions that best suit the adaptive

landscape [10].

A PEA can exhibit similar automatic structuring of exploration

distributions in variable environments. We present the simple

example of a fitness function that involves an alternating counting

ones and counting zeros problem with a period of E = 1000

generations. Figure 13 shows that the PE algorithm is able to learn

from previous environments to rediscover previously visited environ-

ment-specific optima more quickly. See that the black points more

rapidly achieve optimal fitness after more and more environmental

switches, but the red line (the standard GA) takes just the same

amount of time to find the optimum however many environmental

switches takes place. Note also that two distinct paths have been

discovered for the all 1’s environment and the all 0’s environment.

The standard microbial GA uses a direct encoding with no

capacity for non-trivial neutrality and so cannot show the

evolution of evolvability, and forgets the all 1’s solution once it

has worked out the all 0’s solution. Therefore by using this

methodological comparison we have demonstrated that paths in

networks have the capacity for memory of previously discovered

solutions, and automatic non-trivial neutrality, which the standard

population of non-overlapping genotypes lacks. The later more

realistic models should lend strength to the claim that these

principles should be carried over to neuroscience, and inform

thinking about neuronal search.

Problems that Benefit from Establishing Appropriate
Linkage Disequilibrium: The HIFF Problem

Some problems have interdependency between variables, i.e.,

the fitness contribution of one variable is contingent upon the state

of other variables, and there are structured dependencies that are

potentially exploitable. The XOR problem considered in Figure 6

was such an example. An extension of this is the hierarchical IF-

and-only-IF problem (HIFF) [21] described by the following

equations…

g(s1,:::::,sn)~
1, if n~1

nf (S1,:::::,Sk)z
Pk

i~1 g(Si), otherwise

�
ð5Þ

Where si is the ith variable of the configuration, Si is the ith disjoint

subpartition of the variables, f(p1,…,pk) = 1 if (A(s[S)Vi : pi~s),
and 0 otherwise; where S is the discrete set of allowable values for

the problem variables; and n = kH, where H[Fz is the number of

hierarchical levels in the system or subsystem, and k is the number

of submodules per module. In HIFF we consider only binary

variables, i.e., F[f0,1g and where k = 2.

The lowest level of fitness contributions comes from examining

adjacent loci in the phenotype and applying the transfer function

and the fitness function. The transfer function is [0,0]R0,

[1,1]R1, and all other pair types produce a NULL (N). The

fitness function for each level just sums the 0 and 1 entries at that

level. The second level is produced by applying the same transfer

function to the output of the first transfer function. The fitness

contribution of this next layer is again the number of 0 s and 1 s in

this layer multiplied by 2. This goes on until there is only one

highest-level fitness contribution. The fitness landscape arising

from the HIFF problem is pathological for a hill-climber since

there is a fractal landscape of local-optima, which means that the

problem requires exponential time to solve. The global optima are

either all 1’s and all 0’s.

Figure 14 shows performance of the PEA on the HIFF

compared to a microbial GA without crossover using standard

genotypes. PEA performs significantly better than the GA. In all

50 runs conducted, the PEA performed better than the GA. In all

cases PE found the optimum by within 200000 generations, but

the GA never found the optimum within this time. We propose

that the good performance of the PE on the HIFF problem is

because of its capacity to learn to achieve suitable linkage

disequilibrium between nearby alleles. Note that poor perfor-

mance on the HIFF is exhibited not only by a microbial GA

without crossover, but by any GA without crossover [22,23].

Expansion and Contraction Dynamics during Search and
Discovery

Figure 15 shows the performance of PE on the royal road

function. The simple royal road function is shown in the inset of

Figure 15 (top).

