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Abstract. The idea that synaptic plasticity holds the key to the neural basis of 
learning and memory is now widely accepted in neuroscience. The precise 
mechanism of changes in synaptic strength has, however, remained elusive. 
Neurobiological research has led to the postulation of many models of plastic-
ity, and among the most contemporary are spike-timing dependent plasticity 
(STDP) and long-term potentiation (LTP). The STDP model is based on the 
observation of single, distinct pairs of pre- and post- synaptic spikes, but it is 
less clear how it evolves dynamically under the input of long trains of spikes, 
which characterise normal brain activity. This research explores the emergent 
properties of a spiking artificial neural network which incorporates both STDP 
and LTP. Previous findings are replicated in most instances, and some interest-
ing additional observations are made. These highlight the profound influence 
which initial conditions and synaptic input have on the evolution of synaptic 
weights. 

1. Introduction 

The ability of the brain to translate ephemeral experience into enduring memories has 
long been attributed by neuroscientists to activity-dependent changes in synaptic effi-
cacy. One of the first to suggest a mechanism that could govern this plasticity was 
Donald Hebb, who hypothesised that ‘when an axon of cell A is near enough to excite 
a cell B, and repeatedly or persistently takes part in firing it, some growth process or 
metabolic change takes place … such that A’s efficiency as one of the cells firing B, 
is increased’ (Hebb, 1949). This concept of ‘Hebbian’ learning has become a main-
stay of neural theories of memory, but more precise rules of synaptic change have 
been difficult to elucidate.  

It has become clear, however, that there are certain features which are crucial to a 
successful model of plasticity (Roberts and Bell, 2002 ; Song, Miller and Abbott, 
2000 ; van Rossum, Bi and Turrigiano, 2000). It must generate a stable distribution of 
synaptic weights, and stimulate competition between inputs to a neuron, in order to 
account for the processes of activity-dependent development and forgetting, and to 
maximize the capacity for information storage (Miller, 1996). Pure Hebbian learning 
cannot achieve this, not least because it fails to make any mention of synaptic weak-
ening processes, but also because those inputs which correlate with post-synaptic fir-
ing are repeatedly strengthened, thus growing to infinitely high values. This creates an 
inherently unstable, bimodal distribution of synaptic weights. Earlier plasticity models 
have had to resort to a variety of means in order to solve this problem. Often these 
promoted competition through the use of global signalling mechanisms, such as limit-
ing the sum of strengths of pre-synaptic inputs to a cell, but the biophysical realism of 
such protocols can be questioned. The exact nature of the additional constraints used 
can also strongly influence the behaviour of the model (Miller and McKay, 1994). 



In considering the neural basis of memory, it is long-lasting alterations in synap-
tic strength that are of most interest. Experimental evidence for such changes was first 
found in the hippocampus – a region of the brain long identified with learning – when 
it was shown that repeated activation of excitatory synapses by high frequency spike 
trains caused an increase in synaptic strength which lasted for hours, or even days 
(Lomo and Bliss, 1973). This phenomena - known as long-term potentiation (LTP) - 
has since been the subject of a great deal of investigation, because it exhibits several 
features which make it an attractive candidate as a neural learning mechanism (see 
Malenka and Nicol, 1999, for a review). It is synapse specific, vastly increasing the 
potential storage capacity of individual neurons. It is also associative, in that the re-
peated stimulation of one set of synapses can simultaneously facilitate LTP at adja-
cent sets of synapses. This has often been viewed as analogous to the process of clas-
sical conditioning.  

The wealth of research into LTP has helped to inform and inspire new plasticity 
models which are more easily reconcilable with the tenets outlined earlier. The 
‘BCM’ model, named after its creators (Bienenstock, Cooper and Munro, 1982) and 
based on their consideration of input selectivity in the visual cortex, is a good exam-
ple. It is Hebbian, but achieves stability through the existence of a ‘threshold’ firing 
rate, a crossover point between depression and potentiation which is itself slowly 
modulated by post-synaptic activity. This makes the strengthening of a synapse more 
likely when average activity is low, and vice versa, thus generating competition be-
tween inputs.  

