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Abstract

Evolutionary Robotics seeks to use evolutionary techniques
to create both physical and physically simulated robots capa-
ble of exhibiting characteristics commonly associated with
living organisms. Typically, biologically inspired artificial
neural networks are evolved to act as sensorimotor control
systems. These networks include; GasNets, Continuous Time
Recurrent Neural Networks (CTRNNs) and Plastic Neural
Networks (PNNs). This paper seeks to compare the perfor-
mance of such networks in solving the problem of locomotion
in a physically simulated quadruped. The results in this paper,
taken together with those of other studies (summarized in this
paper) help us to assess the relative strengths and weaknesses
of the these three different approaches.

Introduction

Evolutionary Robotics has two broad goals; to gain an in-
sight into biological systems through suitable abstractions of
these systems, and secondly to seek to discover techniques
that are of economic value in the development of robots and
physically simulated agents. The underlying methodology
involves the use of Genetic Algorithms (GAs) to evolve Ar-
tificial Neural Networks (ANNs) that act as sensorimotor
control systems in real and simulated robots.

There is an increasing body of work that has success-
fully applied these techniques to the evolution of ANNs suit-
able for controlling bipedal and quadrupedal locomotion.
This includes earlier work (Reil and Husbands, 2002) which
demonstrates that it is possible to evolve a bipedal motor
control in a physically simulated agent using a conventional
Dynamic Recurrent Neural Network (DRNN) without sen-
sor input. Bongard and Paul have evolved bipedal locomo-
tion in a physically simulated agent through genetic encod-
ing that comprises morphological as well as ANN param-
eters (Bongard and Paul, 2001). Researchers have evolved
bipedal locomotion in a physically simulated robot that in-
corporates a model of neuromodulation (Ishiguro et al.,
2003). Billard and Ijspeert have been successful in evolving
Quadrupedal locomotion in a real robot (Billard and Ijspeert,
2000).

Unfortunately, there are remarkably few comparative
studies that enable us to judge which of the diverse ap-
proaches taken by different researchers is the most expedient
when applied to a specific problem. It is hoped that this pa-
per provides a useful insight into the relative performance
of some of the more common neural network varieties. This
paper is intended as a complementary study to work car-
ried out by the authors (McHale and Husbands, 2004) which
sought to identify the relative performance of 14 different
network varieties applied to bipedal locomotion.

Network Descriptions

Put in the simplest terms, Continuous Time Recurrent Neu-
ral Networks (CTRNNs) (Yamauchi and Beer, 1994) rep-
resent the “plain vanilla” form of DRNN’s, GasNets repre-
sent an approach to incorporate neuromodulation into a form
of DRNN (Husbands et al., 1998), and Plastic Neural Net-
works (PNNs) seek to incorporate Hebbian dynamics (Flo-
reano and Mondada, 1996). The particular variants used in
this experiment are described in detail in this following sec-
tion.

One thing that should be noted is that for each network,
network morphology has been constrained to correspond
more closely to that associated with coupled-oscillator cir-
cuitry. All networks comprise a total of 16 nodes or cells.
An initial population is seeded with networks that have a
single symmetry axis, such that we have two subnetworks
of 8 nodes, each with identical parameters. In the case of
GasNets (where nodes have a physical location in a 2 dimen-
sional plane) the position of each node from one subnetwork
is mirrored in an axis that divides the plane. This is shown
more clearly in Figure 1. The mirrored nodes are intercon-
nected via mutually inhibitory connections. Whilst initial
populations comprise symmetrical networks, mutation and
crossover results in the introduction of asymmetries over a
period of time (symmetry is only enforced in the initial pop-
ulation).



Figure 1: Schematic of the symmetrical distribution of Gas-
Net nodes.

Center-Crossing CTRNNs

The characteristic equation of the conventional CTRNN
(Beer, 1995) is shown below;
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Where:

yit +1 is the activation of the i’th node at timet +1.

yt
i is the activation of the i’th node at timet.

τi is the time constant for the i’th node calculated accord-
ing to equation 18.

Ii a sensor input to the i’th node whereI is either 1 (in
contact with the floor) or 0 (not in contact with the floor).

θ j a bias term for the j’th node whereθ ∈ [−2,2].

T is the time slice (in this caseT is set to 1).

ω ji is the weight of the output from the j’th node to the i’th
node whereω ∈ [−4.0,4.0].

σ is the logistic activation function.