For a bit string of length 64, 8 fitness points are obtained for

each of the schemata si that is matched by the bit string. * indicates

don’t care. The royal road is a royal step pyramid because it does

not matter in which order the schema are accumulated. When PE

is applied to the royal road, one can immediately notice that

during the exploration phase there is an increase in the number of

nodes corresponding to loci of the 8-bit schemata that have not yet

been found. Once a schema is found, the path corresponding to

that schema gains dominance, and alternative paths are lost by

node deletion gradually over time. There was no significant

difference between performance of the PEA and the standard GA

on the royal road function over 50 independent runs.

The rather beautiful expansion and contraction dynamics

exhibited by the PEA shows that there is an adaptive population

size. What one cannot see here is that it is in those loci that the step

has been found that the contraction takes place. So not only is

there an adaptive population size, there is a locus specific adaptive

population size.

Discussion

Is Path Evolution Really Natural Selection?
We have described the PEA using the language of natural

selection: parameter combinations are ‘phenotypes’, graph

modifications are ‘mutations’, increasing path probability is

‘multiplicative growth’, node parameter-values are ‘alleles’ and

so on. This arises from our interest in the neuronal replicator

hypothesis that considers whether evolutionary computation may

be possible in the brain [24,25,26,27,28,29]. In fact, viewing

network processes from the evolutionary perspective was crucial in

allowing us to see paths as possible hereditary substrates. We also

have a longstanding interest in the origin of life and therefore we

Figure 10. Performance of the PEA compared to a microbialGA with population size 100 and the same mutation rate on the Weing
8–105 knapsack problem. Max fitness achieved by the PEA = 620060 which is the 7th best possible packing, the maximum being 624319. The
following parameters were used. N = 1, L = 105, l = 0.1, m = 1/L, x = 0 (no crossover), t = 200, v = 0.01, r = 0, c (gamma) = 0. The PEA is run for 10000
generations, i.e. 20000 pathway fitness evaluations.
doi:10.1371/journal.pone.0023534.g010
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notice that the algorithm also shows how natural selection can

occur in the absence of template replication in a physical system.

Template replication was previously thought to be necessary for

natural selection with unlimited heredity [3]. It is not.

A skeptic may ask, can a path of activity really legitimately be

considered to be a unit of evolution? John Maynard Smith said

that group selection requires the existence of cohesive, spatially

discrete groups, that ‘‘reproduce’’ by sending out propagules, and

that can go extinct (1976, p. 282). He defined a population of units

of evolution as ‘‘any population of entities with the properties of

multiplication (one entity can give rise to many), variation (entities

are not all alike, and some kinds are more likely to survive and

multiply than others), and heredity (like begets like) will evolve. A

major problem for current evolutionary theory is to identify the

relevant entities’’ (p. 222, [30]). We have identified a path as a unit

of evolution, however it is not a spatially discrete physical

individual in the way John Maynard Smith imagined, it has

multiplicative growth rather than explicit replication. A path is

Figure 11. (Top) Performance of the PE algorithm on Sphere, Rosenbrock, and Quartic with noise functions. The following parameters
were used: N = 100, L = 20, l = 0.1, m = 1/L, x = 0.01, t = 100, v = 0.01, r = 0, c (gamma) = 0. The performance details on the right are for the Rosenbrock
function.
doi:10.1371/journal.pone.0023534.g011
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capable of multiplicative growth in the population of paths;

however, it does not give rise to a distinct spatially separate entity

during growth, but strengthens the probability of traversal of its

edges. We have demonstrated that path characters can have

variation and heredity, by bypass mutations.

So the PEA (in this case, a microbial GA acting on paths)

implements something that is similar to and different from a

conventional natural selection acting on genetic informational

substrates as modeled with the microbial GA acting on discrete

non-overlapping genotypes. The differences are as follows…

1) Whilst there are a well-defined number of distinct paths in a

physical network, e.g. 4 paths in figure 3, the relative

frequency of a path in the virtual population of paths

generated by repeated stimulation of the start node is a

probability. In standard natural selection the frequency of a

genotype is an integer value.

2) In the PEA a single mutation can affect multiple genotypes

whereas in standard natural selection a single mutation can

affect only one genotype. Thus, individuals are non-distinct

on the evolutionary level.

