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Abstract

This paper sets out and justifies a methodology for
the development of the control systems, or ‘cognitive
architectures’, of autonomous mobile robots. It will be
argued that the design by hand of such control systems
becomes prohibitively difficult as complezity increases.

The alternative approach of artificial evolution 15
presented. It is argued that the most useful basic build-
ing blocks for an evolved cognitive architecture are
adaptive noise tolerant neural networks rather than
programs.  These networks may be recurrent, and
should operate in real time. Evolution should be in-
cremental, using an extended and modified version of
genetic algorithms.

Time constraints mean that architecture evalua-
tions must be largely done in simulation. Results from
a simulation are presented. The pitfalls of simulations
compared with reality is discussed, together with the
importance of incorporating noise.

1 Introduction

This paper sets out and justifies a methodology
for the development of the control systems, or ‘cog-
nitive architectures’, of autonomous mobile robots in-
tended for use in unstructured or dynamic environ-
ments. Such robots will require active perception and
will be behaviour-based. Although behaviour-based
approaches to robot control appear to be far more
promising than traditional model-based functional de-
composition methods, it will be argued that the design
of such control systems is still prohibitively difficult.
A methodology based on the alternative approach of
artificial evolution is presented. The advantages of
such a scheme over design by hand are described.

The methodology is further illuminated by describ-
ing its application to the development of the cognitive
architecture of a mobile autonomous robot engaged in
a series of increasingly complex tasks. The robot is
equipped with low resolution sensing devices and is
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required to act in uncertain environments. It is ar-
gued, in this case, that the most useful basic building
blocks for an evolved cognitive architecture are adap-
tive noise tolerant neural networks.

Relevant work by others will be discussed. There
have recently independently been suggestions of differ-
ent but related evolutionary approaches. In particular
during the preparation of this paper Brooks proposed
using Evolutionary Programming techniques [8]; and
Beer and Gallagher reported on the use of dynamical
neural networks [5]. These methods will be compared
with ours.

Artificial evolution requires the evaluation of a
great number of candidate control systems. Time con-
straints mean that many of these evaluations must be
done in simulation. The requirements of such a simu-
lation system are discussed.

2 Interesting robots are too difficult to
design

Traditional approaches to the development of au-
tonomous robot control systems have made only mod-
est progress, with fragile and computationally very ex-
pensive methods. A large part of the blame for this
can be laid at the feet of an implicit assumption of
functional decomposition — in the terms of the themes
of this conference, the assumption that perception,
planning and action could be analysed independently
of each other. This failure has led to recent work at
MIT which bases robot control architectures instead
around behavioural decomposition[6, 7]. Such work re-
jects the traditional Al approach which manipulates
symbolic representations of the world, and places more
emphasis on ‘knowing how’ to do things rather than
‘knowing that’ the world is in a given state. View-
points sympathetic to such an approach can be seen
in, e.g., [22, 4, 10, 2].

Such a subsumption-style cognitive architecture for



a robot in theory analyses independent behaviours of
a robot or animat,! such that each behaviour can be
‘wired in’ all the way from sensor input to motor out-
put. Simple behaviours are wired in at first, and
then more complex behaviours are added as a sepa-
rate layer, affecting earlier layers only by means of
suppression or inhibition mechanisms.

However it is accepted that the design of robust mo-
bile robot control systems is highly complex because
of the extreme difficulty of foreseeing all possible in-
teractions with the environment; and the interactions
between separate parts of the robot itself [7, 18]. The
design by hand of such a cognitive architectures in-
herently becomes more complex much faster than the
number of layers or modules within the architecture —
the complexity can scale with the number of possible
interactions between modules.

One way out of this problem to try and automate
the design process. A possible approach is to view the
design of a control architecture as a planning prob-
lem. Traditional AI approaches to planning have been
shown to be computationally infeasible when applied
to such problems [9]. More recent approaches to plan-
ning [2] have dwelt on much lower-level problem solv-
ing capabilities and a complex design problem is far
beyond their horizons.

