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Abstract—In this study, we propose a new variant of the
HIDMS-PSO algorithm with a bio-inspired fission-fusion be-
haviour and a quorum decision mechanism (FFQ-HIDMS-PSO).
In the new algorithm, units are conceptualised as self-organising
fission-fusion societies that determine and adopt a suitable be-
haviour using unit-based quorum decisions. The incorporation of
the two bio-inspired mechanisms provide “diversity aware” self-
organising units that react to stagnation of particles by adopting
a suitable fission-fusion behaviour, leading to a more efficient
algorithm capable of maintaining significantly better population
diversity throughout the search. The performance of the proposed
algorithm was verified with three distinct experiments conducted
using CEC17 and CEC05 test suites at 30 and 50 dimensions,
comparing against 12 state-of-the-art metaheuristics and 12
state-of-the-art PSO variants. The proposed algorithm showed
superior performance in these experiments by outperforming all
24 algorithms in all three experiments at 30 and 50 dimensions.
The empirical evidence suggests that the proposed method also
maintains significantly superior population diversity in compar-
ison to the original HIDMS-PSO.

Index Terms—particle swarm optimisation, swarm intelligence,
meta-heuristics

I. INTRODUCTION

Particle swarm optimisation, proposed in 1995 by Kennedy
et al [1] is an optimisation algorithm widely used for a
range of problems. Since its invention, due to its simple
structure and effectiveness, PSO has attracted a lot of attention
from researchers which resulted in many variants [2] and
applications in a range of fields [3] [4]. The vast majority of
PSO variants proposed in the literature address the problem
of premature convergence to improve the performance of the
algorithm. The HIDMS-PSO algorithm is a state-of-the-art
PSO variant proposed in 2020 by Varna and Husbands [5].
The algorithm performs search using two fixed subpopulations,
one homogeneous and one heterogeneous, and an explicit
communication model to slow down the loss of population
diversity. The intention of this paper is to further improve
the depletion of population diversity by redesigning the unit
structures in the standard HIDMS-PSO algorithm as self-
organising social groups. Self-organising groups are wide-
spread in nature, occurring in species from bacteria colonies
to humans. Eusocial animals commonly exhibit self-organising
behaviour to resolve various issues in order to survive. In this
study, we propose a mechanism composed of a bio-inspired
fission-fusion behaviour and a quorum decision mechanism to

form self-organised units capable of reacting to improve their
diversity. As a result, from this low-level behaviour emerges an
overall higher-level population with a significantly improved
diversity, which reduced premature convergence and improves
search efficiency. Fission-fusion behaviour involves social
groups changing their formation over time through either
splitting into smaller groups (fission) or merging with other
groups (fusion). It is observed in many organisms, including
social insects, birds, fish and even humans, as a form of fitness
beneficiary mechanism in a social group or colony, used to
maximise survival or reproduction, or to minimise the chances
of becoming prey. In our algorithmic model, fission-fusion
behaviour is employed as a reactive mechanism through the
creation of “diversity aware” units that exhibit fission-fusion
behaviour when a unit’s diversity exhibits a downward trend.
Many colony and social group based species, such as ants
and honeybees, make group decisions, and in our behavioural
model units make a group decision on when to adopt fission-
fusion behaviour, based on a quorum response. As a result,
these two incorporated mechanisms provide units with the
ability to self-organise by reaching a decision and adopting
a behaviour through consensus, which in turn significantly
improves population diversity and the overall performance of
the algorithm.

II. BACKGROUND

This section provides the necessary background information
about the canonical PSO and HIDMS-PSO.

A. Canonical PSO

In canonical PSO, particles are initially randomly distributed
in the search space. Throughout the search process, particles
learn and retain certain information about the environment,
namely its position, velocity and personal best position found.
At each iteration, the position of the particle is updated by
adding together its current position and the velocity. The
velocity has the most significant influence on the next position
of the particle, and it’s calculated using two pieces of informa-
tion, namely the particle’s personal best-known position and
the best position found within the swarm. The velocity and
position calculation of the canonical PSO is as follows:
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Where ω, 1 and c2 are control parameters, namely the inertia
weight and acceleration coefficients, ~v(t)i is the ith particle’s
velocity, ~pbest is the personal best position, ~gbest is the
globally best known solution and ~x(t)i is the current position
of the ith particle. Here, ~r1 and ~r2 are random variables with
components in the range [0,1].

B. HIDMS-PSO

The HIDMS-PSO algorithm is a recent state-of-the-art
PSO algorithm introduced by Varna and Husbands [6]. The
algorithm introduced a new master-slave inspired dynamic
topological structure with homogeneous and heterogeneous
subpopulations and two movement strategies, namely, inward
and outward-oriented strategies. The small subswarm entities
in the HIDMS-PSO framework are called units and each
unit constitutes a single master particle and 3 slave particles
with distinct types. Master and slave particles retain their
roles throughout the search process. The distinction in type
between the slave particles allows heterogeneous behaviour,
restricting information flow to avoid premature convergence
and depletion of diversity. Fig. 1 shows the structure of a
single unit in the HIDMS-PSO framework.