Another contemporary plasticity model, based on the more straightforward em-
pirical observation of distinct pairs of pre- and post- synaptic action potentials (Rob-
erts and Bell, 2002 ; Bi and Poo, 1998), has also generated a great deal of interest. It 
is known as spike timing dependent plasticity (STDP), because it dictates that the di-
rection and degree of changes in synaptic efficacy are determined by the relative tim-
ing of pre- and post- synaptic spiking. Only pre-synaptic spikes which provoke post-
synaptic firing within a short temporal window potentiate a synapse, while those 
which arrive after post-synaptic firing cause depression. Those inputs with shorter la-
tencies or strong mutual correlations are thus favoured, at the expense of others.  

The most pertinent feature of STDP is that it implicitly generates competition be-
tween synapses, and experiments with artificial neural networks (ANNs) have shown 
that this precipitates inherently stable weight distributions. The shape of the resulting 
distribution is dependent on the exact nature of the STDP implementation, and the 
values of parameters used. Some researchers, for example, include the experimental 
observation that stronger synapses seem to undergo relatively less potentiation than 
weaker synapses, or an activity dependent scaling mechanism such as that outlined by 
the BCM model (van Rossum, Bi and Turrigiano, 2000). These features help to gen-
erate a weight distribution that more closely resembles the stable, unimodal, and posi-
tively skewed distribution found in vivo (see fig 1). Their omission tends to produce a 
bimodal distribution (Song, Miller and Abbott, 2000; Iglesias et al. 2005) more simi-
lar to that produced by pure Hebbian learning, but stabilised by innate competition 
and the inclusion of hard limits on the maximum achievable strength of a synapse. 

 The analysis of STDP is based on isolated pairs of pre- and post- synaptic action 
potentials, while observations of LTP are mediated by the application of prolonged 
spike trains more characteristic of normal brain activity. It is not clear how the STDP 
model causes synaptic weights to develop with such input, which involves many pos-
sible spike pairings. We can presume that both forms of plasticity arise from the same 
underlying biophysical mechanisms, and some recent work has attempted to reconcile 
both models within a single theoretical framework (Izhikevich and Desai, 2003). By 
making a few biologically plausible assumptions, this research has demonstrated  that 
the parameters of STDP can be linked directly with the sliding threshold of the BCM 
model.  



 
Fig 1. – Synaptic weight distribution found in vivo, taken from Bekkers et al., 1990 

This paper explores the emergent properties of an artificial neural network which 
implements spike timing dependent plasticity. The form of STDP used is compatible 
with the BCM model of long-term potentiation, and thus the value of the threshold fir-
ing rate can be directly manipulated. The effects this has on synaptic weight distribu-
tions and dynamics are examined. Size-dependent potentiation is also introduced into 
the model, and results obtained from the input of random uncorrelated or partially 
correlated spike trains are compared with those generated by the performance of two 
simple, embodied, sensorimotor tasks. The latter will have temporal patterns that are 
perhaps more representative of firing regimes found in vivo, and which STDP has 
previously been shown to make use of (Izhikevich, Gally and Edelman, 2004). 

2 Methods 

2.1 Neural Controller 

In the majority of tests, the neural network consists of 20 neurons, which are divided 
into 9 sensory, 9 intermediate and 2 motor neurons. During the phototaxis task, how-
ever, the network has only 2 sensory neurons, and thus a total of 13 neurons. The 
network is realistic of the mammalian cortex in that these are 80% excitatory and 20% 
inhibitory, and that each has a randomly chosen axonal delay in the range [1ms, 
20ms]. Each neuron has 5 randomly assigned post-synaptic connections. Motor neu-
rons have no post-synaptic connections, and sensory neurons have no pre-synaptic 
connections.  