The design of a behavioural layer in a subsump-
tion architecture seems to be design by magic, by
sleight of hand, by indirection; in the sense that the de-
sired behaviour can often be described as an emergent
by-product of rule-following which does not explicitly
mention that behaviour [14]. Emergence is in itself
nothing magic as a phenomenon, if it is considered
as emergence-in-the-eyes-of-the-beholder. Something
can be characterised as emergent relative to an initial
given description if:

1. a system can be set up which is completely de-
scribed in this initial way

2. A new description of the behaviour of the system
can be made which ‘is useful’ or ‘makes sense’ to
an observer, and makes use of concepts outside
those originally given.

To design such emergent behaviours hence re-
quires either (a) a computationally intractable plan-
ning problem or (b) a creative act on the part of the
designer — which is to be greatly admired, though
impossible to formalise. In both cases it seems likely
that the limits of feasibility are currently being tested.

! Animat . .. simulated animal or autonomous robot.[24]
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3 Let’s evolve robots instead

If, however, some objective fitness function can be
derived for any given architecture, there is the possi-
bility of automatic evolution of the architecture with-
out explicit design. Natural evolution is the existence
proof for the viability of this approach, given appro-
priate resources. Genetic Algorithms (GAs) [11] use
ideas borrowed from evolution in order to solve prob-
lems in highly complex search spaces, and it is here
suggested that GAs, suitably extended in their appli-
cation, are a means of evading the problems mentioned
in the previous section.

The artificial evolution approach will maintain a
population of viable genotypes (chromosomes), cod-
ing for cognitive architectures, which will be inter-bred
and mutated according to a selection pressure. This
pressure will be controlled by a task-oriented evalua-
tion function: the better the robot performs its task
the more evolutionarily favoured is its cognitive ar-
chitecture. Rather than attempting to hand design a
system to perform a particular task or range of tasks
well, the evolutionary approach will allow their grad-
ual emergence.

The sleight-of-hand, or indirection, problem men-
tioned above, is avoided with GAs in that there is no
need for any assumptions about means to achieve a
particular kind of behaviour, as long as this behaviour
is directly or implicitly included in the evaluation func-
tion.

Brooks’ subsumption approach was mentioned
above as a contrast to the dogmatic assumptions of
functional decomposition implicit in much of tradi-
tional robotics. Nevertheless, it is similarly not neces-
sary to be dogmatically committed to an exclusively
behavioural decomposition. By allowing both types
of decomposition, the evolutionary process will deter-
mine where in practice the balance should lie in the
robots’ cognitive architecture.

4 Related Work

A number of researchers have speculated on the use
of evolutionary techniques for mobile robot program-
ming [3, 23], though no practical applications have
been reported. Some have shown the method to be
viable for simulated robots in highly simplified simu-
lated worlds [1], but have not had to face the exponen-
tial increase in complexity that follows from progress
from toy worlds into the real world.

In December 1991 Brooks reported at ECAL-91 in
Paris [8] that he was starting work on an evolution-
ary approach to robotics, based on Koza’s Genetic
Programming techniques [16]. He acknowledged the
practical necessity of largely using simulations, and




stressed the dangers of using simulated worlds rather
than real worlds. We would endorse two further points
he makes; firstly that by evolving the control program
incrementally the search space can be kept small at
any time; and secondly that symmetries or repeated
structures should be exploited so that only a single
module needs to be evolved, which is then repeatedly
used.

Where we would differ from Brooks is that we do
not believe that a programming language is the right
medium of control to be evolved. As a technique for
evolving programs, Koza’s Genetic Programming does
seem to be the best framework available, with the pro-
grams effectively treated as trees which a crossover
operator, swapping subtrees, handles sensibly. But
any programming language which incorporates a DO-
WHILE loop (or anything equivalent) suffers from the
possibility — indeed with large programs the probabil-
ity — of non-halting programs. There is no algorithm
for detecting such programs, short of waiting forever,
and the usual technique used by Koza is to define for-
ever as, for instance, a few hundred program steps, re-
jecting those programs that have not halted by then.
This inherent brittleness of programs, in that a single
mutation to a ‘viable’ program can turn it into a non-
halter, is we believe a fundamental barrier to progress
in this direction as programs get larger.