Information flow and the way particles interact with one
another has an immense impact on the population diversity
and particles’ guidance, hence the overall search process. The
HIDMS-PSO algorithm employs a communication model to
control the flow of information and the interaction between
particles. The communication model restricts information flow
and allows particles to exchange information through master-
to-master and slave-to-slave communication (see Fig. 2). The
main communication is governed by the following rules:

1) Arbitrary particles of the ith unit cannot directly and
freely communicate with arbitrary particles of the jth
unit. Communication is established via the slave parti-
cles only.

2) Master particles can only exchange information with one
of their slaves.

3) Slave particles can only communicate with the slaves of
the same type; hence they cannot communicate with the
other slaves within their unit.

a) Search Behaviour: In the HIDMS-PSO algorithm,
the initial population is divided into two equal subpopula-
tions, one homogeneous and one heterogeneous, and each
subpopulation adopts a distinct movement strategy (Fig. 3).
The homogeneous subpopulation uses the update equation
of the canonical PSO algorithm, whereas the heterogeneous
subpopulation is used to form N unit structures and adopts
inward and outward-oriented strategies. The inward-oriented
behaviour guides particles using the information obtained from
members of the unit the particle belongs to. In contrast,
the outward-oriented behaviour guides particles based on the
information obtained from other units.

Fig. 1. Topological structure of a single unit.

Fig. 2. The visual depiction of the communication model between 3 units.

Fig. 3. Search phases of the HIDMS-PSO algorithm.



b) Inward-oriented strategy: The inward-oriented strat-
egy uses information from members of its unit to guide its
particles. For master particles of the N th unit, this strategy
involves particles updating their velocities by randomly se-
lecting one of Eqs. 3-5:
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Where ~v
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m is the velocity, ~pbestm is the personal best

position, ~x(t)m is the position of the master particle at time
t and, ~xdiss is the most dissimilar slave particle (positional
dissimilarity) in the unit N . Movement towards the most
dissimilar slave particle boosts the diversity of the master
particle, hence the whole unit, as slave particles of a unit are
highly influenced by the master particle’s position.
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Where ~xbests is the slave particle with the lowest cost in

unit N . Local exploration is performed by guiding the master
particle towards the best slave particle.
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Where ~xavgs is the average position of all slaves within the

master’s current unit. On the contrary, for the slave particles,
the only option provided for this strategy is to move towards
the unit master and personal best position of the slave particle,
as shown in Eq. 6.
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Where ~v
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position, ~xs is the position of the slave particle and, ~xm is
the position of master particle of the N th unit.

c) Outward-oriented strategy: As opposed to the inward-
oriented strategy, the outward-oriented movement enables par-
ticles to learn from other units while maintaining their hier-
archical master-slave structure. The master particle randomly
selects one of the following equations (7-9) to guide its
behaviour:
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Where ~v
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position, ~x(t)m is the position of the master particle at time t
and, ~xavgunit is the average position of the N th unit’s particles.
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Where ~xmunit is the position of the master of a randomly

selected unit.
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Where ~xavg is the average position of particle’s own unit
members and ~xmunit is the position of the master particle
of a randomly selected unit. Similar to the slave particle’s
movement in the inward-oriented strategy, in this case, the
slave particles employ a single update equation to move
towards a random slave of the same type that belongs to
another unit, using:
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Where ~v
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position, ~xs is the position of the slave particle and, ~xrndunit is
the position of a random slave of the same type that belongs
to another unit.

The combination of homogenous and heterogeneous popu-
lations in the HIDMS-PSO framework maintains the balance
of exploration and exploitation while inward and outward-
oriented learning strategies allow particles to initiate single-
time behavioural fluctuations that enhance individual unit’s
diversity and help escape from local minima [5].

III. THE PROPOSED ALGORITHM

As oppose to the standard HIDMS-PSO, in the proposed al-
gorithm (FFQ-HIDMS-PSO) the search process initiates with
a single population of n units of the type shown in Fig 1. Each
unit’s diversity (δn) is calculated at specific intervals defined
by FFperiod

10 , where FFperiod is the period of time particles
are allowed to adopt the fission-fusion behaviour. FFperiod
may range from 1-10% of the maximum number of iterations.
After this period, fissioned/fused units are randomly reformed
as units while retaining their current particle positions. The δn
is only calculated for units that have not undergone fission-
fusion behaviour and is used as a threshold to initiate the
fission-fusion behaviour. The δn is calculated as

δn =

N∑
j=1

MSE(xm, xj) (11)

Where MSE is the mean square error, xm is the position of
the master particle of the nth unit, xj is the jth slave particle of
the nth unit and N is the number of slave particles. if the nth

unit’s δ is less than the average δ , the unit qualifies for fission-
fusion behaviour. The type of behaviour (fission or fusion) is
randomly selected and the behaviour is only adopted after a
group decision. The group decision is based on the quorum
response of each member of the unit and it is calculated as

QRj =
MSE(M,Sj)