The neurons operate using the Izhikevich (2004) spiking model, which dynami-
cally calculates the membrane potential (v) and a membrane recovery variable (u), 
based on the values of four dimensionless constants (a,b,c and d) and a dimensionless 
applied current (I), according to the equations below. 
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This model was chosen for two main reasons. Firstly, it uses very few floating point 
operations, and so is computationally advantageous. Secondly, it can exhibit firing 
patterns of all known types of cortical neurons, by variation of the parameters a - d. 



The values used for a standard excitatory neuron are [0.02,0.2,-65,6] respectively, and 
those for an inhibitory neuron are [0.02,0.25,-65,2]. 

In order to introduce neural noise into the system, one neuron is selected at random 
each time step, and a small current applied to it. A value of I=10 was used in most 
tests, although this was varied to assess the effects of neural noise. When distributed 
randomly over 20 neurons, an applied current of this size produces a spiking rate of 
approximately 3Hz per neuron.  

2.2 STDP 

Mathematically, with s = tpost - tpre being the time difference between pre- and post- 
synaptic spiking, the change in the weight of a synapse (∆w) due to spike timing de-
pendent plasticity can be expressed as:- 
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The method of implementing this plasticity is outlined by Song et al (2000) and Di 
Paolo (2003). Two recording functions (P+ and P-) are kept for each synapse. These 
values decay exponentially according to the time constants of potentiation and depres-
sion, except when pre-synaptic spikes arrive or post-synaptic spikes are fired, in 
which case the values are reset to A+ or A- respectively. This means that only those 
spikes which are temporally adjacent affect the degree of synaptic weight change, and 
hence this is known as the ‘nearest neighbour’ model of STDP. Research has shown 
that this implementation allows the reconciliation of the BCM model with STDP (Iz-
hikevich and Desai, 2003). It also outlines a formula for the calculation of the thresh-
old firing rate, which is given by eqn. 3 below. The expressions A+ > |A-| and |A- τ-| > 
|A+ τ+| must be satisfied during experiments, to ensure that the threshold has a positive 
value at all times. 
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Previous research (Bi and Poo, 1998) has shown that an inverse exponential rela-
tionship between the level of potentiation and initial synaptic weight may also exist in 
vivo. The modified formula which governs increases in synaptic weight when such 
‘size dependent potentiation’ is examined is given in eqn. 4. It should be noted that 
there is no evidence for any such size-dependent effects in synaptic weakening. 

wij (t) = wij (t) + P+e
−kwij  (4) 

2.3 Tasks 

The network was first examined using uncorrelated Poissonian spike trains of varying 
frequencies as input. In later experiments, correlated spike trains and two simple ro-
botics tasks were used to assess how temporal patterns and more widely varying spike 
frequencies may affect the behaviour of the network. The tasks chosen were a simple 
phototaxis exercise similar to that used by Di Paolo (2003), and a falling block task 
which has been employed previously by Goldenberg et al (2004). 

The correlated input was generated by creating a set number of Poissonian spike 
trains of a certain frequency, and distributing these amongst the 9 sensory neurons. 
Each time step, the spike trains were re-distributed amongst the inputs. The number of 
trains that exist thus determine the ‘strength’ of the correlation between inputs. 



In the ‘falling block’ task, an agent of radius 15 moves horizontally in an arena 
which is 400 units wide. The agent has 9 sensory neurons with a range of 205 units, 
which are distributed evenly over a visual angle of π/6. These sensory neurons each 
have a randomly determined bias in the range [0.6:1.0] which is used to scale an ap-
plied current, relative to the distance of any object in their direct line of vision.  