The success of work by Ray [21] on evolving repli-
cating ‘organisms’ and ‘parasites’ based on machine-
code instructions has been interpreted by some as
demonstrating that the inherent brittleness of partial
recursive program languages can be avoided. But it
is avoided in this case because there is no externally
imposed evaluation which requires each machine-code
program to be ‘run until it halts’ for its fitness to be
evaluated. The real time of the ‘organisms’ is mea-
sured in terms of program steps. But in contrast to
this, when robot control is by program, the assump-
tion is made that when inputs are assessed at each
externally dictated clock-tick, the outputs can be cal-
culated ‘instantaneously’, or at least before the next
clock-tick. This is usually an adequate approximation
ezcept specifically in the case of non-halting programs.

5 The use of Neural Networks

Because of just these issues, we advocate real-time
dynamical neural networks as the medium of evolu-
tion, rather than programming languages. A feedback
loop in such a network might be considered analogous
to a non-halting program if it results in permanent
oscillations in the network, but there is no problem
of ‘illegality’ here if indeed such an oscillation in real
time is fed through to the outputs.
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Neural networks as the medium of control — but

not in an evolutionary context — have been used in
such projects as ALVINN with the CMU Navlab [20]
for real robots. This used a backpropagation network
with a human driver as the teaching input; the task
was to learn to drive the Navlab van down roads using
the input from a video camera. The limitations of us-
ing a synthesized environment meant that training se-
quences were derived from real roads, with techniques
developed to ensure that examples of varied and bad
driving were also available to be learnt from.

Important work on an evolutionary approach to
simulated robotics using neural networks by Beer has
come to our notice while this paper was in preparation
[5]. He explores the evolution of continuous-time re-
current neural networks as a mechanism for adaptive
agent control, using as example tasks chemotaxis, and
locomotion-control for a six-legged insect-like agent.
The starting point taken can be characterised by this
quotation:

...animals are endowed with nervous sys-
tems whose dynamics are such that, when
coupled with the dynamics of their bodies
and environments, these animals can engage
in the patterns of behavior necessary for their
survival.

Thus the time constants of the model neurons in the
networks is of as much significance as the weights on
the connections between them; and there 1s no reason
to restrict networks to feedforward.

The technique used by Beer and Gallagher to de-
termine the time constants, thresholds and connec-
tion weights is a standard GA, as implemented in the
GENESIS package. They report success in their ob-
jectives, and tried a number of GA variations in the
use of selection only, or crossover only, or mutation
only. Their discussion of the issues involved is to be
recommended to anybody working in this area. They
do not emphasise in the way Brooks (and Pomerleau)
does the important distinctions to be made between
simulations and reality, as their work reported here is
confined to simulations; nevertheless a neural net ap-
proach such as theirs should be inherently much less
brittle in the presence of noise than a programming
approach.

For solving a particular small-scale problem the
evolution of a continuous-time recurrent neural net,
with due attention to the necessity for noise in simu-
lations as discussed below, is what we would advocate.
For more complex systems we believe it is necessary
to analyse carefully the use of evolutionary techniques



to produce incrementally more complex architectures
[13]. Standard GA practice is no longer adequate.

6 An Incremental Species approach

Though an animal should not be considered as a
solution to a problem posed 4 billion years ago, in
the short term adaptations in a species may be use-
fully interpreted as solving particular problems for
that species. So when using the evolution of animals
as a source of ideas for the evolution of animats, GAs
should be used as a method for searching the space of
possible adaptations to an existing animat, not as a
search through the complete space of animats.

This of course has strong resemblances to Brooks’
incremental approach, wherein ‘low-level’ behaviours
are wired in and thoroughly debugged, before the next
layer of behaviour is carefully designed on top of them.
The difference with the approach we advocate is that
of substituting evolution for design.

In [13] a framework is developed for extending GAs
to deal with phenotypes of increasing complexity, and
hence necessarily genotypes of increasing length. It
1s shown that, within this Species Adaptation Ge-
netic Algorithm (SAGA) framework, after any initial
evolutionary search a population will inevitably be
largely converged, and hence thereafter be evolving
as a species; and any individual changes in genotype
length in the next generation, associated with increase
in complexity, must necessarily be restricted to rela-
tively slight changes.

Whereas in standard GAs the crossover operator
is the main engine driving the search, from an initial
population widely spread across the search space to-
wards homing in on an optimal area, in SAGA the
main operators operating on a converged population
are mutation and change-length operators. The mu-
tation operator, rather than being at a very low-level
background rate, is of the order of magnitude of 1
mutation per genotype; a figure, incidentally, sup-
ported by results given by Beer and Gallagher [6]. The
crossover operator is used to ‘mix-and-match’ any im-
provements made by the other operators, and must be
carefully crafted to minimise disruption.