1 + (
αj
β )γ/10

(12)

Where QRj is the quorum response of the jth member, α is
the number of fissioned/fused conspecific particle at time t, β
is the total number of particles with fission/fusion behaviour



Fig. 4. Visual depictions of fissioned and fused units.

and γ is the fitness rank of the jth member (1 to 4, the
fitter the particle, the higher the rank). Eq. 12 is an adapted
version of the equation used to model animal group behavior
in [6], and it allows members of a unit to individually gather
information and compare findings with other unit members to
reach the final decision. The QR equation essentially mimics
how decentralised animal groups without a “leader” form a
consensus. The decision is finalised by counting the number
of unit members with QRj > QR, where QR is the average
quorum response for the unit. Subsequently, the following
rules are applied to determine the final decision

1) If more than 2 unit members have greater QR values
than QR, fission or fusion behaviour is adopted.

2) If more than 2 unit members have lower QR values than
QR, fission or fusion is not adopted.

3) If the number of unit members with QR values greater
and less than QR are the same or if all QR values of
unit members are the same, we use the QR value of the
unit master in place of QR and proceed according to
the first two rules.

As mentioned previously, many animals exhibit fission-
fusion behaviour by temporarily splitting up and merging
hence, fission-fusion behaviour is a strategy employed by
social animals to reorganise their groups to increase or reduce
potential loss of fitness. Fig 4 shows the visual depictions of
a unit with fission and fusion behaviour.

A. Fission-Fusion Behaviour

As briefly mentioned, in this study, we conceptualise each
unit as a fission-fusion society like those that exist in nature.
Fission-fusion societies split up into smaller social groups or
merge to form larger groups. This type of behaviour is usually
adopted after a group decision, if it is the optimal option for
all individuals to behave in smaller or larger social units to,
for instance, forage, mate or exhibit predatory behaviour. In
our behavioural model, units that adopt fission behaviour are
divided into two equal sub-units and as oppose to the unit
structure, particles within these sub-units do not have master-
slave roles. The units that have not adopted fission-fusion
behaviour remain as part of the heterogeneous unit population

and control their movements according to the original HIDMS-
PSO rules (Sect. III, and see the pseudocode). The fission
behaviour provides four different exemplars to guide particles
and their velocities are calculated using the following equation:
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Where xfission is the position of a particle randomly

selected from: the most diverse fissioned sub-unit, a random
fissioned sub-unit, the first fissioned and the last fissioned sub-
units. As oppose to the fission behaviour, the fusion behaviour
combines a maximum of two units while maintaining master-
slave roles (as shown in Fig 4). The fusion behaviour allows
the fused units to influence each other at individual level
resulting in a potentially more diverse units at higher level.
The particles within fused units use the following equation to
update their velocity
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Where xfusion is randomly chosen as either the position of

the conspecific particle (e.g. slave type) within the unit, the
most diverse particle relative to its master within the fused
unit, or the particle’s personal best position.

By combining both behaviours, units regain diversity, or at
least significantly slow down loss of diversity. This progres-
sively extends to the overall population, resulting in particles
escaping from local optima. Since fission-fusion behaviour is
triggered as a result of loss of diversity in a unit, in both
behaviours, the motivation is to guide particles using different
sources, as defined in Eqs. 13 and 14, to avoid stagnation
and potentially improve diversity of each individual to prepare
them to reunite and form new units with sufficient diversity
to carry out the search.

The FFQ-HIDMS-PSO algorithm uses the same parametric
settings as the standard HIDMS-PSO; for a detailed descrip-
tion of the parameters, refer to the original study [5]. Besides
the standard PSO parameters c1, c2 and ω, the HIDMS-PSO
employ an additional parameter RG to reshape unit structures
at specific intervals (see the pseudocode).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the experimental design and results.
The first subsection describes the experimental setup, bench-
mark suites, and statistical analysis and the latter presents the
results of the three experiments conducted on the CEC17 and
CEC05 benchmark suites.

A. Experimental Setup

The present study conducted three experiments to examine
the performance of the proposed method, FFQ-HIDMS-PSO,
using the CEC’05 and CEC’17 benchmark test suites. In the
first experiment, the performance of the proposed algorithm
is tested using the CEC’17 test suite. The CEC’17 test suite