3) In the PEA, multiplicative growth and selection operators

will in general have direct side effects on the prevalence of

many genotypes besides those that were directly evaluated

under selection. Thus, individuals are non-distinct on the

ecological level.

Figure 12. Performance of the PE algorithm on the Rastrigin function. (Left) PE with parameter settings as in Figure 6. (Right) PE with
parameter settings as follows. N = 100, L = 20, l = 0.1, m = 1/1000 L, x = 0.01, t = 1000, v = 0.01, r = 0, c (gamma) = 0.01+overlapping edges punished as
losing path. Diversity maintenance is far greater with the GA like settings that preserve distinct phenotypic niches for a longer period of time.
doi:10.1371/journal.pone.0023534.g012
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4) The PEA has memory for past environments. Paths that

were useful in past environments can be more stably

preserved than in the population of a standard microbial

GA.

5) The PEA exhibits an automatic capacity for non-trivial

neutrality because there is a many to one network to

phenotype map with some mappings possessing favorable

exploration distributions [10]. This was not an automatic

feature of the standard microbial GA.

6) The PEA can automatically establish appropriate linkage

disequilibrium by controlling the amount of overlap between

paths, and is thus able to solve the HIFF problem where the

microbial GA is not.

A skeptic may claim that rather than demonstrating that a ‘‘true

Darwinian process’’ is possible in the absence of distinct units, the

paper suggests that the concept of evolution by natural selection is

inherently less well defined than previously assumed. If an evolving

population can be an implicit one, then this significantly widens

the net of processes that could be described as evolutionary.

Perhaps even processes as physically simple as annealing could be

given an evolutionary slant in this sense?

We disagree. Here it is helpful to consider a classification of

optimization algorithms, see Table 1.

In solitary search only one candidate solution is maintained.

Examples include hill-climbing and stochastic hill-climbing. Next,

it is trivially possible to parallelize solitary search. This we call

parallel solitary search, and doing so allows a linear speed up. In a

denuded sense this is a population of sorts. Increasing in

sophistication one may allow parallel solitary search with

competition. Here there is competition for a global search

resource that can be reassigned between individual candidate

solutions, probably to the currently best candidate solutions, where

best may have a potentially complex definition. In effect, there is

now a simple ecology of competition between candidate solutions.

Into this category falls competitive learning [31,32], Hebbian

Figure 13. Performance of the PEA on the alternating counting 1 s and counting 0 s problem. The PE algorithm can retain memory of
previously visited optima and rediscover these paths more rapidly the next time it is in the same selective environment. The GA did not improve over
repeated presentations of selective scenarios. The parameters used were: N = 100, L = 64, l = 0.1, m = 1/100 L, x = 0 (no crossover), t = 1000, v = 0.01,
r = 0, c (gamma) = 0, maximum number of nodes per layer = 4, no punishment of overlapping paths. Oscillation period = 25000 generations.
doi:10.1371/journal.pone.0023534.g013
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learning [26,33], many reinforcement learning algorithms (in

which the competing units are state-action pairs) [34], and other

action [35,36] and attention selection [37] models. However, all

these models lack information transmission between candidate

solutions. This defines a new category of search called parallel

solitary search with competition and information transfer between

candidate solutions. Natural selection is the archetypical example

of this class of algorithm. We call such a population a Full

Population. It converts a competitive ecology into a true

evolutionary system. Notice that the Price equation is satisfied

even by the third class of search, and so in a sense it is a broader

definition of natural selection that does not explicitly require

information transmission between solutions.

Note that in a genetic natural selection, information transfer

between candidate solutions occurs in a fixed population size with

mutation alone (crossover is not needed). To see this is the case,

imagine there are 10 material slots, each configured as a particular

candidate solution. When a candidate solution replicates with

mutation, a randomly chosen slot is reconfigured with a mutated

configuration generated (copied) from the parent candidate

solution. By observing the state of the offspring slot that was

reconfigured one can reduce ones uncertainty about the parental

solution. Thus there is transfer of information between material

slots. The PEA contains a kind of information transfer because

paths overlap, and bypasses can connect paths together that were

previously unconnected.