7 Evaluation

The human roboticist should, so we argue, relin-
quish the design role to the evolutionary mechanisms
of an extended GA, once the capabilities being sought
for the robot go beyond toy domains. But unrestricted
evolution will have no reason to produce animats that
the human wishes for, and hence for practical purposes
the human must take on a role analogous to the plant
breeder or cattle breeder, both of whom act so as to
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influence the future course of existing species. Hence
the task of the human will be to design a set of robot
tasks of increasing complexity (and ways to evaluate
them), leading from the capabilities of existing robots
towards those capabilities required in the future. This
is non-trivial, although the creative human input to
this process will be at a higher level of abstraction
than current design at the nuts and bolts level.

Such a sequence in evolutionary time parallels the
addition of layers of behaviour in a subsumption ar-
chitecture designed by hand — for instance progres-
sion from obstacle-avoidance to wandering to wall-
following to simple navigation. The score of an in-
dividual robot will at any one time be based on a
function of the scores on each of the individual tasks,
and at any time a new task can be added which con-
tributes to the score. Species evolution within the
SAGA framework limits the search process to the ap-
propriate adaptations to networks with already estab-
lished capabilities. A price that has to be accepted
here is that only a minute portion of the global search
space is covered; but no other method avoids this once
we are beyond toy domains.

8 Morphogenesis

Approaches to the problem of evolving connection-
ist network architectures that have been taken include
those in [17, 19]. All these have used some form of GA
to search through a pre-defined finite space of possible
network architectures. In other words, at a more or
less sophisticated level, the basic architecture has been
defined with some parameters left as variables, and
the GA has been used to tweak the parameters to op-
timal values. Work by Harp [12] with variable length
genotypes allows for networks of potentially arbitrary
complexity, requiring a careful crossover operator that
exchanges homologous segments.

To move to an open-ended space of possible archi-
tectures, rather than adjusting parameters in a finite
space, a genetic coding able to produce a network from
a genotype of indefinite length must be used. Since in
this case there can be no direct mapping from each
pre-defined section of the genotype to a parameter of
the network, the process of translating the genotype
into the network cannot all be done in parallel, and
hence at least part of the translation must be a sequen-
tial process. This is in contrast to standard GA prac-
tice, where in functional terms the translation from
genotype to phenotype could well be done in parallel,
and the genotype is in a sense a simple description of
the salient characteristics of the phenotype.

Once the genotype is interpreted sequentially, the
production of the phenotype is now a developmental




process, where the sequence of interpretation is of sig-
nificance. So it is necessary to find some appropriate
developmental language, such that the genotype de-
termines the developmental process, which results in
a network. It should be noted that in the real world,
the appropriate parts of the DNA in each cell are
translated sequentially; and the development of the
form of the body, including the brain, from the popu-
lation of cells which constitute it, is itself a sequential
process of immense and little-understood complexity.
The information in the DNA is too small by many or-
ders of magnitude to uniquely specify each connection
in the brain, and hence there must be some form of
modularity in this specification. One presumes that
there are building blocks (for instance, layers with a
certain pattern of projection for the connectivity be-
tween them) that are useful in many different parts of
the brain; rather than each occurrence being individ-
ually coded for in the genotype, such a building block
may be coded for in perhaps just one place, and this
information used many times over in the development
of the brain structure.

In biology, morphogenesis is one of the least-
understood areas. In the artificial evolution of neural
networks we know of no very satisfactory method for
modelling a developmental process from genotype to
network, and this currently presents the greatest chal-
lenge. For the time being ad hoc solutions must be
used.