σ(z) =
1

(1+e−z)
(2)

The network is fully interconnected. Node connection
weights and bias are under evolutionary control. This study
uses a variant of the conventional CTRNN, referred to as the
Center-Crossing CTRNN (Mathayomchan and Beer, 2002),
where initial biases are calculated such that:

θi =
−

∑N
j=1 ω ji

2
(3)

Mathayomchan and Beer suggest that populations seeded
with center-crossing networks may be more likely to yield
a wider range of dynamics than a population of random net-
works.

The incorporation of a single symmetry axis (as used in
this study) results in a final form, as described by;
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Where:

zt
i is the activation of the corresponding i’th node in the
symmetrical subnetwork at timet.

N is the number of nodes in each subnetwork (in this case
8).

GasNets
GasNets are an example of a class of ANNs that seek to
model aspects of neuromodulation. A key attribute of the
GasNet model is that the transfer characteristics of network
nodes are modified via the influence of diffused gases (mod-
eled in a 2-dimensional plane). This network model is in-
spired by the action of Nitric Oxide in biological systems
(Husbands et al., 2001). Earlier work has shown that Gas-
Nets are moreevolvablethan comparable networks that do
not incorporate gas modulation, in simulation and when
used in real robots (Smith et al., 2003).

In GasNets, node transfer functions can be modulated by
local gas concentrations in the vicinity of the node. Nodes
can also act as chemical emitters, under either gas or elec-
trical stimulation. GasNet nodes exist in a geometric plane
where internode distances determine gas concentrations and
(in conjunction with additional genetic parameters) network
connectivity. Under typical evolutionary parameters the
GasNet connectivity rules result in a sparsely connected net-
work.
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Where:



kt
i is a time-varying transfer function modulator. The value
of k varies with gas concentrations at the i’th node, see
equation 9.

Ci is the set of all nodes that have an input to the i’th node.

Ii a sensor input to the i’th node.

bi a bias term for the i’th node wherebi ∈ [−2,2].

The original GasNet diffusion model (upon which this im-
plementation is based) is controlled by two genetically spec-
ified parameters, namely the radius of influencer and the
rate of build up and decays. Spatially, the gas concentra-
tion varies as an inverse exponential of the distance from the
emitting node with a spread governed byr, with the concen-
tration set to zero for all distances greater thanr (Equation
6). The maximum concentration at the emitting node is 1.0
and the concentration builds up and decays from this value
linearly as defined by Equations 7 and 8 at a rate determined
by s.
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where C(d,t) is the concentration at a distanced from the
emitting node at timet. te is the time at which emission
was last turned on,ts is the time at which emission was last
turned off, ands (controlling the slope of the functionT) is
genetically determined for each node. The total concentra-
tion at a node is then determined by summing the contribu-
tions from all other emitting nodes (nodes are not affected
by their own concentration, to avoid runaway positive feed-
back).

For mathematical convenience, in the basic GasNet there
are two ‘gases’, one whose modulatory effect is to increase
the transfer function gain parameter (kt

i from equation 5) and
one whose effect is to decrease it. It is genetically deter-
mined whether or not any given node will emit one of these
two gases (gas 1 and gas 2), and under what circumstances
emission will occur (either when the ‘electrical’ activation of
the node exceeds a threshold, or the concentration of a ge-
netically determined gas in the vicinity of the node exceeds a
threshold. Note these emission processes provide a coupling
between the ‘electrical’ and ‘chemical’ mechanisms). The
concentration-dependent modulation is described by Equa-
tion 9, with transfer parameters updated on every time step
as the network runs.
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wherek0
i is the genetically set default value forki , Ct

1 and
Ct

2 are the concentrations of gas 1 and gas 2 respectively at
nodei at timet, andα andβ are constants. Both gas concen-
trations lie in the range[0,1]. Thus the gas does not alter the
electrical activity in the network directly but rather acts by
continuously changing the mapping between input and out-
put for individual nodes, either directly or by stimulating the
production of further virtual gas. The concentration depen-
dent modulation can, for instance, change a node’s output
from being positive to being zero or negative even though
the input remains constant. Any node that is exposed to a
non zero gas concentration will be modulated. This set of
interacting processes provides the potential for highly plas-
tic systems with rich dynamics.

CTRNN/PNN Hybrid
One of the underlying concepts associated with Plastic Neu-
ral Networks is that there is value in evolving artificial neu-
ral networks that are capable of exhibiting learning through
ontogenetic change (Floreano and Mondada, 1996). Let us
first start with a description of a basic PNN (Urzelai and
Floreano, 2000). A key characteristic of PNN’s is that con-
nection weights vary over time based on Hebbian learning
rules given by:

ωt
ji = ωt−1

ji +η∆ω ji (10)

Whereη is a learning rate ( 0.0< η <1.0 ) andω ji is the
connection weight of the input to node i from node j. The
adaptation rule∆ω ji is genetically determined for each node.
All inputs to a given node are subject to the same adaptation
rule ( referred to as node encoding by the original authors).