Our algorithm shares with natural selection in organisms, and

artificial selection in genetic algorithms, the following properties: a

full population with information transmission between individuals

and competition between individuals, unlimited heredity (the

capacity for long paths/genotypes), and (for the problems

considered) covariance in fitness between parent and offspring

(i.e. the capacity for micro-mutation by short path bypasses/

mutations). In this sense, it follows the spirit and the letter of the

law of natural selection, but uses a novel hereditary substrate that

adds a rather strange set of previously unnoticed novel properties.

Related Approaches in Computer Science
There is a related set of algorithms used in computer science,

specifically in evolutionary computation. For example, a class of

algorithms exists called estimation of distribution algorithms

(EDAs) that do not explicitly represent the individuals in a

population at all, instead they maintain a probabilistic description

for the probability of an allele occurring at each locus, and the

novel solutions are obtained by sampling from this distribution.

Whilst the path evolution algorithm may therefore be seen as a

kind of EDA, it’s method of updating the probability distribution

of solutions is quite different from the methods traditionally used in

EDAs [38]. As far as we are aware one of the goals of EDAs was to

remove ‘‘arbitrary’’ operators such as mutation and crossover.

This was not our goal in developing the path evolution algorithm

in which we stress the importance of generative operators. The

path evolution algorithm has no explicit re-construction of a

probability distribution on the basis of only the best individuals at

each generation. EDAs suffer from the problem that the

estimation of such a distribution may be unreliable for a large

problem size, therefore EDAs typically make simplifying assumption that

alleles at different loci are in linkage equilibrium, in other words that the

probabilities of alleles occurring at separate loci are independent

variables (e.g. the univariate marginal distribution algorithm

UMDA, the population based incremental learning algorithm

PBIL, and the compact genetic algorithm CGA). More sophisti-

cated approaches may consider bivariate dependencies (two locus

models) or multiple dependencies. In contrast, the path evolution

algorithm can automatically explore multiple dependencies between alleles. It

does this by adapting the network structure by using simple local

structural operators that could be implemented in a biologically

plausible neuronal network. EDAs do not fall into the category of

full population search with competition and information flow

between solutions, because they exhibit no information flow

between solutions, as there is in path evolution. In short the PEA

provides a much simpler and more elegant framework that (as we

will show) has a plausible neuronal implementation.

Ant colony optimization (ACO) algorithms were not inspired by

the idea that natural selection might occur in the brain, but by the

communication between ants about the best paths to food [39].

Unlike EDAs, ACOs do fall into the category of full population

search with competition and information flow between solutions.

However, interestingly, a recent survey states that it is still an open

research question ‘‘how and why the method works’’ [40]. We

believe that our explanation here of the function of the path

evolution algorithm is the best explanation so far for how ACO

like mechanisms actually work. That is to say, they work by the

natural selection of paths. It is remarkable that this explanation

appears nowhere in the ACO literature, however it is not entirely

surprising for natural selection is often cryptic as an explanation

for adaptation in systems that superficially may appear to lack it

[41].

ACOs are slightly more complex than the path evolution

algorithm because they determine whether a traversal is ‘feasible’

by referring to the phenotype of a node. In the PEA, phenotype

‘‘semantics’’ never influence genotype ‘‘syntax’’, i.e. there is no

‘‘heuristic information’’ as in ACOs. We hope that the PEA will be

welcomed by the ACO community as a general explanation for

the adaptive power of ACOs.

Note that particle swarm optimization also falls into the

category of full population search with competition and informa-

tion flow between solutions [42]. The information exchanged

(replicated) is the memory of the location in N-dimensional space

of local optima between particle (slots). Particles are physical slots

between which information is exchanged. Strangely, particle

swarm optimization also works by a process of Darwinian natural

selection in which the replicator is location information. Confusion

arises when people think replication is replication of matter rather

than of information. Thus, particle swarm optimization is not

made Darwinian by replicating particles themselves!