9 The need for simulation

Artificial evolution requires the evaluation of mem-
bers of a sizeable population over the course of many
generations. In the case of the evolution of au-
tonomous robot control systems, it would take far too
long to do all of these evaluation in the real world,
and instead most must be done in simulation. It is
crucial that the simulation is kept as closely in step
with reality as possible. A number of techniques can
be used to this end. Firstly, the simulation can be
calibrated at regular intervals by carefully testing the
architectures evolved in the real robot. Serious dis-
crepancies should be ironed out. Secondly, accurate
simulations of the inputs to the robot sensors and the
reactions to the actuators should be based on carefully
collected empirical data. Noise must be taken into ac-
count at all levels. In order to acquire the desired level
of accuracy it may be necessary to use a mixed hard-
ware/software simulation in which simulated signals
are fed into hardware sensors or actuators and the
response is read directly. The use of low resolution
sensing makes this approach feasible.

A range of unstructured dynamic environments
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should be used in the simulation. A cognitive architec-
ture that has evolved to cope with a range of such en-
vironments is much more likely to be robust than one
evolved to operate in a single well structured world.

Of course it is not possible to simulate the world
in all its rich detail, even the world of a robot with
low resolution senses. This would be a serious prob-
lem if the traditional techniques of robot control were
to be used; fragile techniques that cannot cope with
even slight divergence from the details of their inter-
nal models. However, the use of adaptive noise toler-
ant units, such as neural nets, as the key elements of
the control system means that 100% accuracy is not
required. Discrepancies between the simulations and
the real world, as long as they are not too big, can be /
treated as noise; the system can adapt to cope with /
this. //

When it comes to evaluation of a robot architec-
ture, since the results on individual runs will vary with
noise, a number of runs should be made. Taking the
minimum score achieved over a number of runs as the
final score will implicitly favour robust designs.

In the long term, as the robots become more so-
phisticated and their worlds more dynamic, will the
simulation run out of steam? The simulation of a
medium resolution visual system with, for instance,
motion detection pre-processing is painfully slow on
today’s hardware. The quantity and quality of input
information required, especially in a dynamic environ-
ment, would make further heavy demands. There is no
such thing as a free lunch, and it will not be surprising
if this is the barrier in the long term. Nevertheless in
the medium term, working with minimal sensory in-
puts within the capabilities of current simulations, an
enormous range of behaviours, far beyond those cur-
rently hand-designed, can be generated through rela-
tively small-scale cognitive architectures which remain
amenable to an evolutionary approach.

These issues are discussed further in a paper sub-
mitted to Artificial Life 3 [15].

10 An example simulation

A real robot assembled in the Engineering Depart-
ment at Sussex has been simulated using this method-
ology. The behaviour of the motors propelling the
wheels has been modelled for the outputs, as have in-
puts from whisker and bumper touch sensors. Simula-
tion of a low-resolution insect-type visual system will
be added. This is part of an ongoing project at Sussex
to develop an evolutionary approach to robotics, with
increasingly sophisticated tasks leading to navigation
using learnt landmarks.

A relatively complex floor-plan of an area in which
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Figure 1: Results of experiment.

the robot can wander is modelled, including walls,
doors and pillars. The continuous physical motion of
the robot, including contact with obstacles, is accu-
rately calculated. Realistic values of noise are added
both to the inputs and to the output signals from the
neural network control architecture, to the inputs to
internal nodes, and also to the deflections on hitting
obstacles.

The network has a fixed number of input nodes as-
sociated with the sensors, of output nodes associated
with the motors, and a variable number of internal
nodes. Connections, genetically determined, can be
between any nodes in either direction, and can either
contribute to the inputs of the target node, or act as
a veto on its outputs. The sum of the inputs to a
node (with noise) is passed through a sigmoid func-
tion — in fact the output is zero until the input sum
reaches a minimum threshold, thereafter a linear func-
tion of the input sum until a maximum threshold is
reached, whereupon the output remains fixed at its
maximum value. The continuous behaviour of the net-
work is approximated with (fine) discrete time slices.
The output signals are polled after a number of such
time slices; to counter distorting periodic effects this
number has some variance about a mean.

The genetic coding for the architecture has to al-
low for a variable number of internal nodes, and a
variable number of connections from each node. In-
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terpreted sequentially along the genotype, firstly the
input nodes are coded for. each preceded by a marker.
For each node. the threshold values of the sigmoid can
first be coded, thereafter a variable number of groups
each representing a single connection from that node.
FEach group specifies whether it is an additive or a
veto connection, and then the target node indicated
by jump-type and by jump-size. The jump-type allows
for relative addressing by jumps forward or backwards
along the genotype ordering; or for absolute address-
ing relative to the start or the end of the genotype.
The listing of the variable number of connections from
the given node is terminated when a genetic marker
indicates that the next node has been reached.