consists of 30 and CEC’05 consists of 25 continuous opti-
misation test functions. For the first and second experiments,
we replicated the experiments conducted in [5] and for the
third experiment, study [27] (which uses a different set of
comparator algorithms) was replicated to produce comparable
results. The results of the proposed algorithm is compared
with 11 state-of-the-art evolutionary methods including two
inertia weight PSO algorithms with different parametric set-
tings (ω = 0.9 → 0.4, c1, c2 = 2 and ω = 0.4, c1, c2 = 2),
and evolutionary algorithms (including the bat algorithm (BA)
[7], grey wolf optimiser (GWO) [8], butterfly optimisation
algorithm (BOA) [9], whale optimisation algorithm (WOA)
[10], moth flame optimisation (MFO) [11], artificial bee
colony (ABC) [12], invasive weed optimisation (IWO) [13],
flower pollination algorithm (FPA) [14] and cuckoo search
algorithm (CS) (p=0.25) [15]. In both the second and third
experiments, the proposed algorithm’s performance was tested
using the CEC’05 test suite and results were compared with
a total of 12 state-of-the-art PSO variants including χPSO
(ring with neighborhood radius nr = 2, φ = 4.1, χ =
0 : 72984, c1, c2 = 2.05) [16], BBPSO [17], DMSPSO
(ω = 0.729, c1, c2 = 1.49445, Vmax = 0.5 ∗ Range) [18],
FIPS [19], UPSO [20], CLPSO (ω = 0.9 → 0.2, c1, c2 =
1.49445, Vmax = 0.2 ∗ Range) [21], HIDMS-PSO (ω =
0.99 → 0.29, c1 = 2.5 → 0.5, c2 = 0.5 → 2.5) [5], HPSO-
TVAC [22], FDR-PSO [23], HCLDMS-PSO (ω = 0.99 →
0.29, c1 = 2.5 → 0.5, c2 = 0.5 → 2.5, pm = 0.1, Vmax =
0.5 ∗Range)) [24], HCLPSO [25] and MNHPSO-JTAC [26].
In the first experiment, the population size was set to 100
for all metaheuristics, and 40 for the two PSO variants and
the proposed algorithm. In the second and third experiments,
the population size was set to 40 for all methods [5]. For
the first and second experiments, each problem was tested
30 times, and 100 times in the third experiment; 300,000
functions evaluations at 30 dimensions and 500,000 function
evaluations at 50 dimensions. For detailed parameter values
on the comparative methods, refer to studies [5] [27]. The
mean errors are recorded for each problem and the results are
shown in Tables I-VI. The average and final ranks of the mean
performance are listed in Tables VII-IX. The Wilcoxon signed
rank test conducted on the final ranks of the three experiments
reveal that, for the first experiment conducted on the CEC’17
suite, the result is significant between the proposed algorithm
and all comparison methods at both 30 and 50 dimensions at
p < 0.05. For the second experiment conducted on the CEC’05
suite, at 30 dimensions, the result is significant between the
comparison methods and the proposed algorithm except for
HIDMS-PSO and HCLDMS-PSO and at 50 dimensions, the
result is significant between the comparison methods and the
proposed algorithm except for HIDMS-PSO. For the third
experiment conducted on the CEC’05 suite, the result is
significant between the comparison methods and the proposed
algorithm except for BBPSO and CLPSO for the problem size
of 30 dimensions, and at 50 dimensions, the result is significant
between the proposed algorithm and all comparison methods at
p < 0.05. Due to length restrictions of this paper, experimental

results are partially included. External supplementary material
is provided for complete results of experiments that can be
accessed from users.sussex.ac.uk/fv47/FFQ-HIDMS-PSO.pdf.

B. Results

The results for the first experiment conducted on the CEC17
test suite at 30 dimensions show that the proposed algo-
rithm (FFQ-HIDS-PSO) outperformed comparison methods
for problems F5, F7, F8, F9, F11, F12, F16, F17, F20, F21,
F22, F23, F24,F27, F29 and F30. The HIDMSPSO algorithm
achieved the best mean performance for problems F3 and
F28. CS outperformed comparison algorithms for problems
F14, F14, F15, F18 and F19. For problems F1, F4, F6, F10,
F25 and F26, ABC attained the best mean performance. BA,
GWO, BOA, WOA, MFO, FPA, IWO, PSO1 and PSO2 did not
outperform any of the comparison algorithms on any problems
at 30 dimensions. The second experiment conducted on the
CEC17 test suite for the problem size of 50 dimensions reveals
that FFQ-HIDMS-PSO attained the best mean performance
for problems F1, F5, F7, F8, F9, F10, F11, F12, F13, F16,
F17, F20, F21, F22, F23, F24, F25, F26, F29 and F30. For
problems F3, F4 and F6, HIDMS-PSO achieved the best mean
performance. The CS algorithm outperformed the comparison
methods for problems F14, F15, F18, F19 and F28. Lastly, BA,
GWO, BOA, WOA, MFO, FPA, IWO, PSO1 and PSO2 did not
outperform any of the comparison algorithms on any problems
at 50 dimensions. The results for the second experiment
conducted on the CEC05 test suite at 30 dimensions reveal
that FFQ-HIDMS-PSO outperformed comparison state-of-the-
art PSO variants for problems F5, F6, F10, F14, F19, F22, and
F25. HCLDMS-PSO attained the best mean performance for
problems F6, F17, F18, F20, F21 and F24. For problems F2,
F7, F8, F11, F12 and F23, the HIDMS-PSO algorithm outper-
formed the comparison methods. HCLPSO achieved the best
performance for problems F9, F13 and F15. MNHPSO-JTVAC
outperformed comparison methods for a single problem (F3)
while HPSO-TVAC attained the best performance for F1 and
F16. The same experiment conducted at 50 dimensions reveal
that the proposed algorithm outperformed the comparison
methods for problems F4, F5, F10, F14, F16, F18, F19, F20,
F21, F22, F24, and F25. The HIDMS-PSO algorithm attained
the best mean performance for problems F2, F6, F7, F8,
F11, F12 and F23. For problems F9, F13, F15 and F17, the
HCLPSO algorithm outperformed the comparison methods.
HPSO-TVAC and MNHPSO-JTAC each achieved the best
performance for a single problem: F1 and F3, respectively.
HCLDMS-PSO and FDR-PSO did not outperform any of the
algorithms for any problems at 50 dimensions. The results for
the third experiment conducted on the CEC05 test suite at
30 dimensions reveal that FFQ-HIDMS-PSO attained the best
mean performance for problems F4, F5, F10, F11, F14, F17,
F19, F20, F22 and F25. CLPSO outperformed comparison
methods for problems F1, F6, F8, F9, F13, F15, F18, F21
and F23. For problems F1, F2, F3, F12 and F16, CLPSO
obtained the best performance and DMSPSO achieved the best
mean performance for a single problem of F7. χPSO, BBPSO