The network we maintain in path evolution is a kind of hidden

Markov model but with a rather restricted feed-forward topology

[43]. The problems for which HMM learning algorithms are used

are not optimization problems but supervised learning problems

requiring generalization, in the sense that the final set of desired

parameters (outputs) are known, e.g. the desired outputs in the

training set may be a string of nucleotide sequences. Our problem

is slightly different. We have an unknown set of optimal outputs,

and we must use immediate reward information to generate a

HMM for them. Viewed in this light, this paper provides an

algorithm based on natural selection of paths that is able to

produce hidden Markov models for optimization problems.

Figure 14. Performance of the PEA on the 64-bit HIFF Problem. The PE algorithm found the optimal solution but the microbial GA without
crossover is stuck far from the optimum. The parameters used were: N = 10, L = 64, l = 0.1, m = 1/100 L, x = 0 (no crossover), t = 10000, v = 0.01, r = 0, c
(gamma) = 0, maximum number of nodes per layer = 20, no punishment of overlapping paths.
doi:10.1371/journal.pone.0023534.g014
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For traditional HMM problems, usually, heuristic algorithms

such as Baum-Welch (iterative maximum likelihood estimation)

[44] are used to produce a model that can generate this known set

of desired outputs. These algorithms may get stuck on local optima

because they are solitary (gradient climbing) algorithms. Also, they

require assumptions about model size and topology. Previously,

evolutionary approaches have been used to evolve HMMs for such

problems, e.g. for protein secondary structure prediction by Rene

Thomson [45]. However, these algorithms maintain multiple

separate HMMs and use operators such as add state, remove state,

modify state phenotype, add/delete transition, and crossover

between distinct HMMs. They evolve an unlimited number of

HMM topologies, including recurrent topologies. Also, they add a

component of fitness that is linked to the Bayesian Information

Criterion to compress the HMM [46]. In contrast our approach is

an evolutionary approach for evolving a single non-recurrent

HMM containing multiple paths for optimization problems

without supervision, and so far, no capacity (yet) for compression

guided by BIC.

A Slightly More Realistic Neuronal Implementation of a
Path Evolution Algorithm

The neuronal networks of the brain provide the most natural

implementation of paths as informational substrates with unlimited

heredity. We produced a model using Izhikevich spiking neuronal

networks as described in [47] but with some modifications that are

needed to convert the network to run a PEA that is clearly

recognizable to the naked eye.

Figure 16a shows the initial state of the network of regular

spiking neurons that form 10 initial paths, each path being

stimulated by a start neuron. The initial weights are set to a

random value between 15 mV to 60 mV (maximum

weight = 60 mV). This allows a path to be created by single

neurons. If weights are made weaker, many neurons are required

to sustain a path and the system is considerably more complex.

10 ms into each second, the start neuron is externally depolarized

causing it to fire. This results in activation passing downstream

activating each neuronal layer. Neurons are connected by delay

lines of 1 ms, although variable delays can also be used.

Background noise is set so that neurons on average fire at 0.1–

1 Hz. Synapses are modified by STDP via eligibility traces

modulated by DA reward, as in Izhikevich’s paper [47] except that

eligibility traces decay 10 times faster and reward decays 4 times

faster than in the original paper, thus increasing the specificity of

reward.

Winner-Take-All Competition at Outputs. An important

modification to Izhikevich’s model must be made. To implement a

hidden Markov model type network it is necessary to limit the

outflow of information from one node to just one possible output.

In spiking neurons, this is achieved by winner take all (WTA)

output competition between all outflow paths for activation. This

introduces variation upon which selection can act, and ensures a

single path is generated at a time (rather than a tree of spreading

activation). This in turn means that only one path is responsible for

behavior and hence credit can be specifically assigned to just that

path. Effectively, weight proportionate WTA output competition

produces a system with very sparse activation, which helps with

specific credit assignment. Many neuronal models assume WTA

competition, for example self-organization of spike pattern

sensitivity in neurons with winner take all (WTA) lateral

inhibition and STDP [31]. This competition results in the

frequency distribution of single spike outputs matching the

weight distribution of output synapses.