Two blocks of radius 13 fall from a height of 198 at randomly assigned angles and 
from randomly assigned horizontal start positions, constrained only by the criteria that 
it must be possible for the agent to catch them both. The first object has a random ve-
locity in the range [0.03:0.04] and the second object in the range [0.01:0.02]. The 
agent’s horizontal velocity is determined by the sum of the two opposing motors out-
puts, its maximum velocity being set at 0.05 units/ms. The two motor neurons are 
leaky integrators, operating according to eqn 5 below, where tº  is the time at which a 
spike was last received. Each has a randomly assigned gain in the range [0.01:0.05] 
and a decay constant (τ) in the range [20ms : 40ms].  

τ/)( °−−= ttvev  (5) 

In the phototaxis task, an agent of radius 2 is placed at a random angle of orienta-
tion and randomly determined distance in the range [60 : 80] from a light source, in 
an arena of unlimited size. The agent has two sensory neurons, which are connected 
to light sensors separated by an angle of 2π/3 on the agents body, plus or minus a ran-
dom displacement of π/36. These light sensors have an angle of acceptance of π, and a 
randomly assigned bias in the range [10:50], which is used to scale the intensity of 
any light into an applied current. The intensity of the light source is assigned ran-
domly in the range [3000:5000]. Two motors are placed diametrically opposite on the 
agents body, and driven in a forwards-only direction by the two motor neurons. The 
speed of each motor is limited at 0.5 units/ms, and thus this is also the maximum 
achievable forwards velocity of the agent. As before, the motor neurons are leaky in-
tegrators with gains in the range [0.01:0.5] and decay constants in the range 
[40ms:100ms]. It is important to note that the capacity of the network to learn how to 
perform this task is not being tested in this paper. The embodiment is needed only to 
provide realistic sensorimotor input, which has correlated temporal properties that are 
considered important in assessing the properties of the plasticity model and network.  

2.4 Stability 

After each 100ms of experimental time, a histogram of synaptic weights is generated. 
If the values in each bin (which are of size 1) do not vary by more than ±1 for 10 of 
the 100ms steps (i.e. 1 second), then the network is considered to have achieved a sta-
ble synaptic weight distribution. In order to test that this criteria was adequate, 30 
tests were performed, with random initial conditions and parameter values, and net-
work operation was continued for 100 seconds of simulated time after stability was 
flagged. In all cases, no further discernible change in the synaptic weight distribution 
occurred. In each experiment, 30 random incarnations of the neural network are cre-
ated, and each one is run twice, in each case until stability is achieved. Thus, the re-
sults presented in this paper are a conglomeration of 60 individual tests, or a total of 
5400 synaptic weights (3300 in the case of the phototaxis task). 

3 Results and Discussion 

3.1 Manipulation of threshold firing rate 

Figure 2 represents a typical synaptic weight distribution generated when the network 



was operated with purely uncorrelated input at a rate of 30Hz, and the results replicate 
previous research findings (Song et al., 2000). The values of STDP parameters used 
in this case correspond to a threshold firing rate of approximately v=17Hz. The ef-
fects of moving the threshold firing rate (by varying any of the four main STDP pa-
rameters) are intuitive, and demonstrated by figures 3 (v=350Hz) and 4 (v=6.25 Hz). 
A higher threshold for long-term potentiation allows fewer synapses to reach the 
maximum possible strength, and a lower threshold has the reverse effect.  

However, results suggest that the relationship between weight distribution and 
STDP parameters is dictated by more complex factors than simply the position of the 
BCM threshold. Figure 5  shows a weight distribution for an identical threshold firing 
rate as 2 (v=17 Hz), but with different STDP values. The number of synapses which 
have been potentiated to saturation are fewer, and those which have been persistently 
depressed are larger, in frequency. The value of  | A+ τ+ |  is identical in both cases, 
but the longer temporal window for potentiation that existed in fig. 5 clearly had a 
lower overall strengthening effect on weight values, compared with the higher degree 
of synaptic strengthening per spike which was present in the results for 2. Further in-
vestigation demonstrated that the ratio of A+ : A- is particularly important in determin-
ing the shape of the stable weight distribution. Results generated with identical values 
of this ratio are consistently very similar, more so than results with equal values of the 
modification threshold.  