Wherex is the activation of nodej, which is an input to
nodei ( which has an output activation ofy), the adaptation
rule is one of:

Plain Hebb Rule

∆ω ji = (1−ω ji )x jyi (11)

Post-Synamptic Rule

∆ω ji = ω ji (−1+x j)yi +(1−ωi j )x jyi (12)

Pre-Synaptic rule Rule

∆ω ji = ω ji x j(−1+yi)+(1−ω ji )x jyi (13)

Covariance Rule

∆ω ji =
{

(1−ω ji ) if F(x j ,yi) > 0
(ω ji )F(x j ,yi) otherwise

(14)

Where:

F(x j ,yi) = tanh(4(1−|xi −y j |−2) (15)

All nodes in the PNN are fully interconnected. The rate
of learningη can only assume one of four values (0.0, 0.3,



0.6, 0.9). The characteristic equation for the PNN is shown
below:
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Where:

ωt
ji is the adaptive weight for the j’th input to the i’th node.

σ is the standard logistic activation function.

Ii a sensor input to the i’th node whereI is either 1 (in
contact with the floor) or 0 (not in contact with the floor).

The CTRNN/PNN Hybrid used in this study is a vari-
ation on the conventional PNN, where activation signals
are further modified by a node based time constant under
evolutionary control (in a similar fashion to conventional
CTRNNs). This model was first introduced by the authors
of this paper in an attempt to create a PNN that exhibited
richer frequency dynamics than those of the conventional
PNN (McHale and Husbands, 2004). The range ofyi is [0,2]
for input neurons and[0,1] for hidden and output neurons
(Blynel and Floreano, 2002). It is modified again here such
that the network comprises two symmetrical sub-networks,
with mutual inhibition;
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Where:

ωt
ji is the adaptive weight for the j’th input to the i’th node.

zt
i is the activation of the corresponding i’th node in the
symmetrical subnetwork at timet.

N is the number of nodes in each subnetwork.

Genetic Algorithm
The Genetic Algorithm (GA) used in this experiment is the
same as that used in the aforementioned comparative study.
The population comprises a 2-dimensional grid of 100 indi-
viduals. A distributed steady-state GA is used, with a small
tournament size corresponding to three individuals. Aprin-
cipal is selected, followed by twoneighbors. These neigh-
bors are selected based on a random walk (of length in the
range [1,4] grid cells) originating at the principal. If the prin-
cipal is fitter than both neighbors individual, then the weak-
est individual is replaced by a mutated version of the prin-
cipal. If not, then the weakest member of the tournament
group is replaced by the fitter two individuals genes, using

single-point crossover, followed by mutation. The replace-
ment of 100 individuals corresponds to a single pseudo-
generation. A total of 14 evolutionary runs were carried out
for each network type. Each trial was allowed to continue
for 50 pseudo generations.

The genetic encoding strategy follows a similar approach
for all networks. Network parameters are stored on a node
or cell basis. Each gene comprises a list of real valued and
integer parameters (comprising 16 parameters per node for
a conventional GasNet for example). Connection weights
(where relevant) are also stored on a per node basis.

Mutation takes place either after recombination, or after
cloning of the principal tournament member (as described
earlier). Mutation takes place at 20 percent of the nodes
(rounded to 3 in a 16 cell network) selected at random. A
single mutation event will result in the mutation of a single
real or integer parameter in each of the randomly selected
nodes. The magnitude of this mutation corresponds to 4 per-
cent of the real valued parameters range with a probability
of 0.2, and 1 percent of the parameters range with a prob-
ability of 0.8. In the case of integer parameters we follow
a similar strategy of small mutations with a probability of
0.8 and large mutations with a probability of 0.2. These mu-
tation parameters were chosen in preliminary experiments
to avoid premature convergence and maintain a reasonable
degree of phenotypic diversity across the different network
varieties during evolution.

CTRNNs undergo further mutation. Each randomly se-
lected cell has all of its weights mutated (again by a factor
of 4 percent with a 20 percent probability and 1 percent with
an 80 percent probability).

Time constant initialization was devised to yield a wide
range of of values. An exponentf was randomly selected
from the set:

f ∈ [−10,−8,−6,−4,−2,0,2,4,8,10]

A second random variabler ∈ [0.0,1.0] was then used to
scale the value such that the timeτ constant is calculated
from:

τ = 1.0+ r(10f ) (18)

The time constant mutation operator increments or decre-
ments the exponent by 1 with a probability of 0.2, and gen-
erates a new value ofr ∈ [0.0,1.0] with a probability of 0.8.