Phenotypes in Spiking Neuronal Networks based on
Spike Order

The phenotype of the network is also interpreted differently

from Izhikevich [47]. At 10 ms into each second, the start node is

stimulated and a sequence of spikes is produced. This sequence is

of varying length, i.e. activity may not propagate all the way to the

final layer. Each node is assigned a node phenotype (0, or 1) as in

the previous PEA. The identities of the first 10 nodes that spike

after stimulation at 10 ms is recorded in an array, and the

phenotype is defined as the binary string produced by this ordered

list of node phenotypes. In the counting 1 s problem, the fitness of

this binary string is the number of 1 s contained in it, and this

determines the dopamine reward given at 50 ms.

Differential Growth and Selection of Pathways by
Dopamine Modulated STDP and Weight Decay

Reward is also given in a different way to Izhikevich [47]. At

50 ms into each second, reward is given according to the fitness of

the path phenotype compared to a running average fitness

window. Running average fitness is defined as fitness avera-

ge(t+1) = 0.01 x fitness average(t)+0.99 current fitness. If the

current fitness (i.e. the reward obtained from the path phenotype

of the spikes produced between 10 ms and 50 ms into each

second) is greater than the average fitness, then reward is given at

0.5 units of DA per correct bit. The fitness function we use is

simply the all 1’s task, where we wish a sequence of 10 neurons

Figure 15. Performance of the PEA on the 64-bit royal road function shows automatic size changes. During exploration there is an
expansion in the number of nodes and edges, followed by contraction after the solution is found.
doi:10.1371/journal.pone.0023534.g015

Table 1. A classification of search (generate-and-test) algorithms.

Solitary Search Parallel Search
Parallel Search with Competition
(Price)

Parallel Search with Competition
and Information Transmission (JMS)

(Stochastic) hill climbing/Simulated
Annealing

Independent hill climbers, e.g. with
restart

Competitive Learning Genetic Natural Selection

Markov Chain Monte Carlo Reinforcement Learning Adaptive Immune System

Synaptic Selectionism Genetic Algorithms

Neural ‘‘Darwinism’’ Neuronal Replicators

doi:10.1371/journal.pone.0023534.t001
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each with a neuron phenotype of one to fire immediately after the

10 ms stimulation, before any neurons with the 0 phenotype fire.

If the current fitness is greater is less than the average fitness then a

negative reward is given at 0.5 units of DA per incorrect bit. This

simple method of assigning reward is primitive when compared to

a full TD learning mechanism that modifies reward up and down

on the basis of a difference from the predicted reward, but it

approximates this and still works. Reward then modulates weights

(up and down) on the basis of their eligibility traces. The forth

modification to Izhikevich is that in addition to weight change due

to DA modulated eligibility traces based on STDP, there is an

activity dependent linear weight decay of 0.00002 mV per

ms, if a neuron does not fire at all in one second; this results in a

weight reaching the minimum permitted weight of 15 mV within

approximately a minute if it does not fire at all.

Activity Dependent Structural Plasticity Implements
Mutation

The fundamental operation of node mutation and pathway

crossover that the PE algorithm depends upon is closely related to

the synaptic pathway mutations first proposed by Adams [12] in

which Hebbian learning is noisy, i.e. when a synapse is

strengthened there is also a small probability that synapses will

be strengthened from the pre- or the post- synaptic neuron to or

from nearby neurons. Adams’ insight prefigured the recent

discovery of rapid structural plasticity; the formation and breakage

of synapses in the order of minutes [14,48,49]. These operations

are eminently suitable for implementation of the bypass mutations

required for neuronally plausible path evolution. In real neuronal

networks it is possible that path mutations will be able to shortcut

several layers, or add layers, producing variable path lengths. Also,

recurrent paths may come to exist. However, for purposes of

demonstration here we chose to add a simple kind of activity
dependent structural plasticity to Izhikevich’s model that is

constrained in the topology of connectivity that is possible by

mutation.