and CLPSO attained an equal performance for problem F24.
FIPS and UPSO did not outperform any of the algorithms
for any problems at 30 dimensions. The same experiment
conducted at 50 dimensions reveal that FFQ-HIDMS-PSO
achieved the best performance for problems F4, F5, F10, F16,
F17, F18, F19, F20 and F25. The CLPSO algorithm attained
the best performance for problems F1, F9, F15, F21, F23 and
F24. For problems F1, F2, F3, F6, F12, and F23, BBPSO
achieved the best mean performance, UPSO outperformed the
comparison algorithms for problems F8, F11, F13 and F14 and
DMSPSO outperformed the comparison algorithms in a single
case for problem F7. FIPS and XPSO did not outperform
any of the algorithms for any problems at 50 dimensions. An
additional experiment was conducted to observe and compare
the rate of population diversity for the standard HIDMS-
PSO algorithm and the new proposed variant. Fig 5 shows
average value of population diversity over 20 consecutive runs
for both algorithms. The empirical evidence clearly indicates
that the proposed algorithm, FFQ-HIDMS-PSO, is capable
of avoiding the depletion of population diversity. It is also
worth noting that, in addition to a communication model
mentioned in previous sections, HIDMS-PSO employs a non-
uniform mutation operator at each iteration which significantly
contributes to evading stagnation [5]. However, both of those
mechanisms are not included in FFQ-HIDMS-PSO indicating
the effectiveness of the mechanisms proposed in this study.

V. CONCLUSIONS

The present study proposed an extension of the state-of-
the-art HIDMS-PSO algorithm that incorporates bio-inspired
fission-fusion behaviour and a quorum decision mechanism,
FFQ-HIDMS-PSO. The original algorithm was trimmed down
by discarding the mutation operator and the communication
model that was proposed in the original study. The new
algorithm was equipped with bio-inspired fission-fusion be-
haviour and the quorum decision mechanisms provide the new
algorithm with “diversity aware” units capable of adopting
a suitable behaviour through quorum decision to regain a
unit’s diversity and boost the overall population diversity. The
empirical evidence suggests that the new algorithm is superior
in maintaining the population diversity throughout the search
in comparison to the original HIDMS-PSO algorithm. The
proposed algorithm was tested with three distinct experiments
on the CEC17 and CEC05 test suites at 30 and 50 dimen-
sions against 12 state-of-the-art metaheuristics and 12 state-
of-the-art PSO variants. The proposed algorithm has shown
a superior performance by outperforming all 24 algorithms
in all conducted experiments. The present can be extended
by further improving or applying the proposed algorithm to
practical engineering problems.
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Algorithm 1: FFQ-HIDMS-PSO
population size n,C = 0.15, wmax = 0.99, wmin = 0.2;
randomly define each particle’s velocity υ and position x;
c1 = 2.5− (1 : Tmax ∗ 2/Tmax;
c2 = 0.5− (1 : Tmax ∗ 2/Tmax;
ω1 =

wmax+(wmin−wmax)

1+exp
(
−5

(
2t

Tmax
−1

)) ;

RGmin = Tmax ∗ 0.01; RGmax = Tmax ∗ 0.1;
RG = RGmax; FFperiod = Tmax ∗ 0.01;

for t=1:Tmax do
if mod(t,RG)==0 then

vertically shuffle slave particles
end
if mod(t,FFperiod)==0 then

Randomly reform new units from fissioned and fused
particles

end
if mod(t,round(

FFperiod
10

))==0 then
Calculate δ for all units using Eq. 11
if any unit’s δ < δ then

Randomly select fission or fusion behaviour
Calculate QR for each unit member using Eq. 12
Use the rules in section 3 to determine the final