Experimental Setup
A screen shot of the quadruped used in this experiment is
shown in Figure 2. Whereas the previous (bipedal loco-
motion) study used a physics package called AutoSim, this
study uses an open source package called Open Dynamics
Engine (ODE).

The quadruped torso is simulated with 6 physical de-
grees of freedom (unlike the previous biped study, where the
biped was physically incapable of falling sideways). The
quadruped comprises 9 rigid bodies, two rigid bodies for



Figure 2: Physically Simulated Quadruped

each leg, and a single rigid body for the quadruped torso.
Lower limbs are connected to the the upper limbs via a lim-
ited hinge joint with a single rotational degree of freedom.
Upper limbs are connected to the torso again with a limited
hinge joint with one degree of freedom. The angular limits
are shown in a scale diagram of the quadruped in Figure 3.

The assessed fitness of each individual is simply taken as
the absolute distance traveled by the quadruped in a fixed
time interval. The neural network is updated at half the fre-
quency of the physics simulation, for a total of 5000 updates
(approximately 20 seconds of real-time simulation).

Figure 3: Scale drawn diagram showing joint angular limits
(in degrees)

Table 1: Sensor Nodes
Limb Sensor Nodes

Right Rear 0,1
Left Front 5,6
Left Rear 8,9

Right Front 12,13

Sensor input to the neural network comprises simple con-
tact sensors associated with each lower limb. When a lower
limb is in contact with the ground, the sensor value is 1, at

all other times it is zero. Each contact sensor is connected to
two network nodes as shown in Table 1.

Motor output nodes are shown in Table 2. The output
signal of each motor node is mapped linearly into the hinge
angular range. This becomes a target angular displacement.
A velocity value for the joint is then calculated based on
the difference between the current angular displacement and
this target displacement. The physics engine than applies
torque necessary to arrive at this joint velocity, constrained
by a maximum torque value.

Table 2: Motor Nodes
Joint Motor Nodes

Hip Right Rear 0
Knee Right Rear 2
Hip Left Front 4

Knee Left Front 6
Hip Left Rear 8

Knee Left Rear 10
Hip Right Front 12

Knee Right Front 14

Results
The results of each evolutionary run are shown in Table 3.
The distance traveled is normalized by the body length of
the quadruped so as to present the data in a more intuitive
fashion. A distance traveled of 1.3 body lengths simply cor-
responds to the quadruped falling forwards. Between 2 and
3 body lengths, typically one or two steps have been taken.
Distances greater than 4 body lengths usually correspond to
a slow or unstable gait. Distances greater than this corre-
spond typically to cyclical gaits. The global fitness peak is
likely to be around 14 body lengths.

Although the results for GasNets and the hybrid
CTRNN/PNN are very similar, there are differences in the
stability of evolved gaits, with those of the GasNets ex-
hibiting greater stability. Over all, the fittest individual was
evolved using GasNets, however the CTRNN/PNN achieved
a marginally higher average fitness measure. The results for
the Center-Crossing CTRNN were generally poor, however
one of the runs did discover the same gait as the fittest Gas-
Net and CTRNN/PNN. As a consequence the fittest Center
Crossing CTRNN individual attained a fitness very close to
that of the other two networks considered.

Discussion
Although not obvious from Table 3, the quality of motion
exhibited by the quadruped varied substantially with dif-
ferent networks. The fittest CTRNN driven quadruped ex-
hibits motion that is similar to what we might expect from
a Central Pattern Generator. The gait is symmetrical and
the frequency of oscillation appears to be relatively stable.



Table 3: Distance Traveled by the Fittest Individual (nor-
malized to quadruped body length). Letter superscripts cor-
respond to distinct gaits described in the text.

Run Index CTRNN GasNet CTRNN/PNN
1 1.4 7.2b 4.2
2 1.5 4.6 5.7e

3 1.3 2.0 1.3
4 1.3 3.0 1.6
5 11.7a 2.0 1.3
6 1.3 3.4d 7.2f

7 1.4 2.5 6.2
8 1.4 5.2c 1.5
9 1.4 2.7 1.3
10 1.3 2.0 4.9
11 1.3 1.7 6.2e

12 1.3 2.6 13.6a

13 1.4 13.7a 1.1
14 1.4 3.2 1.3
Average. 2.1 4.0 4.1
Median. 1.4 2.8 2.9
Maximum. 11.7 13.7 13.6

The CTRNN produced a stable gait that continues for a pro-
longed time period after the end of a trial (if allowed to con-
tinue).