Whenever a neuron is active there is a 1% probability that it will

produce a new synapse to an adjacent neuron (i.e above, same or

row below) in the next layer (column). The neuron to which this

new output passes also produces a new output randomly to an

adjacent neuron in its next layer, thus there is a 1/3rd probability

that a bypass mutant is produced, and a 2/3rd probability than a

divergent mutation (crossover) is produced that does not return to

the original path. If a weight decreases below the minimum level of

15 mV it is removed. No neuron may have more than three

output synapses. Whenever a new synapse is formed, if the total

weight of synapses out of a neuron exceeds 60 mV, then one

synapse is removed from the output synapses of that neuron, in

inverse proportion to its weight. These activity dependent

structural plasticity rules bias synaptic exploration to those neurons

that are currently most active.

To overcome the limitation that the random generation of node

phenotypes may produce a matrix of neurons that does not

contain a single possible path of all 1’s from the start node to one

of the final layer nodes, we allow random node phenotype bit

flipping at a low rate, e.g. once every 1 minute iff that neuron has

not spiked once in this time.

Figure 16 shows an evolutionary experiment conducted with a

realistic neuronal implementation of pathway evolution that uses

Izhikevich spiking neurons, WTA competition, structural plasticity

and dopaminergic reward to evolve pathways. This simple

demonstration shows that pathway evolution can be expected to

carry over to more realistic neuronal implementations using more

realistic reinforcement learning kinds of reward allocation. The

network of pathways can be seen as overlapping models to which

reinforcement can be given [50,51]. What is special here is that the

models are evolved in a realistic spiking neuronal network. The

software for running the above simulations can be downloaded

from Code S1.

Conclusions
There are several points where the spiking model is unrealistic.

It would benefit from a simulation with many more neurons and

weaker connections between neurons. In this case, it is likely that

polychronous groups would be the primitive units (nodes) forming

a path [8,52]. In other words, the path would be a kind of

trajectory in state space, rather than a localized neuronal pathway.

Each state in the trajectory would consist of the activation of a

polychronous group. This is a further step in abstraction that we

hope to consider in later even more realistic models. However, we

have used this simplified system to help us think about a

preliminary mapping of natural selection onto networks of more

general form. We believe this is the genuine novelty of this paper.

Also real neuronal networks are recurrent. Preliminary

modeling has shown that recurrence produces several problems

for the algorithm. If A causes B to fire, and B causes A to fire

shortly afterwards, then due to STDP the edibility trace associated

with the synapse from A to B is both strengthened and weakened

in succession. Therefore, this synapse is not rewarded as much as a

chain of synapses would be. Further work is needed to extend PEA

to recurrent neuronal networks.

Here we have demonstrated that overlapping paths in networks

can be a hereditary substrate, yet without being spatially distinct

individuals. Paths are capable of evolution by natural selection.

Pathway evolution has several features that distinguish it from

standard genetic evolution. These all result from the fact that paths

overlap. Path overlap may be good or bad, and we have shown

that the extent of path overlap can itself be determined by the

PEA, see Figure 13 for a clear case of this.

The capacity to implement path evolution in the brain with a

relatively trivial modification of existing models, lends very strong

support to the neuronal replicator hypothesis, that argues that

there exist informational replicators in the brain, i.e. autocatalytic

entities capable of producing offspring that are correlated with

their parent in fitness, and hence capable of accumulation of

adaptations by natural selection [24,25,26,27]. Path evolution

allows rapid search by activity distributions to modify the

frequency of a solution, encoded as synaptic weights. We have

not restricted ourselves to a particular cognitive architecture here,

but have merely suggested a particular kind of generative variation

in neuronal networks that may allow unlimited heredity of

information, for a range of possible algorithms.