The internal nodes and output nodes are handled
similarly in succession with their own identifying ge-
netic markers; it is these markers for the internal nodes
that identify the variable numbers of these. The vari-
able length of the resulting genotypes necessitates a
careful crossover operator which exchanges homolo-
gous segments. In keeping with SAGA principles,
when a crossover between two parents results in an
offspring of different length, such changes in length
(although allowed) are restricted to a minimum.

Figure 1 shows the results for an experiment in
which a control network was evolved for a robot with
four whiskers and front and back bumpers. The eval-
uation function was designed to encourage wandering.
Robust control networks were favoured by scoring each
genotype several times for a single evaluation. On each
scoring run the robot faced a different set of situations
because of the noise in the system. The minimum of
the scores achieved was taken as the evaluation figure.
The robots were started from rest with no initialis-
ing signals. Internal noise was sufficient to allow fitter
nets to settle into useful initial states. The bottom
line on the graph shows the evaluation figure for the
best individual in each generation. The top line shows
the best score achieved by any member of the popula-
tion for any of the runs making up its evaluation set.
The fact that these two lines converge indicates that
more and more robust networks appeared. The theo-
retical maximum score (which could only be achieved
with a perfect map and navigation system) was 51.5.
Clearly, very good control networks have been evolved
in only a few generations. Useful robust behaviour has
been achieved without internal representations or any
kind of predefined strategy. Figure 2 shows a short
run by a robot controlled by one of these networks,
the circles are pillars and the lines walls. The robot’s
whiskers are shown moving through objects as a mat-
ter of convenience only. It can be seen that the net-
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Figure 2: Motion of a simple robot controlled by an evolved network.

work generates a ‘move in straight line at full speed
behaviour’ in free space and various rotational move-
ments to avoid obstacles and move away from walls.
Members of earlier generations had far more random
behaviours and spent most of their time colliding with
objects or sitting still.

11 Conclusions

The type of cognitive architecture suitable for ro-
bust control of a robot may well not be easily decom-
posable into significant large modules; either by func-
tion or by behaviour. Yet humans only seem to be
good at design when such decompositions can be ef-
fected. Automation of such a design process by turn-
ing it into a planning problem is computationally in-
tractable. Natural evolution is the existence proof for
an alternative approach, which is here advocated.

Reasons have been presented for thinking that pro-
grams, as the description of the control system, are
not a suitable medium for evolution. Recurrent neu-
ral networks operating in real time have been proposed
as a suitable medium, in that they avoid the brittle-
ness of programs and are tolerant to noise. In evolving
architectures of increasing complexity, variable length
genotypes become essential, and standard genetic al-
gorithms need to be extended to deal with this. In the
consequent species evolution the pattern of search is
very different from normal GA search, and the role of
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genetic operators is changed. The morphogenesis of
a network from a genotype has been discussed; while
there are ad hoc solutions, a completely satisfactory
solution is yet to be found.

The potential conflict between simulations and real-
ity has been discussed, and in particular the important
role of noise. Results have been reported from an on-
going project to develop robot cognitive architectures
using this evolutionary methodology.

Acknowledgements

We’d like to thank Harry Barrow, Dave Cliff, Tony
Simpson, Jean-Arcady Meyer, Alexandre Wallyn and
Simon Goss for helpful discussions about this work or
related issues.

References

[1] D. H. Ackley and M. L. Littman. Interactions
between learning and evolution. In C. G. Lang-
ton, J. D. Farmer, S. Rasmussen, and C. Taylor,
editors, Artificial Life II: Proceedings Volume of
Santa Fe Conference Feb. 1990. Addison Wesley:
volume XI in the series of the Santa Fe Institute
Studies in the Sciences of Complexity, 1991.

P.E. Agre and D. Chapman. What are plans
for? In P. Maes, editor, Designing Autonomous
Agents: Theory and Practice from Biology to En-



gineering and Back, pages 17-34. MIT/Elsevier,
1990.