In contrast, the gaits generated by the CTRNN/PNN
hybrid appear to be highly reactive, with little evi-
dence of forced oscillations (excluding that of the fittest
CTRNN/PNN individual). Although the order of stepping
may assume a regular pattern, there is considerable variabil-
ity in the speed of subsequent steps. In this respect mo-
tion closely resembles irregular passive dynamic walking.
The GasNet demonstrates gaits which exhibit aspects of re-
active behavior together with forced oscillations (producing
the fasted quadruped within the evaluation time period).

The GasNet and CTRNN/PNN Hybrid exhibited the
widest range of gaits. The CTRNN/PNN exhibited some
gaits that were not discovered by GasNet, although the
CTRNN/PNN gaits were relatively unstable. If we consider
the form of the CTRNN/PNN network, it is clear that con-
nection weights will gradually decline if there is a lack of
coincident activity. In such a dynamic environment, rich ex-
ternal sensory input may play a more significant role, than it
would in networks that exhibit strong intrinsic dynamic ac-
tivity (such as self-oscillation). This may well go some way
to explaining why the gaits exhibited by the CTRNN/PNN
appear to be more reactive, but seem to lack strong oscilla-
tory activity.

The evolved quadrupeds exhibit a variety of of the gaits,
and body configurations. The quality of the motion varies
from driven-oscillatory to ballistic-reactive. Some of the
most distinctive patterns are described below. The letters

correspond to that which appears next to the fitness value in
Table 3).

a The front legs hit the ground together, then the back legs,
corresponding to the bound gait.

b The quadruped jumps from its rear limbs, stopping itself
with its fore-limbs, before returning to a squatting posi-
tion. This cycle then repeats. This does not correspond to
any of the commonly observed animal gaits.

c In this case the left fore-limb remains in a forward posi-
tion, whilst the right fore-limb remains in a rearward posi-
tion. Rear limbs push off from the ground in a coordinated
fashion. Motion resembles that of the three-legged bound
gait.

d In some runs, the quadruped assumes a crawling configu-
ration. Early in the evolutionary run a suspended walking
gait is evident. Two diametrically opposed limbs are al-
ways in contact with the ground.

e This motion pattern most closely resembles ballistic walk-
ing. It is an highly irregular gait, with little evidence of
regular oscillatory movement.

f This is another bounding gait, however it makes use of
“elbows” rather than “hands/feet” in its forelimbs.

Comparison with Prior Study

In the previous study, which considered bipedal locomotion,
GasNets appeared to offer the best solution (the only net-
work to achieve cyclical bipedal locomotion) followed by
Center-Crossing CTRNNs. For detailed analysis of GasNet
dynamics and performance, the reader is referred to (Smith
et al., 2003) and (Philippedes et al., 2002). In this respect
the results for the GasNet are broadly in line with those of
the previous study.

In this study, only one of the CTRNN runs resulted in
locomotion. This is in keeping with prior work (Reil and
Husbands, 2002) where CTRNNs were evolved for bipedal
locomotion control. Only 10% of runs generated oscilla-
tory activity that resulted in bipedal locomotion. No stable
cyclical gaits were generated for the biped in the previous
comparative study using CTRNNs.

Compared to the previous study, the biggest difference
is in the relative performance of the Hybrid CTRNN/PNN.
Whilst at best mediocre in the prior study, the results when
applied to quadrupedal locomotion are comparable with
those of the GasNet. There are two possible explanations
that spring to mind. Firstly, modifying the original Hybrid
CTRNN/PNN so that it more closely resembles a coupled-
oscillator, may result in dynamic activity that is more suit-
able to oscillation and locomotive control. Note that in



the previous study networks were single heterogeneous net-
works with no axis of symmetry. Secondly, quadrupedal lo-
comotion may be more amenable to reactive solutions than
the intrinsically less stable problem of bipedal locomotion.

CPGs are currently the dominant motor control paradigm.
Work has shown that it is possible to model all the common
quadrupedal gaits using a network of eight cells (Buono and
Golubitsky, 2001). The results described here may lead us
to question whether or not reactive responses are just as im-
portant in generating locomotive activity.

Conclusion
In conjunction with previous studies, GasNets appear to pro-
vide us with a reliable approach to evolving locomotion in
physically simulated agents. However ANNs that exhibit
substantially different dynamics (such as CTRNN/PNNs),
may yield alternative solutions that are comparable in cer-
tain cases. Future work will investigate issues of gait stabil-
ity and directed motion.
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