decision
end

end
for i=1:n do

if f(xi) >= f(x) then
ω = ω

(t)
1 + C; if ω > 0.99, ω = 0.99, end

else
ω = ω

(t)
1 − C; if ω < 0.20, ω = 0.20, end

end
if ith particle belongs to a unit that is not currently

fissioned/fused then
if randi([0 1])==0 (inward-strategy) then

if ith particle is a master then
behaviour = randi([1 3]);
if behaviour == 1 then

update υi and xi using Eqs. 4 and 2
else if behaviour == 2 then

update υi and xi using Eqs. 5 and 2
else if behaviour == 3 then

update υi and xi using Eqs. 6 and 2
end

else
update υi,xi using Eqs. 7 and 2

end
else

if ith particle is a master then
behaviour = randi([1 3]);
if behaviour == 1 then

update υi,xi using Eqs. 8 and 2
else if behaviour == 2 then

update υi,xi using Eqs. 9 and 2
else if behaviour == 3 then

update υi,xi using Eqs. 10 and 2
end

else
update υi,xi using the Eqs. 11 and 2

end
end

else if ith particle belongs to a fisioned sub-pop then
update υi,xi using the Eqs. 13 and 2

else if ith particle belongs to a fused sub-pop then
update υi,xi using the Eqs. 14 and 2

end
Evaluate the fitness of xi
Update the pbesti and gbest

end
RG = round(RGmax − (RGmax −RGmin) ∗ t

Tmax
)

end
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Fig. 5. Comparison of population diversity for HIDMS-PSO and FFQ-HIDMS-PSO for CEC17 test suite problems F5, F8, F10 and F20.

TABLE I
THE MEAN ERROR RESULTS OBTAINED FOR THE FIRST EXPERIMENT CONDUCTED USING THE CEC2017 TEST SUITE FOR PROBLEM SIZE OF 30

DIMENSIONS.

F1 F3 F4 F5 F6 F7 F8 F9 F10
BA 7.3E+10 2.2E+05 2.1E+04 5.1E+02 1.1E+02 1.5E+03 4.3E+02 2.1E+04 8.8E+03

GWO 1.1E+09 2.9E+04 1.5E+02 8.7E+01 4.0E+00 1.6E+02 7.7E+01 5.4E+02 2.8E+03
BOA 3.0E+10 6.7E+04 2.5E+03 3.3E+02 6.4E+01 5.1E+02 2.9E+02 6.9E+03 7.7E+03
WOA 2.1E+06 1.6E+05 1.5E+02 2.7E+02 6.6E+01 5.1E+02 1.9E+02 7.7E+03 4.8E+03
MFO 8.1E+09 7.7E+04 5.1E+02 1.8E+02 2.5E+01 3.5E+02 1.7E+02 5.1E+03 4.1E+03
ABC 1.3E+02 1.2E+05 3.4E+01 8.8E+01 0.0E+00 1.0E+02 8.9E+01 8.2E+02 2.3E+03
FPA 1.1E+11 1.8E+06 3.6E+04 6.2E+02 1.3E+02 2.5E+03 5.6E+02 3.1E+04 9.1E+03
CS 1.9E+04 4.5E+04 7.5E+01 1.4E+02 5.0E+01 1.6E+02 1.3E+02 4.6E+03 3.7E+03

IWO 3.0E+03 6.4E+03 8.8E+01 4.1E+02 7.2E+01 2.0E+03 3.5E+02 7.6E+03 4.7E+03
PSO1 1.3E+11 3.9E+08 4.4E+04 6.8E+02 1.4E+02 2.7E+03 6.1E+02 3.8E+04 9.6E+03
PSO2 1.3E+11 3.9E+08 4.4E+04 6.8E+02 1.4E+02 2.7E+03 6.1E+02 3.8E+04 9.6E+03

HIDMS-PSO 2.6E+03 2.5E-10 6.2E+01 5.3E+01 9.6E-03 9.2E+01 5.2E+01 3.6E+00 2.9E+03
*FFQ-HIDMS-PSO 1.8E+03 1.0E+01 8.9E+01 2.6E+01 2.1E-01 6.6E+01 2.5E+01 1.1E-01 3.1E+03

TABLE II
THE MEAN ERROR RESULTS OBTAINED FOR THE FIRST EXPERIMENT CONDUCTED USING THE CEC2017 TEST SUITE FOR PROBLEM SIZE OF 50

DIMENSIONS.

F1 F3 F4 F5 F6 F7 F8 F9 F10
BA 1.7E+11 8.2E+07 6.3E+04 9.5E+02 1.3E+02 3.3E+03 9.7E+02 7.5E+04 1.6E+04

GWO 4.6E+09 7.0E+04 4.3E+02 1.7E+02 1.1E+01 3.0E+02 2.0E+02 3.7E+03 5.6E+03
BOA 4.3E+10 2.2E+05 9.9E+03 6.2E+02 7.9E+01 1.1E+03 6.5E+02 2.8E+04 1.4E+04
WOA 7.1E+06 7.8E+04 2.8E+02 4.2E+02 7.6E+01 9.9E+02 4.1E+02 1.9E+04 9.1E+03
MFO 3.2E+10 1.7E+05 2.6E+03 4.2E+02 4.5E+01 9.0E+02 3.8E+02 1.5E+04 7.9E+03
ABC 9.2E+08 6.6E+05 1.2E+03 5.0E+02 3.0E+01 5.7E+02 5.0E+02 3.0E+04 1.5E+04
FPA 2.3E+11 1.9E+08 9.0E+04 1.1E+03 1.4E+02 4.7E+03 1.1E+03 9.2E+04 1.6E+04
CS 1.4E+05 1.6E+05 7.7E+01 2.9E+02 6.2E+01 3.4E+02 2.8E+02 1.6E+04 7.0E+03