3.2 Firing rates 

It is clear that the key to a good plasticity model, and one of the reasons why 
STDP is so highly regarded, is that it regulates network output in the face of wide 
fluctuations in input. In previous research (Song, Miller and Abbott, 2000) an increase 
in input firing rate has been observed to cause a decrease in the number of synapses 
saturating at the uppermost weight values, a finding that was replicated in these ex-
periments. One may expect that fewer strong synapses would correlate with lower 
post-synaptic activity, but previous work has shown that the STDP model actually ex-
hibits a ‘damping’ effect – increasing the input firing rate precipitating a much 
smaller increase in post-synaptic firing rate. An analysis of firing rates in the interme-
diate, excitatory neurons during this investigation, however, led to a finding which, at 
least to some extent, contradicts this previous research (Song, Miller and Abbott, 
2000). Figure 6 illustrates the correlation between input and intermediate firing rates 
for four different sets of STDP parameters.  

The data demonstrates that, if any relationship exists between these two variables, 
then it is very complex, and could depend on many factors. As the figure shows, in 
some cases there seems to be an inverse relationship between the two firing rates, 
while in others previous research has been replicated and a simple damping effect can 
be seen. Once again, it seems that the ratio of A+ : A- has a pronounced effect on post-
synaptic firing rates. In the data presented here, similar values of this ratio do seem to 
produce similar relationships between input and intermediate firing rates. Further in-
vestigation will be required to elucidate the nature of this relationship. 

3.3 Varying network input 

It is useful to make a comparison between the weight distributions arising from 
uncorrelated input, correlated input, and those generated by input from closed-loop 
sensorimotor tasks. Figures 7 to 9 illustrate these results – in each case, identical pa-
rameter values to figure 2 were used, but in each case the stable synaptic weight dis-
tributions are markedly different. 



 
Fig. 2 –      Fig. 3 - 
A+=0.16; A-=-0.1; τ+ = 20ms;  τ- = 40ms   A+=0.12; A-=-0.; τ+ = 10ms;  τ- = 40ms 

  

Fig. 4 –      Fig. 5 - 
A+=0.18; A-=-0.; τ+ = 20ms;  τ- = 40ms   A+=0.12; A-=-0.1; τ+ = 30ms;  τ=40ms 

 

Fig. 6 – The relationship between input and intermediate firing rates  

a - A+=0.2; A-=-0.1; τ+ = 10ms;  τ-=40ms 
b - A+=0.2; A-=-0.1; τ+ = 20ms;  τ-=40ms 
c - A+=0.2; A-=-0.15; τ+ = 20ms;  τ-=40ms 
d - A+=0.2; A-=-0.15; τ+ = 10ms;  τ-=40ms 



It seems that input in the sensorimotor tasks caused more synapses to adopt in-
termediate weight values, rather than be pushed to the bounds. In the phototaxis task 
there are also a much greater frequency of synapses at maximum strength and fewer 
at zero weight, in contrast to the falling block task. Other results showed that distribu-
tions generated by input from the robotics tasks are generally much more consistent in 
shape. The effects of manipulating the threshold rate can still be seen, but rather than 
simply altering the size of the bimodal peaks (as seen in figures 2 – 4), it is the fre-
quency and distribution of the intermediate strength synapses that are most affected. 
Correlated input also produced a markedly different weight distribution, with much 
more similarly sized modal peaks and a more uniform intermediate distribution. As 
with uncorrelated input, the intermediate weight values are more sparsely populated.   

The variations in the size and shape of the distributions seen can be loosely ex-
plained by the slight differences in the nature of the input presented to the neural net-
work. However, the main issue is that these discrepancies support the intuitive hy-
pothesis that the nature of input to an ANN has a pronounced effect on the evolution 
of synaptic weights in that network. Much of the previous research in this area has 
made exclusive use of uncorrelated input, but results found here show that care must 
be taken in generalising from these findings. The development of a network directed 
by any plasticity model is at least partially defined by the nature of the input it re-
ceives – and there are gross differences between uncorrelated and more realistic sen-
sorimotor input. 