We hope that neuroscientists will be interested in taking the

path perspective. For example, in the neurosciences one may

attempt to identify paths, and observe their multiplicative and

Figure 16. Izhikevich spiking neuronal network modified to include WTA output competition and activity dependent weight decay
and plasticity, solving the 10 bit all 1’s problem. Red squares = neurons with phenotype 1, Black squares = neurons with phenotype 0.
Thickness (and lightness) of green lines = strength of weights from 15 mV to 60 mV (max). The figure below shows the fitness of the path phenotype
in each run, and the moving average used to determine whether to give reward or not, over 5000 trials (with 1 trial per second).
doi:10.1371/journal.pone.0023534.g016
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mutational dynamics. One may ask what is the probability of

fixation of a novel pathway or edge (synapse) in a real neuronal

network as a function of the reward it obtains?

Finally, we point out that other implementations are also

possible, hence the level of description we have chosen to present

the path evolution algorithm. For example, in chemical reaction

networks, the internet, or social networks, it is possible that

network adaptation takes place by path evolution, a kind of cryptic

Darwinism. All that is required is the ability to assign reward to a

path, and path growth with bypass mutations. John Maynard

Smith’s goal applies now as it always has; a major problem for

current evolutionary theory is to identify the units of evolution. We

claim that the task of identifying the units of neuroevolution is a

prescient task for neuroscience, and one that we hope to have

defined and contributed to here; showing that units of evolution

can overlap thus allowing Darwinian natural selection to operate

in a cryptic form in the brain.

Supporting Information

Mathematica File S1 A Mathematica file showing the
analytical treatment of the single locus and double locus
path evolution algorithm.
(NB)

Code S1 XCode C++ files for running the PEA on the
Royal Road Function.
(TAR)
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11. Vasas V, Szathmáry E, Santos M (2010) Lack of evolvability in self-sustaining

autocatalytic networks constraints metabolism-first scenarios for the origin of life.
Proc Natl Acad Sci U S A 107: 1470–1475.

12. Adams P (1998) Hebb and Darwin. J Theor Biol 195: 419–438.

13. Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information
storage. Nature 431: 782–788.

14. Butz M, Worgotter F, van Ooyen A (2009) Activity-dependent structural

plasticity. Brain Research Reviews 60: 287–305.

15. Chu PC, Beasley JE (1998) A Genetic Algorithm for the Multidimensional
Knapsack Problem. Journal of Heuristics 4: 63–86.

16. Khuri S, Back T, Heitkotter J (1994) The zero/one multiple knapsack problem
and genetic algorithms. In: Deaton E, ed. Proc 1994 ACM Symp Applied

Computing. New York: ACM-Press. pp 188–119.

17. Kirchner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:
8420–8427.

18. Pigliucci M (2008) Is evolvability evolvable? Nature Reviews Genetics 9: 75–82.

19. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network
motifs. Proc Natl Acad Sci USA 102: 13773–13778.

20. Izquierdo E, Fernando C (2008) The evolution of evolvability in gene

transcription networks. In: Bullock S, Noble J, Watson RA, Bedau MA, eds.
Proceedings of the 11th International Conference on Artificial Life MIT Press.

pp 265–273.

21. Watson RA, Hornby GS, Pollack JB (1998) Modelling Building-Block

Interdependency. Proceedings of Parallel Problem Solving from Nature V
(PPSN V). pp 97–106.

22. Watson RA, Buckley CL, Mills R (2009) The Effect of Hebbian Learning on

Optimisation in Hopfield Networks. Technical Report, ECS. University of
Southampton.17 p.

23. Watson RA (2006) Compositional Evolution: The Impact of Sex, Symbiosis, and
Modularity on the Gradualist Framework of Evolution. NA: MIT Press. 400 p.

24. Fernando C, Goldstein R, Szathmáry E (2010) The Neuronal Replicator
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