IWO 6.9E+03 2.6E+04 1.2E+02 7.4E+02 7.8E+01 3.5E+03 7.2E+02 2.0E+04 7.7E+03
PSO1 1.3E+09 9.6E+03 2.5E+02 2.3E+02 2.0E+01 2.8E+02 2.3E+02 5.8E+03 6.5E+03
PSO2 1.2E+10 5.8E+04 9.3E+02 2.0E+02 1.2E+01 2.7E+02 2.0E+02 3.6E+03 6.1E+03

HIDMS-PSO 4.6E+03 1.7E-03 7.3E+01 1.1E+02 7.1E-02 1.8E+02 1.1E+02 4.2E+01 5.5E+03
*FFQ-HIDMS-PSO 1.4E+03 1.9E+03 1.1E+02 4.9E+01 6.2E-01 1.2E+02 4.5E+01 3.2E+00 5.3E+03
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TABLE III
THE MEAN ERROR RESULTS OBTAINED FOR THE SECOND EXPERIMENT CONDUCTED USING THE CEC2005 TEST SUITE FOR PROBLEM SIZE OF 30

DIMENSIONS.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
HIDMS-PSO 1.400E-12 1.075E-03 1.127E+06 1.736E+03 2.980E+03 6.963E+01 4.696E+03 2.069E+01 4.956E+01 6.523E+01
HPSO-TVAC 5.495E-14 4.782E-02 1.745E+06 2.997E+03 5.459E+03 1.092E+02 4.696E+03 2.099E+01 3.638E+01 9.984E+01

FDR 4.970E+02 1.361E+03 1.622E+07 2.796E+03 3.623E+03 2.373E+06 4.696E+03 2.099E+01 2.737E+02 1.980E+02
HCLDMS-PSO 3.297E-12 3.453E+01 2.940E+06 2.214E+03 2.847E+03 6.333E+01 4.696E+03 2.084E+01 3.718E+01 3.549E+01

HCLPSO 1.262E+01 2.196E+01 3.688E+06 2.147E+03 2.393E+03 2.891E+05 4.696E+03 2.094E+01 4.017E+00 6.669E+01
MNHPSO-JTVAC 5.874E-14 9.344E-03 9.784E+05 3.575E+03 5.366E+03 9.910E+01 4.696E+03 2.100E+01 2.454E+01 1.007E+02

*FFQ-HIDMS-PSO 1.177E-03 7.955E+01 3.440E+06 3.175E+02 1.267E+03 1.670E+02 4.696E+03 2.091E+01 2.109E+01 3.091E+01

TABLE IV
(THE MEAN ERROR RESULTS OBTAINED FOR THE SECOND EXPERIMENT CONDUCTED USING THE CEC2005 TEST SUITE FOR PROBLEM SIZE OF 50

DIMENSIONS.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
HIDMS-PSO 2.5E-09 2.8E+01 3.8E+06 2.5E+04 6.8E+03 1.2E+02 6.2E+03 2.1E+01 1.2E+02 1.3E+02
HPSO-TVAC 1.0E-13 1.9E+02 4.4E+06 3.1E+04 1.6E+04 1.7E+02 6.2E+03 2.1E+01 1.1E+02 1.9E+02

FDR 1.3E+03 1.1E+04 7.2E+07 2.6E+04 8.2E+03 9.9E+06 6.2E+03 2.1E+01 5.6E+02 4.3E+02
HCLDMS-PSO 6.9E-07 2.8E+03 1.1E+07 2.2E+04 7.5E+03 2.4E+02 6.2E+03 2.1E+01 1.1E+02 9.5E+01

HCLPSO 8.0E+00 2.0E+03 1.4E+07 2.5E+04 6.3E+03 1.8E+05 6.2E+03 2.1E+01 1.8E+01 1.2E+02
MNHPSO-JTVAC 1.2E-13 9.6E+01 2.9E+06 2.7E+04 1.4E+04 1.3E+02 6.2E+03 2.1E+01 8.3E+01 1.6E+02

*FFQ-HIDMS-PSO 4.3E-02 1.8E+03 1.2E+07 5.3E+03 3.5E+03 4.0E+02 6.2E+03 2.1E+01 4.4E+01 4.8E+01

TABLE V
THE MEAN ERROR RESULTS OBTAINED FOR THE THIRD EXPERIMENT CONDUCTED USING THE CEC2005 TEST SUITE FOR PROBLEM SIZE OF 30