3.4 Size-dependent potentiation 

The introduction of size-dependent potentiation into the plasticity model also has 
a pronounced effect on synaptic weight distributions. Figure 10 (which was generated 
using a value of k=50 and identical parameter values to fig. 1) illustrates this, and 
more closely resembles results found in vivo. The peak at w=0 has been omitted, as 
these ‘silent’ synapses are not considered (and cannot be detected) when biological 
appraisals of weight distributions are made. It is interesting to note, however, that the 
frequency of synapses found at the lower bound was generally consistent between ex-
periments with and without size-dependent potentiation. This implies that the larger 
number of synapses adopting intermediate weights was simply a product of the fact 
that fewer synapses were able to saturate to the upper bounds. By tuning the value of 
k appropriately, the hard limit on synaptic weights can be completely removed, giving 
a more biophysically realistic plasticity model, which in turn will generate a more 
biophysically realistic weight distribution. 

3.5 Effect of initial weight values 

The results obtained also demonstrated that the initial synaptic weight values have 
some considerable influence on the appearance of the stable weight distribution. The 
spread of initial weights has little effect on the shape of the distribution, although it 
does make the network slower to converge to stability. Experiments in which initial 
weights were uniformly distributed from 0 to wmax took the most time to reach stabil-
ity, while those runs in which all weights were initially set at or near the maximum 
value were quick to converge. Uniform and Gaussian distributions produce very simi-
lar results, as do tests where all synapses begin with the exact same weight. The value 
of this weight, however, whether it be the point around which initial strengths are 
(relatively narrowly) distributed, or that which all synapses originate with, does have 
a considerable effect on the shape of the final distribution. This is illustrated by fig-
ures 11 – 13. In these instances, synaptic weights were given a Gaussian distribution 
around values of 20, 25 and 30 respectively, with a standard deviation of 5. The dif-
ferences in the shape of the stable weight distributions are clear. 



 

Fig. 7 – The falling block task   Fig. 8 – The phototaxis task 

 

Fig. 9 – Correlated input   Fig. 10 – Size dependent potentiation 

 

Fig. 11     Fig. 12 

 
Fig. 13     Fig. 14 – Changes in synaptic weight 



It is interesting to note that the initial weight of a synapse bears no indication as 
to what its final weight value will be. In more simple Hebbian plasticity models, syn-
apses above a certain strength would immediately be correlated with post-synaptic fir-
ing, and thus persistently potentiated, while those below that strength were persis-
tently weakened. This implies that final weights could be predicted based on the 
initial configuration. With STDP, however, the competition generated between syn-
apses allows no such predictions to be made. Figure 14 illustrates the relationship be-
tween the initial and final weights of a synapse. Although there is a slight residual 
tendency for weights which are originally strong to remain so, and likewise, for those 
which begin as very weak to remain at zero, the only clear correlation is caused by the 
hard limits on synaptic weight. 

3.6 Conclusions 

 The results obtained mostly support previous findings in this area. Manipula-
tion of the BCM threshold firing rate directs synaptic weights in an intuitive manner. 
The STDP model has a strong regulatory effect on post-synaptic output, although in 
some cases it seems to reduce the intermediate firing rate in the face of an increased 
frequency of input. The initial conditions of the network underlying the plasticity 
model, and the nature of input used, seem to have a pronounced effect on the direction 
in which it develops, which is to be expected from any dynamical system. Although 
STDP implicitly generates competition between synapses, the weight distribution it 
creates is still not representative of that found in vivo, unless additional experimental 
observations such as size-dependent potentiation are included. It is left to future work 
to elaborate on the results presented here, and to assess how beneficial the phenomena 
identified by this paper are to developing simple learning behaviour in ANNs. 
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