(3] J. Barhen, W.B. Dress, and C.C. Jorgensen.
Applications of concurrent neuromorphic algo-
rithms for autonomous robots. In R. Eckmiller
and C.v.d. Malsburg, editors, Neural Computers,
pages 321-333. Springer-Verlag, 1987.

(4] R. D. Beer. Intelligence as Adaptive Behaviour:
An Ezperiment in Computational Neuroethology.

Academic Press, 1990.

R.D. Beer and J.C. Gallagher. Evolving dynamic
neural networks for adaptive behavior. Technical
Report CES-91-17, Case Western Reserve Uni-
versity, Cleveland, Ohio, 1991.

[6] R. A. Brooks. Achieving artificial intelligence
through building robots. A.I. Memo 899, M.I.T.

A.L Lab, May 1986.

[7] R.A. Brooks. Intelligence without representation.
Artificial Intelligence, 47:139-159, 1991.

[8] Rodney A. Brooks. Artificial life and real robots.
In Proceedings of the First European Conference
on Artificial Life. MIT Press/Bradford Books,
Cambridge, MA, 1992.

[9]

David Chapman. Planning for conjuctive goals.
Artificial Intelligence, 32(3):333-377, 1987.

(10] D. T. Cliff. Computational neuroethology: A
provisional manifesto. In J.-A. Meyer and S.W.
Wilson, editors, From Animals to Animats: Pro-
ceedings of The First International Conference
on Simulation of Adaptive Behavior, pages 29—
39. MIT Press/Bradford Books, Cambridge, MA,

1991.

[11] David E. Goldberg.  Genetic Algorithms in
Search, Optimization and Machine Learning.
Addison-Wesley, Reading, Massachusetts, USA,

1989.

[12] S.A. Harp and T. Samad. Genetic synthesis of
neural network architecture. In L. Davis, editor,
Handbook of Genetic Algorithms, pages 202-221.
Van Nostrand Reinhold, 1991.

(13] Inman Harvey. Species adaptation genetic algo-
rithms: The basis for a continuing SAGA. In
Proceedings of the First European Conference on
Artificial Life. MIT Press/Bradford Books, Cam-
bridge, MA, 1992.

146

(14] L. D. Horswill and R. A. Brooks. Situated vision
in a dynamic world: Chasing objects. In Proceed-
ings AAAI—88, pages 796-800, 1988.

[15] P. Husbands, I. Harvey, and D. Cliff. Central
issues in evolutionary robotics. Submitted to Ar-

tificial Life 3 Conference, 1992.

[16] John R. Koza.  Genetic programming: A
paradigm for genetically breeding populations of
computer programs to solve problems. Technical
Report STAN-CS-90-1314, Department of Com-

puter Science, Stanford University, 1990.

[17] Geoffrey F. Miller, P. M. Todd, and S. U. Hegde.
Designing neural networks using genetic algo-
rithms. In J. D. Schaffer, editor, Proceedings of
the Third International Conference on Genetic
Algorithms, San Mateo, California, 1989. Morgan

Kaufmann.

H.P. Moravec. The Stanford Cart and the CMU
Rover. In Proc. of IEEE, volume 71, pages 872
884, 1983.

[18]

[19] H. Muhlenbein and J. Kindermann. The dy-
namics of evolution and learning - towards ge-
netic neural networks. In R. Pfeifer, Z. Schreter,
F. Fogelman-Soulie, and L. Steels, editors, Con-
nectionism in Perspective, pages 173-197. El-
sevier Science Publishers B.V. (North-Holland),
1989.

[20] D. A. Pomerleau. Efficient training of artificial
neural networks for autonomous navigation. Neu-

ral Computation, 3:88-97, 1991.

[21] Thomas S. Ray. An approach to the synthesis of
life. In J.D. Farmer, C.G. Langton, S. Rasmussen,
and C. Taylor, editors, Artificial Life II. Addison-
Wesley, 1992.

[22] S.J. Rosenschein. Formal theories of knowledge

in AT and robotics. New Generation Computing,
3:345-357, 1985.

[23] P. Viola. Mobile robot evolution. Bachelors the-
sis, M.I.T., 1988.

[24] S.W. Wilson. Knowledge growth in an artificial
animal. In J. Grefenstette, editor, Proceedings
of the First International Conference on Genetic
Algorithms and their applications. Lawrence Erl-
baum Assoc., 1985.