DIMENSIONS.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
χPSO 9.7E+00 1.6E+01 1.0E+07 1.8E+03 8.1E+03 1.2E+03 6.8E+03 2.1E+01 6.5E+01 8.7E+01
BBPSO 0.0E+00 9.3E-03 1.3E+06 2.3E+03 5.3E+03 2.8E+01 4.7E+03 2.1E+01 5.6E+01 7.6E+01

DMSPSO 3.1E+02 7.8E+02 5.6E+06 8.6E+02 4.3E+03 2.7E+07 4.3E+03 2.1E+01 4.8E+01 8.0E+01
FIPS 5.3E+02 1.5E+04 1.9E+07 2.1E+04 1.2E+04 2.5E+07 7.5E+03 2.1E+01 5.4E+01 1.5E+02

UPSO 1.3E+03 7.6E+03 5.3E+07 1.9E+04 1.3E+04 1.2E+07 7.5E+03 2.1E+01 7.8E+01 1.6E+02
CLPSO 0.0E+00 3.8E+02 1.2E+07 5.4E+03 4.0E+03 1.8E+01 4.7E+03 2.1E+01 0.0E+00 8.0E+01

*FFQ-HIDMS-PSO 1.1E-03 8.1E+01 3.4E+06 4.3E+02 1.3E+03 1.9E+02 4.7E+03 2.1E+01 2.4E+01 3.2E+01

TABLE VI
THE MEAN ERROR RESULTS OBTAINED FOR THE THIRD EXPERIMENT CONDUCTED USING THE CEC2005 TEST SUITE FOR PROBLEM SIZE OF 50

DIMENSIONS.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
χPSO 9.7E+00 7.8E+02 2.0E+07 2.8E+04 1.1E+04 6.4E+06 6.2E+03 2.1E+01 1.8E+02 1.8E+02
BBPSO 0.0E+00 2.9E+02 3.7E+06 3.0E+04 1.3E+04 5.8E+01 6.2E+03 2.1E+01 1.3E+02 1.8E+02

DMSPSO 3.9E+02 9.7E+02 1.3E+07 1.3E+04 5.5E+03 1.8E+07 6.1E+03 2.1E+01 9.9E+01 1.7E+02
FIPS 1.7E+03 2.6E+04 5.9E+07 3.4E+04 1.6E+04 8.0E+07 1.0E+04 2.1E+01 1.5E+02 3.9E+02

UPSO 7.1E+02 4.2E+03 5.3E+07 1.4E+04 1.2E+04 2.7E+06 7.4E+03 2.1E+01 6.5E+01 1.4E+02
CLPSO 0.0E+00 1.0E+04 4.9E+07 3.4E+04 9.7E+03 8.7E+01 6.2E+03 2.1E+01 0.0E+00 2.2E+02

*FFQ-HIDMS-PSO 4.6E-02 1.8E+03 1.2E+07 5.4E+03 3.5E+03 4.5E+02 6.2E+03 2.1E+01 4.6E+01 5.7E+01

TABLE VII
RANKS OF MEAN PERFORMANCE FOR THE FIRST EXPERIMENT.

Algorithm Avg(30D) Final(30D) Avg(50D) Final(50D)
*FFQ-HIDMS-PSO 1.90 1 1.45 1

HIDMS-PSO 2.45 2 2.17 2
ABC 2.93 3 8.45 10
CS 3.90 4 4.17 3

GWO 5.21 5 5.00 4
MFO 6.52 6 8.10 9
IWO 6.83 7 7.14 7
WOA 7.24 8 7.83 8
BOA 8.07 9 9.69 11
BA 10.07 10 12.03 12
FPA 10.93 11 12.93 13

PSO1 12.00 12 5.48 5
PSO2 12.00 12 6.55 6

TABLE VIII
RANKS OF MEAN PERFORMANCE FOR THE SECOND EXPERIMENT.

Algorithm Avg(30D) Final(30D) Avg(50D) Final(50D)
*FFQ-HIDMS-PSO 2.64 1 2.32 1

HCLDMS-PSO 2.84 2 3.44 3
HIDMS-PSO 2.92 3 2.88 2

HCLPSO 3.60 4 3.48 4
MNHPSO-JTVAC 4.32 5 4.04 5

HPSO-TVAC 4.36 6 4.56 6
FDR 6.24 7 6.32 7

In: Durand-Lose J., Jonoska N. (eds) Unconventional Computation and
Natural Computation. UCNC 2012. Lecture Notes in Computer Science,
vol 7445. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-32894-

TABLE IX
RANKS OF MEAN PERFORMANCE FOR THE THIRD EXPERIMENT.

Algorithm Avg(30D) Final(30D) Avg(50D) Final(50D)
*FFQ-HIDMS-PSO 2.08 1 2.16 1

CLPSO 2.32 2 3.32 2
BBPSO 2.80 3 3.48 4
XPSO 3.76 4 4.24 6

DMSPSO 4.16 5 3.44 3
FIPS 5.84 6 6.40 7

UPSO 6.04 7 4.16 5
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